File size: 10,548 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
# TResNet

A **TResNet** is a variant on a [ResNet](https://paperswithcode.com/method/resnet) that aim to boost accuracy while maintaining GPU training and inference efficiency.  They contain several design tricks including a SpaceToDepth stem, [Anti-Alias downsampling](https://paperswithcode.com/method/anti-alias-downsampling), In-Place Activated BatchNorm, Blocks selection and [squeeze-and-excitation layers](https://paperswithcode.com/method/squeeze-and-excitation-block).

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('tresnet_l', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `tresnet_l`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('tresnet_l', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@misc{ridnik2020tresnet,
      title={TResNet: High Performance GPU-Dedicated Architecture}, 
      author={Tal Ridnik and Hussam Lawen and Asaf Noy and Emanuel Ben Baruch and Gilad Sharir and Itamar Friedman},
      year={2020},
      eprint={2003.13630},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
```

<!--
Type: model-index
Collections:
- Name: TResNet
  Paper:
    Title: 'TResNet: High Performance GPU-Dedicated Architecture'
    URL: https://paperswithcode.com/paper/tresnet-high-performance-gpu-dedicated
Models:
- Name: tresnet_l
  In Collection: TResNet
  Metadata:
    FLOPs: 10873416792
    Parameters: 53456696
    File Size: 224440219
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    ID: tresnet_l
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L267
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_81_5-235b486c.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.49%
      Top 5 Accuracy: 95.62%
- Name: tresnet_l_448
  In Collection: TResNet
  Metadata:
    FLOPs: 43488238584
    Parameters: 53456696
    File Size: 224440219
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    ID: tresnet_l_448
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '448'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L285
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 82.26%
      Top 5 Accuracy: 95.98%
- Name: tresnet_m
  In Collection: TResNet
  Metadata:
    FLOPs: 5733048064
    Parameters: 41282200
    File Size: 125861314
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    Training Time: < 24 hours
    ID: tresnet_m
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L261
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_80_8-dbc13962.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 80.8%
      Top 5 Accuracy: 94.86%
- Name: tresnet_m_448
  In Collection: TResNet
  Metadata:
    FLOPs: 22929743104
    Parameters: 29278464
    File Size: 125861314
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    ID: tresnet_m_448
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '448'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L279
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_m_448-bc359d10.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 81.72%
      Top 5 Accuracy: 95.57%
- Name: tresnet_xl
  In Collection: TResNet
  Metadata:
    FLOPs: 15162534034
    Parameters: 75646610
    File Size: 314378965
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    ID: tresnet_xl
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '224'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L273
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_xl_82_0-a2d51b00.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 82.05%
      Top 5 Accuracy: 95.93%
- Name: tresnet_xl_448
  In Collection: TResNet
  Metadata:
    FLOPs: 60641712730
    Parameters: 75646610
    File Size: 224440219
    Architecture:
    - 1x1 Convolution
    - Anti-Alias Downsampling
    - Convolution
    - Global Average Pooling
    - InPlace-ABN
    - Leaky ReLU
    - ReLU
    - Residual Connection
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - AutoAugment
    - Cutout
    - Label Smoothing
    - SGD with Momentum
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 8x NVIDIA 100 GPUs
    ID: tresnet_xl_448
    LR: 0.01
    Epochs: 300
    Crop Pct: '0.875'
    Momentum: 0.9
    Image Size: '448'
    Weight Decay: 0.0001
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/tresnet.py#L291
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/tresnet_l_448-940d0cd1.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 83.06%
      Top 5 Accuracy: 96.19%
-->