import time import numpy as np import torch from torch.utils.data import DataLoader from torchvision import transforms import sys import os import cv2 import random from transformers import CLIPImageProcessor sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from toolkit.paths import SD_SCRIPTS_ROOT import torchvision.transforms.functional from toolkit.image_utils import show_img, show_tensors sys.path.append(SD_SCRIPTS_ROOT) from library.model_util import load_vae from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets, \ trigger_dataloader_setup_epoch from toolkit.config_modules import DatasetConfig import argparse from tqdm import tqdm parser = argparse.ArgumentParser() parser.add_argument('dataset_folder', type=str, default='input') parser.add_argument('--epochs', type=int, default=1) args = parser.parse_args() dataset_folder = args.dataset_folder resolution = 1024 bucket_tolerance = 64 batch_size = 1 clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16") class FakeAdapter: def __init__(self): self.clip_image_processor = clip_processor ## make fake sd class FakeSD: def __init__(self): self.adapter = FakeAdapter() dataset_config = DatasetConfig( dataset_path=dataset_folder, # clip_image_path=dataset_folder, # square_crop=True, resolution=resolution, # caption_ext='json', default_caption='default', # clip_image_path='/mnt/Datasets2/regs/yetibear_xl_v14/random_aspect/', buckets=True, bucket_tolerance=bucket_tolerance, # poi='person', # shuffle_augmentations=True, # augmentations=[ # { # 'method': 'Posterize', # 'num_bits': [(0, 4), (0, 4), (0, 4)], # 'p': 1.0 # }, # # ] ) dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size, sd=FakeSD()) # run through an epoch ang check sizes dataloader_iterator = iter(dataloader) for epoch in range(args.epochs): for batch in tqdm(dataloader): batch: 'DataLoaderBatchDTO' img_batch = batch.tensor batch_size, channels, height, width = img_batch.shape # img_batch = color_block_imgs(img_batch, neg1_1=True) # chunks = torch.chunk(img_batch, batch_size, dim=0) # # put them so they are size by side # big_img = torch.cat(chunks, dim=3) # big_img = big_img.squeeze(0) # # control_chunks = torch.chunk(batch.clip_image_tensor, batch_size, dim=0) # big_control_img = torch.cat(control_chunks, dim=3) # big_control_img = big_control_img.squeeze(0) * 2 - 1 # # # # resize control image # big_control_img = torchvision.transforms.Resize((width, height))(big_control_img) # # big_img = torch.cat([big_img, big_control_img], dim=2) # # min_val = big_img.min() # max_val = big_img.max() # # big_img = (big_img / 2 + 0.5).clamp(0, 1) big_img = img_batch # big_img = big_img.clamp(-1, 1) show_tensors(big_img) # convert to image # img = transforms.ToPILImage()(big_img) # # show_img(img) time.sleep(0.2) # if not last epoch if epoch < args.epochs - 1: trigger_dataloader_setup_epoch(dataloader) cv2.destroyAllWindows() print('done')