File size: 4,874 Bytes
46ddfef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import modules.scripts as scripts
from modules.upscaler import Upscaler, UpscalerData
from modules import scripts, shared, images, scripts_postprocessing
from modules.processing import (
    StableDiffusionProcessing,
    StableDiffusionProcessingImg2Img,
)
from PIL import Image
import glob
from modules.face_restoration import FaceRestoration

from scripts.logger import logger
from scripts.swapper import UpscaleOptions, swap_face
from scripts.version import version_flag, app_title
import os

def get_models():
    models_path = os.path.join(scripts.basedir(), "models/roop/*")
    models = glob.glob(models_path)
    models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
    return models


class FaceSwapScript(scripts.Script):
    @property
    def upscaler(self) -> UpscalerData:
        for upscaler in shared.sd_upscalers:
            if upscaler.name == self.upscaler_name:
                return upscaler
        return None

    @property
    def face_restorer(self) -> FaceRestoration:
        for face_restorer in shared.face_restorers:
            if face_restorer.name() == self.face_restorer_name:
                return face_restorer
        return None

    @property
    def upscale_options(self) -> UpscaleOptions:
        return UpscaleOptions(
            do_restore_first = self.restore_first,
            scale=self.upscaler_scale,
            upscaler=self.upscaler,
            face_restorer=self.face_restorer,
            upscale_visibility=self.upscaler_visibility,
            restorer_visibility=self.face_restorer_visibility,
        )

    def process(
        self,
        p: StableDiffusionProcessing,
        img,
        enable,
        source_faces_index,
        faces_index,
        model,
        face_restorer_name,
        face_restorer_visibility,
        restore_first,
        upscaler_name,
        upscaler_scale,
        upscaler_visibility,
        swap_in_source,
        swap_in_generated,
    ):
        self.source = img
        self.face_restorer_name = face_restorer_name
        self.upscaler_scale = upscaler_scale
        self.upscaler_visibility = upscaler_visibility
        self.face_restorer_visibility = face_restorer_visibility
        self.enable = enable
        self.restore_first = restore_first
        self.upscaler_name = upscaler_name       
        self.swap_in_generated = swap_in_generated
        self.model = model
        self.source_faces_index = [
            int(x) for x in source_faces_index.strip(",").split(",") if x.isnumeric()
        ]
        self.faces_index = [
            int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
        ]
        if len(self.source_faces_index) == 0:
            self.source_faces_index = [0]
        if len(self.faces_index) == 0:
            self.faces_index = [0]
        if self.enable:
            if self.source is not None:
                if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
                    logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)

                    for i in range(len(p.init_images)):
                        logger.info(f"Swap in %s", i)
                        result = swap_face(
                            self.source,
                            p.init_images[i],
                            source_faces_index=self.source_faces_index,
                            faces_index=self.faces_index,
                            model=self.model,
                            upscale_options=self.upscale_options,
                        )
                        p.init_images[i] = result
            else:
                logger.error(f"Please provide a source face")

    def postprocess_batch(self, p, *args, **kwargs):
        if self.enable:
            images = kwargs["images"]

    def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
        if self.enable and self.swap_in_generated:
            if self.source is not None:
                logger.info(f"Working: source face index %s, target face index %s", self.source_faces_index, self.faces_index)
                image: Image.Image = script_pp.image
                result = swap_face(
                    self.source,
                    image,
                    source_faces_index=self.source_faces_index,
                    faces_index=self.faces_index,
                    model=self.model,
                    upscale_options=self.upscale_options,
                )
                try:
                    pp = scripts_postprocessing.PostprocessedImage(result)
                    pp.info = {}
                    p.extra_generation_params.update(pp.info)
                    script_pp.image = pp.image
                except:
                    logger.error(f"Cannot create a result image")