File size: 11,712 Bytes
b1485f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
# (Tensorflow) MobileNet v3

**MobileNetV3** is a convolutional neural network that is designed for mobile phone CPUs. The network design includes the use of a [hard swish activation](https://paperswithcode.com/method/hard-swish) and [squeeze-and-excitation](https://paperswithcode.com/method/squeeze-and-excitation-block) modules in the [MBConv blocks](https://paperswithcode.com/method/inverted-residual-block).

The weights from this model were ported from [Tensorflow/Models](https://github.com/tensorflow/models).

## How do I use this model on an image?

To load a pretrained model:

```py
>>> import timm
>>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True)
>>> model.eval()
```

To load and preprocess the image:

```py 
>>> import urllib
>>> from PIL import Image
>>> from timm.data import resolve_data_config
>>> from timm.data.transforms_factory import create_transform

>>> config = resolve_data_config({}, model=model)
>>> transform = create_transform(**config)

>>> url, filename = ("https://github.com/pytorch/hub/raw/master/images/dog.jpg", "dog.jpg")
>>> urllib.request.urlretrieve(url, filename)
>>> img = Image.open(filename).convert('RGB')
>>> tensor = transform(img).unsqueeze(0) # transform and add batch dimension
```

To get the model predictions:

```py
>>> import torch
>>> with torch.no_grad():
...     out = model(tensor)
>>> probabilities = torch.nn.functional.softmax(out[0], dim=0)
>>> print(probabilities.shape)
>>> # prints: torch.Size([1000])
```

To get the top-5 predictions class names:

```py
>>> # Get imagenet class mappings
>>> url, filename = ("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt", "imagenet_classes.txt")
>>> urllib.request.urlretrieve(url, filename) 
>>> with open("imagenet_classes.txt", "r") as f:
...     categories = [s.strip() for s in f.readlines()]

>>> # Print top categories per image
>>> top5_prob, top5_catid = torch.topk(probabilities, 5)
>>> for i in range(top5_prob.size(0)):
...     print(categories[top5_catid[i]], top5_prob[i].item())
>>> # prints class names and probabilities like:
>>> # [('Samoyed', 0.6425196528434753), ('Pomeranian', 0.04062102362513542), ('keeshond', 0.03186424449086189), ('white wolf', 0.01739676296710968), ('Eskimo dog', 0.011717947199940681)]
```

Replace the model name with the variant you want to use, e.g. `tf_mobilenetv3_large_075`. You can find the IDs in the model summaries at the top of this page.

To extract image features with this model, follow the [timm feature extraction examples](../feature_extraction), just change the name of the model you want to use.

## How do I finetune this model?

You can finetune any of the pre-trained models just by changing the classifier (the last layer).

```py
>>> model = timm.create_model('tf_mobilenetv3_large_075', pretrained=True, num_classes=NUM_FINETUNE_CLASSES)
```
To finetune on your own dataset, you have to write a training loop or adapt [timm's training
script](https://github.com/rwightman/pytorch-image-models/blob/master/train.py) to use your dataset.

## How do I train this model?

You can follow the [timm recipe scripts](../training_script) for training a new model afresh.

## Citation

```BibTeX
@article{DBLP:journals/corr/abs-1905-02244,
  author    = {Andrew Howard and
               Mark Sandler and
               Grace Chu and
               Liang{-}Chieh Chen and
               Bo Chen and
               Mingxing Tan and
               Weijun Wang and
               Yukun Zhu and
               Ruoming Pang and
               Vijay Vasudevan and
               Quoc V. Le and
               Hartwig Adam},
  title     = {Searching for MobileNetV3},
  journal   = {CoRR},
  volume    = {abs/1905.02244},
  year      = {2019},
  url       = {http://arxiv.org/abs/1905.02244},
  archivePrefix = {arXiv},
  eprint    = {1905.02244},
  timestamp = {Tue, 12 Jan 2021 15:30:06 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1905-02244.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

<!--
Type: model-index
Collections:
- Name: TF MobileNet V3
  Paper:
    Title: Searching for MobileNetV3
    URL: https://paperswithcode.com/paper/searching-for-mobilenetv3
Models:
- Name: tf_mobilenetv3_large_075
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 194323712
    Parameters: 3990000
    File Size: 16097377
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x4 TPU Pod
    ID: tf_mobilenetv3_large_075
    LR: 0.1
    Dropout: 0.8
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L394
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 73.45%
      Top 5 Accuracy: 91.34%
- Name: tf_mobilenetv3_large_100
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 274535288
    Parameters: 5480000
    File Size: 22076649
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x4 TPU Pod
    ID: tf_mobilenetv3_large_100
    LR: 0.1
    Dropout: 0.8
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L403
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 75.51%
      Top 5 Accuracy: 92.61%
- Name: tf_mobilenetv3_large_minimal_100
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 267216928
    Parameters: 3920000
    File Size: 15836368
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 4x4 TPU Pod
    ID: tf_mobilenetv3_large_minimal_100
    LR: 0.1
    Dropout: 0.8
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 1.0e-05
    Interpolation: bilinear
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L412
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 72.24%
      Top 5 Accuracy: 90.64%
- Name: tf_mobilenetv3_small_075
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 48457664
    Parameters: 2040000
    File Size: 8242701
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: tf_mobilenetv3_small_075
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bilinear
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L421
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 65.72%
      Top 5 Accuracy: 86.13%
- Name: tf_mobilenetv3_small_100
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 65450600
    Parameters: 2540000
    File Size: 10256398
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: tf_mobilenetv3_small_100
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bilinear
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L430
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 67.92%
      Top 5 Accuracy: 87.68%
- Name: tf_mobilenetv3_small_minimal_100
  In Collection: TF MobileNet V3
  Metadata:
    FLOPs: 60827936
    Parameters: 2040000
    File Size: 8258083
    Architecture:
    - 1x1 Convolution
    - Batch Normalization
    - Convolution
    - Dense Connections
    - Depthwise Separable Convolution
    - Dropout
    - Global Average Pooling
    - Hard Swish
    - Inverted Residual Block
    - ReLU
    - Residual Connection
    - Softmax
    - Squeeze-and-Excitation Block
    Tasks:
    - Image Classification
    Training Techniques:
    - RMSProp
    - Weight Decay
    Training Data:
    - ImageNet
    Training Resources: 16x GPUs
    ID: tf_mobilenetv3_small_minimal_100
    LR: 0.045
    Crop Pct: '0.875'
    Momentum: 0.9
    Batch Size: 4096
    Image Size: '224'
    Weight Decay: 4.0e-05
    Interpolation: bilinear
    RMSProp Decay: 0.9
  Code: https://github.com/rwightman/pytorch-image-models/blob/9a25fdf3ad0414b4d66da443fe60ae0aa14edc84/timm/models/mobilenetv3.py#L439
  Weights: https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth
  Results:
  - Task: Image Classification
    Dataset: ImageNet
    Metrics:
      Top 1 Accuracy: 62.91%
      Top 5 Accuracy: 84.24%
-->