Datasets:
Tasks:
Text Generation
Formats:
parquet
Sub-tasks:
language-modeling
Languages:
Danish
Size:
1M - 10M
License:
File size: 5,541 Bytes
73fd2fd f2ad4e1 73fd2fd f2ad4e1 73fd2fd c0f5fe9 f2ad4e1 73fd2fd f2ad4e1 73fd2fd f2ad4e1 73fd2fd f2ad4e1 c0f5fe9 f2ad4e1 73fd2fd f2ad4e1 c0f5fe9 f2ad4e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
"""
A simple CLI to updates descriptive statistics on all datasets.
Example use:
python update_descriptive_statistics.py --dataset wikisource
"""
import argparse
import json
import logging
from dataclasses import dataclass
from pathlib import Path
from textwrap import dedent
from typing import Self, cast
from datasets import Dataset, load_dataset
from git_utilities import check_is_ancestor, get_current_revision, get_latest_revision
logger = logging.getLogger(__name__)
repo_path = Path(__file__).parent.parent
def human_readable_large_int(value: int) -> str:
thresholds = [
(1_000_000_000, "B"),
(1_000_000, "M"),
(1_000, "K"),
]
for threshold, label in thresholds:
if value > threshold:
return f"{value/threshold:.2f}{label}"
return str(value)
@dataclass()
class DescriptiveStatsOverview:
number_of_samples: int
average_document_length: float
language: str = "dan, dansk, Danish"
@classmethod
def from_dataset(cls, dataset: Dataset) -> Self:
return cls(
number_of_samples=len(dataset),
average_document_length=cls.calculate_average_document_length(dataset),
)
@staticmethod
def calculate_average_document_length(dataset: Dataset) -> float:
texts = sum(len(t) for t in dataset["text"])
return texts / len(dataset)
def to_markdown(self) -> str:
format = dedent(f"""
- **Language**: {self.language}
- **Number of samples**: {human_readable_large_int(self.number_of_samples)}
- **Average document length (characters)**: {self.average_document_length:.2f}
""")
return format
def add_to_markdown(self, markdown: str) -> str:
start_identifier = "<!-- START-DESC-STATS -->"
end_identifier = "<!-- END-DESC-STATS -->"
if markdown.count(start_identifier) != 1 or markdown.count(end_identifier) != 1:
raise ValueError("Markers should appear exactly once in the markdown.")
start_md, _, remainder = markdown.partition(start_identifier)
_, _, end_md = remainder.partition(end_identifier)
stats = self.to_markdown()
return f"{start_md}{start_identifier}{stats}{end_identifier}{end_md}"
def to_disk(self, path: Path):
data = self.__dict__
data["revision"] = get_current_revision()
with path.with_suffix(".json").open("w") as f:
json.dump(self.__dict__, f)
def update_statitics(
dataset_path: Path,
name: str,
readme_name: None | str = None,
force: bool = False,
) -> None:
rev = get_latest_revision(dataset_path)
desc_stats_path = dataset_path / "descriptive_stats.json"
if desc_stats_path.exists() and force is False:
with desc_stats_path.open("r") as f:
last_update = json.load(f).get("revision", None)
if last_update is None:
logging.warning(f"revision is not defined in {desc_stats_path}.")
elif check_is_ancestor(ancestor_rev=last_update, rev=rev):
logging.info(
f"descriptive statistics for '{name}' is already up to date, skipping."
)
return
logger.info(f"Updating statistics for {name}")
ds = load_dataset(str(repo_path), name, split="train")
ds = cast(Dataset, ds)
desc_stats = DescriptiveStatsOverview.from_dataset(ds)
readme_name = f"{name}.md" if readme_name is None else readme_name
markdown_path = dataset_path / readme_name
with markdown_path.open("r") as f:
new_markdown = desc_stats.add_to_markdown(f.read())
with markdown_path.open("w") as f:
f.write(new_markdown)
desc_stats.to_disk(desc_stats_path)
def create_parser():
parser = argparse.ArgumentParser(
description="Calculated descriptive statistics of the datasets in tha data folder"
)
parser.add_argument(
"--dataset",
default=None,
type=str,
help="Use to specify if you only want to compute the statistics from a singular dataset.",
)
parser.add_argument(
"--logging_level",
default=20,
type=int,
help="Sets the logging level. Default to 20 (INFO), other reasonable levels are 10 (DEBUG) and 30 (WARNING).",
)
parser.add_argument(
"--force",
type=bool,
default=False,
action=argparse.BooleanOptionalAction,
help="Should the statistics be forcefully recomputed. By default it checks the difference in commit ids.",
)
parser.add_argument(
"--repo_path",
default=str(repo_path),
type=str,
help="The repository where to calculate the descriptive statistics from",
)
return parser
def main(
dataset: str | None = None,
logging_level: int = 20,
force: bool = False,
repo_path: Path = repo_path,
):
logging.basicConfig(level=logging_level)
if dataset:
dataset_path = repo_path / "data" / dataset
update_statitics(repo_path, dataset_path.name, force=force)
return
datasets = (repo_path / "data").glob("*")
for dataset_path in datasets:
update_statitics(dataset_path, dataset_path.name, force=force)
update_statitics(repo_path, "default", "README.md", force=force)
if __name__ == "__main__":
parser = create_parser()
args = parser.parse_args()
main(
args.dataset,
logging_level=args.logging_level,
force=args.force,
repo_path=Path(args.repo_path),
)
|