import torch from safetensors.torch import load_file, save_file from collections import OrderedDict meta = OrderedDict() meta['format'] = "pt" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def reduce_weight(weight, target_size): weight = weight.to(device, torch.float32) # resize so target_size is the first dimension tmp_weight = weight.view(1, 1, weight.shape[0], weight.shape[1]) # use interpolate to resize the tensor new_weight = torch.nn.functional.interpolate(tmp_weight, size=(target_size, weight.shape[1]), mode='bicubic', align_corners=True) # reshape back to original shape return new_weight.view(target_size, weight.shape[1]) def reduce_bias(bias, target_size): bias = bias.view(1, 1, bias.shape[0], 1) new_bias = torch.nn.functional.interpolate(bias, size=(target_size, 1), mode='bicubic', align_corners=True) return new_bias.view(target_size) # Load your original state dict state_dict = load_file( "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.orig.safetensors") # Create a new state dict for the reduced model new_state_dict = {} for key, value in state_dict.items(): value = value.to(device, torch.float32) if 'weight' in key or 'scale_shift_table' in key: if value.shape[0] == 1152: if len(value.shape) == 4: orig_shape = value.shape output_shape = (512, orig_shape[1], orig_shape[2], orig_shape[3]) # reshape to (1152, -1) # reshape to (1152, -1) value = value.view(value.shape[0], -1) value = reduce_weight(value, 512) value = value.view(output_shape) else: # value = reduce_weight(value.t(), 576).t().contiguous() value = reduce_weight(value, 512) pass elif value.shape[0] == 4608: if len(value.shape) == 4: orig_shape = value.shape output_shape = (2048, orig_shape[1], orig_shape[2], orig_shape[3]) value = value.view(value.shape[0], -1) value = reduce_weight(value, 2048) value = value.view(output_shape) else: value = reduce_weight(value, 2048) elif value.shape[0] == 6912: if len(value.shape) == 4: orig_shape = value.shape output_shape = (3072, orig_shape[1], orig_shape[2], orig_shape[3]) value = value.view(value.shape[0], -1) value = reduce_weight(value, 3072) value = value.view(output_shape) else: value = reduce_weight(value, 3072) if len(value.shape) > 1 and value.shape[ 1] == 1152 and 'attn2.to_k.weight' not in key and 'attn2.to_v.weight' not in key: value = reduce_weight(value.t(), 512).t().contiguous() # Transpose before and after reduction pass elif len(value.shape) > 1 and value.shape[1] == 4608: value = reduce_weight(value.t(), 2048).t().contiguous() # Transpose before and after reduction pass elif 'bias' in key: if value.shape[0] == 1152: value = reduce_bias(value, 512) elif value.shape[0] == 4608: value = reduce_bias(value, 2048) elif value.shape[0] == 6912: value = reduce_bias(value, 3072) new_state_dict[key] = value # Move all to CPU and convert to float16 for key, value in new_state_dict.items(): new_state_dict[key] = value.cpu().to(torch.float16) # Save the new state dict save_file(new_state_dict, "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.safetensors", metadata=meta) print("Done!")