import argparse import os # add project root to sys path import sys from tqdm import tqdm sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) import torch from diffusers.loaders import LoraLoaderMixin from safetensors.torch import load_file from collections import OrderedDict import json from toolkit.config_modules import ModelConfig from toolkit.paths import KEYMAPS_ROOT from toolkit.saving import convert_state_dict_to_ldm_with_mapping, get_ldm_state_dict_from_diffusers from toolkit.stable_diffusion_model import StableDiffusion # this was just used to match the vae keys to the diffusers keys # you probably wont need this. Unless they change them.... again... again # on second thought, you probably will project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) device = torch.device('cpu') dtype = torch.float32 parser = argparse.ArgumentParser() # require at lease one config file parser.add_argument( 'file_1', nargs='+', type=str, help='Path an LDM model' ) parser.add_argument( '--is_xl', action='store_true', help='Is the model an XL model' ) parser.add_argument( '--is_v2', action='store_true', help='Is the model a v2 model' ) args = parser.parse_args() find_matches = False print("Loading model") state_dict_file_1 = load_file(args.file_1[0]) state_dict_1_keys = list(state_dict_file_1.keys()) print("Loading model into diffusers format") model_config = ModelConfig( name_or_path=args.file_1[0], is_xl=args.is_xl ) sd = StableDiffusion( model_config=model_config, device=device, ) sd.load_model() # load our base base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors') mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json') print("Converting model back to LDM") version_string = '1' if args.is_v2: version_string = '2' if args.is_xl: version_string = 'sdxl' # convert the state dict state_dict_file_2 = get_ldm_state_dict_from_diffusers( sd.state_dict(), version_string, device='cpu', dtype=dtype ) # state_dict_file_2 = load_file(args.file_2[0]) state_dict_2_keys = list(state_dict_file_2.keys()) keys_in_both = [] keys_not_in_state_dict_2 = [] for key in state_dict_1_keys: if key not in state_dict_2_keys: keys_not_in_state_dict_2.append(key) keys_not_in_state_dict_1 = [] for key in state_dict_2_keys: if key not in state_dict_1_keys: keys_not_in_state_dict_1.append(key) keys_in_both = [] for key in state_dict_1_keys: if key in state_dict_2_keys: keys_in_both.append(key) # sort them keys_not_in_state_dict_2.sort() keys_not_in_state_dict_1.sort() keys_in_both.sort() if len(keys_not_in_state_dict_2) == 0 and len(keys_not_in_state_dict_1) == 0: print("All keys match!") print("Checking values...") mismatch_keys = [] loss = torch.nn.MSELoss() tolerance = 1e-6 for key in tqdm(keys_in_both): if loss(state_dict_file_1[key], state_dict_file_2[key]) > tolerance: print(f"Values for key {key} don't match!") print(f"Loss: {loss(state_dict_file_1[key], state_dict_file_2[key])}") mismatch_keys.append(key) if len(mismatch_keys) == 0: print("All values match!") else: print("Some valued font match!") print(mismatch_keys) mismatched_path = os.path.join(project_root, 'config', 'mismatch.json') with open(mismatched_path, 'w') as f: f.write(json.dumps(mismatch_keys, indent=4)) exit(0) else: print("Keys don't match!, generating info...") json_data = { "both": keys_in_both, "not_in_state_dict_2": keys_not_in_state_dict_2, "not_in_state_dict_1": keys_not_in_state_dict_1 } json_data = json.dumps(json_data, indent=4) remaining_diffusers_values = OrderedDict() for key in keys_not_in_state_dict_1: remaining_diffusers_values[key] = state_dict_file_2[key] # print(remaining_diffusers_values.keys()) remaining_ldm_values = OrderedDict() for key in keys_not_in_state_dict_2: remaining_ldm_values[key] = state_dict_file_1[key] # print(json_data) json_save_path = os.path.join(project_root, 'config', 'keys.json') json_matched_save_path = os.path.join(project_root, 'config', 'matched.json') json_duped_save_path = os.path.join(project_root, 'config', 'duped.json') state_dict_1_filename = os.path.basename(args.file_1[0]) # state_dict_2_filename = os.path.basename(args.file_2[0]) # save key names for each in own file with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}.json'), 'w') as f: f.write(json.dumps(state_dict_1_keys, indent=4)) with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}_loop.json'), 'w') as f: f.write(json.dumps(state_dict_2_keys, indent=4)) with open(json_save_path, 'w') as f: f.write(json_data)