File size: 6,541 Bytes
df763d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# MobileNet v3

**MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block).

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `mobilenetv3_large_100`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('mobilenetv3_large_100', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/abs-1905-02244,
  author    = {Andrew Howard and
               Mark Sandler and
               Grace Chu and
               Liang{-}Chieh Chen and
               Bo Chen and
               Mingxing Tan and
               Weijun Wang and
               Yukun Zhu and
               Ruoming Pang and
               Vijay Vasudevan and
               Quoc V. Le and
               Hartwig Adam},
  title     = {Searching for MobileNetV3},
  journal   = {CoRR},
  volume    = {abs/1905.02244},
  year      = {2019},
  url       = {http://arxiv.org/abs/1905.02244},
  archivePrefix = {arXiv},
  eprint    = {1905.02244},
  timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: MobileNet V3
  Paper:
    Title: Searching for MobileNetV3
    URL: https://paperswithcode.com/paper/searching-for-mobilenetv3
Models:
- Name: mobilenetv3_large_100
  In Collection: MobileNet V3
  Metadata:
    FLOPs: 287193752
    Parameters: 5480000
    File Size: 22076443
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x4 TPU Pod
    ID: mobilenetv3_large_100
    LR: 0.1
    Dropout: 0.8
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L363
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.77%
      Top 5 Accuracy: 92.54%
- Name: mobilenetv3_rw
  In Collection: MobileNet V3
  Metadata:
    FLOPs: 287190638
    Parameters: 5480000
    File Size: 22064048
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x4 TPU Pod
    ID: mobilenetv3_rw
    LR: 0.1
    Dropout: 0.8
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L384
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.62%
      Top 5 Accuracy: 92.71%
-->