File size: 14,763 Bytes
df763d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
# AdvProp (EfficientNet)

**AdvProp** is an adversarial training scheme which treats adversarial examples as additional examples, to prevent overfitting. Key to the method is the usage of a separate auxiliary batch norm for adversarial examples, as they have different underlying distributions to normal examples.

The weights from this model were ported from [Tensorflow/TPU](https://github.com/tensorflow/tpu).

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `tf_efficientnet_b0_ap`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('tf_efficientnet_b0_ap', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@misc{xie2020adversarial,
      title={Adversarial Examples Improve Image Recognition}, 
      author={Cihang Xie and Mingxing Tan and Boqing Gong and Jiang Wang and Alan Yuille and Quoc V. Le},
      year={2020},
      eprint={1911.09665},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: AdvProp
  Paper:
    Title: Adversarial Examples Improve Image Recognition
    URL: https://paperswithcode.com/paper/adversarial-examples-improve-image
Models:
- Name: tf_efficientnet_b0_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 488688572
    Parameters: 5290000
    File Size: 21385973
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b0_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1334
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b0_ap-f262efe1.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 77.1%
      Top 5 Accuracy: 93.26%
- Name: tf_efficientnet_b1_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 883633200
    Parameters: 7790000
    File Size: 31515350
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b1_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.882'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '240'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1344
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b1_ap-44ef0a3d.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 79.28%
      Top 5 Accuracy: 94.3%
- Name: tf_efficientnet_b2_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 1234321170
    Parameters: 9110000
    File Size: 36800745
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b2_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.89'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '260'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1354
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b2_ap-2f8e7636.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.3%
      Top 5 Accuracy: 95.03%
- Name: tf_efficientnet_b3_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 2275247568
    Parameters: 12230000
    File Size: 49384538
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b3_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.904'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '300'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1364
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b3_ap-aad25bdd.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.82%
      Top 5 Accuracy: 95.62%
- Name: tf_efficientnet_b4_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 5749638672
    Parameters: 19340000
    File Size: 77993585
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b4_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.922'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '380'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1374
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b4_ap-dedb23e6.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 83.26%
      Top 5 Accuracy: 96.39%
- Name: tf_efficientnet_b5_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 13176501888
    Parameters: 30390000
    File Size: 122403150
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b5_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.934'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '456'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1384
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b5_ap-9e82fae8.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 84.25%
      Top 5 Accuracy: 96.97%
- Name: tf_efficientnet_b6_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 24180518488
    Parameters: 43040000
    File Size: 173237466
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b6_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.942'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '528'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1394
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b6_ap-4ffb161f.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 84.79%
      Top 5 Accuracy: 97.14%
- Name: tf_efficientnet_b7_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 48205304880
    Parameters: 66349999
    File Size: 266850607
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b7_ap
    LR: 0.256
    Epochs: 350
    Crop Pct: '0.949'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '600'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1405
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b7_ap-ddb28fec.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 85.12%
      Top 5 Accuracy: 97.25%
- Name: tf_efficientnet_b8_ap
  In Collection: AdvProp
  Metadata:
    FLOPs: 80962956270
    Parameters: 87410000
    File Size: 351412563
    Architecture:
    - 1x1 Convolution
    - Average Pooling
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Dropout
    - Inverted Residual Block
    - Squeeze-and-Excitation Block
    - Swish
    Tasks:
    - Image Classification
    Training Techniques:
    - AdvProp
    - AutoAugment
    - Label Smoothing
    - RMSProp
    - Stochastic Depth
    - Weight Decay
    Training Data:
    - ImageNet
    ID: tf_efficientnet_b8_ap
    LR: 0.128
    Epochs: 350
    Crop Pct: '0.954'
    Momentum: 0.9
    Batch Size: 2048
    Image Size: '672'
    Weight Decay: 1.0e-05
    Interpolation: bicubic
    RMSProp Decay: 0.9
    Label Smoothing: 0.1
    BatchNorm Momentum: 0.99
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/efficientnet.py#L1416
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_efficientnet_b8_ap-00e169fa.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 85.37%
      Top 5 Accuracy: 97.3%
-->