import os import torch from transformers import T5EncoderModel, T5Tokenizer from diffusers import StableDiffusionPipeline, UNet2DConditionModel, PixArtSigmaPipeline, Transformer2DModel, PixArtTransformer2DModel from safetensors.torch import load_file, save_file from collections import OrderedDict import json # model_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_v01_000527000" # te_path = "google/flan-t5-xl" # te_aug_path = "/mnt/Train/out/ip_adapter/t5xx_sd15_v1/t5xx_sd15_v1_000032000.safetensors" # output_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_t5xl_raw" model_path = "/home/jaret/Dev/models/hf/objective-reality-16ch" te_path = "google/flan-t5-xl" te_aug_path = "/mnt/Train2/out/ip_adapter/t5xl-sd15-16ch_v1/t5xl-sd15-16ch_v1_000115000.safetensors" output_path = "/home/jaret/Dev/models/hf/t5xl-sd15-16ch_sd15_v1" print("Loading te adapter") te_aug_sd = load_file(te_aug_path) print("Loading model") is_diffusers = (not os.path.exists(model_path)) or os.path.isdir(model_path) # if "pixart" in model_path.lower(): is_pixart = "pixart" in model_path.lower() pipeline_class = StableDiffusionPipeline # transformer = PixArtTransformer2DModel.from_pretrained('PixArt-alpha/PixArt-Sigma-XL-2-512-MS', subfolder='transformer', torch_dtype=torch.float16) if is_pixart: pipeline_class = PixArtSigmaPipeline if is_diffusers: sd = pipeline_class.from_pretrained(model_path, torch_dtype=torch.float16) else: sd = pipeline_class.from_single_file(model_path, torch_dtype=torch.float16) print("Loading Text Encoder") # Load the text encoder te = T5EncoderModel.from_pretrained(te_path, torch_dtype=torch.float16) # patch it sd.text_encoder = te sd.tokenizer = T5Tokenizer.from_pretrained(te_path) if is_pixart: unet = sd.transformer unet_sd = sd.transformer.state_dict() else: unet = sd.unet unet_sd = sd.unet.state_dict() if is_pixart: weight_idx = 0 else: weight_idx = 1 new_cross_attn_dim = None # count the num of params in state dict start_params = sum([v.numel() for v in unet_sd.values()]) print("Building") attn_processor_keys = [] if is_pixart: transformer: Transformer2DModel = unet for i, module in transformer.transformer_blocks.named_children(): attn_processor_keys.append(f"transformer_blocks.{i}.attn1") # cross attention attn_processor_keys.append(f"transformer_blocks.{i}.attn2") else: attn_processor_keys = list(unet.attn_processors.keys()) for name in attn_processor_keys: cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith( "attn1") else \ unet.config['cross_attention_dim'] if name.startswith("mid_block"): hidden_size = unet.config['block_out_channels'][-1] elif name.startswith("up_blocks"): block_id = int(name[len("up_blocks.")]) hidden_size = list(reversed(unet.config['block_out_channels']))[block_id] elif name.startswith("down_blocks"): block_id = int(name[len("down_blocks.")]) hidden_size = unet.config['block_out_channels'][block_id] elif name.startswith("transformer"): hidden_size = unet.config['cross_attention_dim'] else: # they didnt have this, but would lead to undefined below raise ValueError(f"unknown attn processor name: {name}") if cross_attention_dim is None: pass else: layer_name = name.split(".processor")[0] to_k_adapter = unet_sd[layer_name + ".to_k.weight"] to_v_adapter = unet_sd[layer_name + ".to_v.weight"] te_aug_name = None while True: if is_pixart: te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter" else: te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter" if f"{te_aug_name}.weight" in te_aug_sd: # increment so we dont redo it next time weight_idx += 1 break else: weight_idx += 1 if weight_idx > 1000: raise ValueError("Could not find the next weight") orig_weight_shape_k = list(unet_sd[layer_name + ".to_k.weight"].shape) new_weight_shape_k = list(te_aug_sd[te_aug_name + ".weight"].shape) orig_weight_shape_v = list(unet_sd[layer_name + ".to_v.weight"].shape) new_weight_shape_v = list(te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"].shape) unet_sd[layer_name + ".to_k.weight"] = te_aug_sd[te_aug_name + ".weight"] unet_sd[layer_name + ".to_v.weight"] = te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"] if new_cross_attn_dim is None: new_cross_attn_dim = unet_sd[layer_name + ".to_k.weight"].shape[1] if is_pixart: # copy the caption_projection weight del unet_sd['caption_projection.linear_1.bias'] del unet_sd['caption_projection.linear_1.weight'] del unet_sd['caption_projection.linear_2.bias'] del unet_sd['caption_projection.linear_2.weight'] print("Saving unmodified model") sd = sd.to("cpu", torch.float16) sd.save_pretrained( output_path, safe_serialization=True, ) # overwrite the unet if is_pixart: unet_folder = os.path.join(output_path, "transformer") else: unet_folder = os.path.join(output_path, "unet") # move state_dict to cpu unet_sd = {k: v.clone().cpu().to(torch.float16) for k, v in unet_sd.items()} meta = OrderedDict() meta["format"] = "pt" print("Patching") save_file(unet_sd, os.path.join(unet_folder, "diffusion_pytorch_model.safetensors"), meta) # load the json file with open(os.path.join(unet_folder, "config.json"), 'r') as f: config = json.load(f) config['cross_attention_dim'] = new_cross_attn_dim if is_pixart: config['caption_channels'] = None # save it with open(os.path.join(unet_folder, "config.json"), 'w') as f: json.dump(config, f, indent=2) print("Done") new_params = sum([v.numel() for v in unet_sd.values()]) # print new and old params with , formatted print(f"Old params: {start_params:,}") print(f"New params: {new_params:,}")