import os import torch from safetensors.torch import load_file from collections import OrderedDict from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm, vae_keys_squished_on_diffusers import json # this was just used to match the vae keys to the diffusers keys # you probably wont need this. Unless they change them.... again... again # on second thought, you probably will device = torch.device('cpu') dtype = torch.float32 vae_path = '/mnt/Models/stable-diffusion/models/VAE/vae-ft-mse-840000-ema-pruned/vae-ft-mse-840000-ema-pruned.safetensors' find_matches = False state_dict_ldm = load_file(vae_path) diffusers_vae = load_vae(vae_path, dtype=torch.float32).to(device) ldm_keys = state_dict_ldm.keys() matched_keys = {} duplicated_keys = { } if find_matches: # find values that match with a very low mse for ldm_key in ldm_keys: ldm_value = state_dict_ldm[ldm_key] for diffusers_key in list(diffusers_vae.state_dict().keys()): diffusers_value = diffusers_vae.state_dict()[diffusers_key] if diffusers_key in vae_keys_squished_on_diffusers: diffusers_value = diffusers_value.clone().unsqueeze(-1).unsqueeze(-1) # if they are not same shape, skip if ldm_value.shape != diffusers_value.shape: continue mse = torch.nn.functional.mse_loss(ldm_value, diffusers_value) if mse < 1e-6: if ldm_key in list(matched_keys.keys()): print(f'{ldm_key} already matched to {matched_keys[ldm_key]}') if ldm_key in duplicated_keys: duplicated_keys[ldm_key].append(diffusers_key) else: duplicated_keys[ldm_key] = [diffusers_key] continue matched_keys[ldm_key] = diffusers_key is_matched = True break print(f'Found {len(matched_keys)} matches') dif_to_ldm_state_dict = convert_diffusers_back_to_ldm(diffusers_vae) dif_to_ldm_state_dict_keys = list(dif_to_ldm_state_dict.keys()) keys_in_both = [] keys_not_in_diffusers = [] for key in ldm_keys: if key not in dif_to_ldm_state_dict_keys: keys_not_in_diffusers.append(key) keys_not_in_ldm = [] for key in dif_to_ldm_state_dict_keys: if key not in ldm_keys: keys_not_in_ldm.append(key) keys_in_both = [] for key in ldm_keys: if key in dif_to_ldm_state_dict_keys: keys_in_both.append(key) # sort them keys_not_in_diffusers.sort() keys_not_in_ldm.sort() keys_in_both.sort() # print(f'Keys in LDM but not in Diffusers: {len(keys_not_in_diffusers)}{keys_not_in_diffusers}') # print(f'Keys in Diffusers but not in LDM: {len(keys_not_in_ldm)}{keys_not_in_ldm}') # print(f'Keys in both: {len(keys_in_both)}{keys_in_both}') json_data = { "both": keys_in_both, "ldm": keys_not_in_diffusers, "diffusers": keys_not_in_ldm } json_data = json.dumps(json_data, indent=4) remaining_diffusers_values = OrderedDict() for key in keys_not_in_ldm: remaining_diffusers_values[key] = dif_to_ldm_state_dict[key] # print(remaining_diffusers_values.keys()) remaining_ldm_values = OrderedDict() for key in keys_not_in_diffusers: remaining_ldm_values[key] = state_dict_ldm[key] # print(json_data) project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) json_save_path = os.path.join(project_root, 'config', 'keys.json') json_matched_save_path = os.path.join(project_root, 'config', 'matched.json') json_duped_save_path = os.path.join(project_root, 'config', 'duped.json') with open(json_save_path, 'w') as f: f.write(json_data) if find_matches: with open(json_matched_save_path, 'w') as f: f.write(json.dumps(matched_keys, indent=4)) with open(json_duped_save_path, 'w') as f: f.write(json.dumps(duplicated_keys, indent=4))