import torch import gc from collections import OrderedDict from typing import TYPE_CHECKING from jobs.process import BaseExtensionProcess from toolkit.config_modules import ModelConfig from toolkit.stable_diffusion_model import StableDiffusion from toolkit.train_tools import get_torch_dtype from tqdm import tqdm # Type check imports. Prevents circular imports if TYPE_CHECKING: from jobs import ExtensionJob # extend standard config classes to add weight class ModelInputConfig(ModelConfig): def __init__(self, **kwargs): super().__init__(**kwargs) self.weight = kwargs.get('weight', 1.0) # overwrite default dtype unless user specifies otherwise # float 32 will give up better precision on the merging functions self.dtype: str = kwargs.get('dtype', 'float32') def flush(): torch.cuda.empty_cache() gc.collect() # this is our main class process class ExampleMergeModels(BaseExtensionProcess): def __init__( self, process_id: int, job: 'ExtensionJob', config: OrderedDict ): super().__init__(process_id, job, config) # this is the setup process, do not do process intensive stuff here, just variable setup and # checking requirements. This is called before the run() function # no loading models or anything like that, it is just for setting up the process # all of your process intensive stuff should be done in the run() function # config will have everything from the process item in the config file # convince methods exist on BaseProcess to get config values # if required is set to true and the value is not found it will throw an error # you can pass a default value to get_conf() as well if it was not in the config file # as well as a type to cast the value to self.save_path = self.get_conf('save_path', required=True) self.save_dtype = self.get_conf('save_dtype', default='float16', as_type=get_torch_dtype) self.device = self.get_conf('device', default='cpu', as_type=torch.device) # build models to merge list models_to_merge = self.get_conf('models_to_merge', required=True, as_type=list) # build list of ModelInputConfig objects. I find it is a good idea to make a class for each config # this way you can add methods to it and it is easier to read and code. There are a lot of # inbuilt config classes located in toolkit.config_modules as well self.models_to_merge = [ModelInputConfig(**model) for model in models_to_merge] # setup is complete. Don't load anything else here, just setup variables and stuff # this is the entire run process be sure to call super().run() first def run(self): # always call first super().run() print(f"Running process: {self.__class__.__name__}") # let's adjust our weights first to normalize them so the total is 1.0 total_weight = sum([model.weight for model in self.models_to_merge]) weight_adjust = 1.0 / total_weight for model in self.models_to_merge: model.weight *= weight_adjust output_model: StableDiffusion = None # let's do the merge, it is a good idea to use tqdm to show progress for model_config in tqdm(self.models_to_merge, desc="Merging models"): # setup model class with our helper class sd_model = StableDiffusion( device=self.device, model_config=model_config, dtype="float32" ) # load the model sd_model.load_model() # adjust the weight of the text encoder if isinstance(sd_model.text_encoder, list): # sdxl model for text_encoder in sd_model.text_encoder: for key, value in text_encoder.state_dict().items(): value *= model_config.weight else: # normal model for key, value in sd_model.text_encoder.state_dict().items(): value *= model_config.weight # adjust the weights of the unet for key, value in sd_model.unet.state_dict().items(): value *= model_config.weight if output_model is None: # use this one as the base output_model = sd_model else: # merge the models # text encoder if isinstance(output_model.text_encoder, list): # sdxl model for i, text_encoder in enumerate(output_model.text_encoder): for key, value in text_encoder.state_dict().items(): value += sd_model.text_encoder[i].state_dict()[key] else: # normal model for key, value in output_model.text_encoder.state_dict().items(): value += sd_model.text_encoder.state_dict()[key] # unet for key, value in output_model.unet.state_dict().items(): value += sd_model.unet.state_dict()[key] # remove the model to free memory del sd_model flush() # merge loop is done, let's save the model print(f"Saving merged model to {self.save_path}") output_model.save(self.save_path, meta=self.meta, save_dtype=self.save_dtype) print(f"Saved merged model to {self.save_path}") # do cleanup here del output_model flush()