import torch from safetensors.torch import load_file, save_file from collections import OrderedDict model_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model_orig.safetensors" output_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model.safetensors" state_dict = load_file(model_path) meta = OrderedDict() meta["format"] = "pt" new_state_dict = {} # Move non-blocks over for key, value in state_dict.items(): if not key.startswith("transformer_blocks."): new_state_dict[key] = value block_names = ['transformer_blocks.{idx}.attn1.to_k.bias', 'transformer_blocks.{idx}.attn1.to_k.weight', 'transformer_blocks.{idx}.attn1.to_out.0.bias', 'transformer_blocks.{idx}.attn1.to_out.0.weight', 'transformer_blocks.{idx}.attn1.to_q.bias', 'transformer_blocks.{idx}.attn1.to_q.weight', 'transformer_blocks.{idx}.attn1.to_v.bias', 'transformer_blocks.{idx}.attn1.to_v.weight', 'transformer_blocks.{idx}.attn2.to_k.bias', 'transformer_blocks.{idx}.attn2.to_k.weight', 'transformer_blocks.{idx}.attn2.to_out.0.bias', 'transformer_blocks.{idx}.attn2.to_out.0.weight', 'transformer_blocks.{idx}.attn2.to_q.bias', 'transformer_blocks.{idx}.attn2.to_q.weight', 'transformer_blocks.{idx}.attn2.to_v.bias', 'transformer_blocks.{idx}.attn2.to_v.weight', 'transformer_blocks.{idx}.ff.net.0.proj.bias', 'transformer_blocks.{idx}.ff.net.0.proj.weight', 'transformer_blocks.{idx}.ff.net.2.bias', 'transformer_blocks.{idx}.ff.net.2.weight', 'transformer_blocks.{idx}.scale_shift_table'] # New block idx 0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27 current_idx = 0 for i in range(28): if i not in [0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27]: # todo merge in with previous block for name in block_names: try: new_state_dict_key = name.format(idx=current_idx - 1) old_state_dict_key = name.format(idx=i) new_state_dict[new_state_dict_key] = (new_state_dict[new_state_dict_key] * 0.5) + (state_dict[old_state_dict_key] * 0.5) except KeyError: raise KeyError(f"KeyError: {name.format(idx=current_idx)}") else: for name in block_names: new_state_dict[name.format(idx=current_idx)] = state_dict[name.format(idx=i)] current_idx += 1 # make sure they are all fp16 and on cpu for key, value in new_state_dict.items(): new_state_dict[key] = value.to(torch.float16).cpu() # save the new state dict save_file(new_state_dict, output_path, metadata=meta) new_param_count = sum([v.numel() for v in new_state_dict.values()]) old_param_count = sum([v.numel() for v in state_dict.values()]) print(f"Old param count: {old_param_count:,}") print(f"New param count: {new_param_count:,}")