import json import os from collections import OrderedDict from typing import Optional, Union, List, Type, TYPE_CHECKING, Dict, Any, Literal import torch from optimum.quanto import QTensor from torch import nn import weakref from tqdm import tqdm from toolkit.config_modules import NetworkConfig from toolkit.lorm import extract_conv, extract_linear, count_parameters from toolkit.metadata import add_model_hash_to_meta from toolkit.paths import KEYMAPS_ROOT from toolkit.saving import get_lora_keymap_from_model_keymap if TYPE_CHECKING: from toolkit.lycoris_special import LycorisSpecialNetwork, LoConSpecialModule from toolkit.lora_special import LoRASpecialNetwork, LoRAModule from toolkit.stable_diffusion_model import StableDiffusion from toolkit.models.DoRA import DoRAModule Network = Union['LycorisSpecialNetwork', 'LoRASpecialNetwork'] Module = Union['LoConSpecialModule', 'LoRAModule', 'DoRAModule'] LINEAR_MODULES = [ 'Linear', 'LoRACompatibleLinear' # 'GroupNorm', ] CONV_MODULES = [ 'Conv2d', 'LoRACompatibleConv' ] ExtractMode = Union[ 'existing' 'fixed', 'threshold', 'ratio', 'quantile', 'percentage' ] def broadcast_and_multiply(tensor, multiplier): # Determine the number of dimensions required num_extra_dims = tensor.dim() - multiplier.dim() # Unsqueezing the tensor to match the dimensionality for _ in range(num_extra_dims): multiplier = multiplier.unsqueeze(-1) try: # Multiplying the broadcasted tensor with the output tensor result = tensor * multiplier except RuntimeError as e: print(e) print(tensor.size()) print(multiplier.size()) raise e return result def add_bias(tensor, bias): if bias is None: return tensor # add batch dim bias = bias.unsqueeze(0) bias = torch.cat([bias] * tensor.size(0), dim=0) # Determine the number of dimensions required num_extra_dims = tensor.dim() - bias.dim() # Unsqueezing the tensor to match the dimensionality for _ in range(num_extra_dims): bias = bias.unsqueeze(-1) # we may need to swap -1 for -2 if bias.size(1) != tensor.size(1): if len(bias.size()) == 3: bias = bias.permute(0, 2, 1) elif len(bias.size()) == 4: bias = bias.permute(0, 3, 1, 2) # Multiplying the broadcasted tensor with the output tensor try: result = tensor + bias except RuntimeError as e: print(e) print(tensor.size()) print(bias.size()) raise e return result class ExtractableModuleMixin: def extract_weight( self: Module, extract_mode: ExtractMode = "existing", extract_mode_param: Union[int, float] = None, ): device = self.lora_down.weight.device weight_to_extract = self.org_module[0].weight if extract_mode == "existing": extract_mode = 'fixed' extract_mode_param = self.lora_dim if self.org_module[0].__class__.__name__ in CONV_MODULES: # do conv extraction down_weight, up_weight, new_dim, diff = extract_conv( weight=weight_to_extract.clone().detach().float(), mode=extract_mode, mode_param=extract_mode_param, device=device ) elif self.org_module[0].__class__.__name__ in LINEAR_MODULES: # do linear extraction down_weight, up_weight, new_dim, diff = extract_linear( weight=weight_to_extract.clone().detach().float(), mode=extract_mode, mode_param=extract_mode_param, device=device, ) else: raise ValueError(f"Unknown module type: {self.org_module[0].__class__.__name__}") self.lora_dim = new_dim # inject weights into the param self.lora_down.weight.data = down_weight.to(self.lora_down.weight.dtype).clone().detach() self.lora_up.weight.data = up_weight.to(self.lora_up.weight.dtype).clone().detach() # copy bias if we have one and are using them if self.org_module[0].bias is not None and self.lora_up.bias is not None: self.lora_up.bias.data = self.org_module[0].bias.data.clone().detach() # set up alphas self.alpha = (self.alpha * 0) + down_weight.shape[0] self.scale = self.alpha / self.lora_dim # assign them # handle trainable scaler method locon does if hasattr(self, 'scalar'): # scaler is a parameter update the value with 1.0 self.scalar.data = torch.tensor(1.0).to(self.scalar.device, self.scalar.dtype) class ToolkitModuleMixin: def __init__( self: Module, *args, network: Network, **kwargs ): self.network_ref: weakref.ref = weakref.ref(network) self.is_checkpointing = False self._multiplier: Union[float, list, torch.Tensor] = None def _call_forward(self: Module, x): # module dropout if self.module_dropout is not None and self.training: if torch.rand(1) < self.module_dropout: return 0.0 # added to original forward if hasattr(self, 'lora_mid') and self.lora_mid is not None: lx = self.lora_mid(self.lora_down(x)) else: try: lx = self.lora_down(x) except RuntimeError as e: print(f"Error in {self.__class__.__name__} lora_down") print(e) if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity): lx = self.dropout(lx) # normal dropout elif self.dropout is not None and self.training: lx = torch.nn.functional.dropout(lx, p=self.dropout) # rank dropout if self.rank_dropout is not None and self.rank_dropout > 0 and self.training: mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout if len(lx.size()) == 3: mask = mask.unsqueeze(1) # for Text Encoder elif len(lx.size()) == 4: mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d lx = lx * mask # scaling for rank dropout: treat as if the rank is changed # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability else: scale = self.scale lx = self.lora_up(lx) # handle trainable scaler method locon does if hasattr(self, 'scalar'): scale = scale * self.scalar return lx * scale def lorm_forward(self: Network, x, *args, **kwargs): network: Network = self.network_ref() if not network.is_active: return self.org_forward(x, *args, **kwargs) if network.lorm_train_mode == 'local': # we are going to predict input with both and do a loss on them inputs = x.detach() with torch.no_grad(): # get the local prediction target_pred = self.org_forward(inputs, *args, **kwargs).detach() with torch.set_grad_enabled(True): # make a prediction with the lorm lorm_pred = self.lora_up(self.lora_down(inputs.requires_grad_(True))) local_loss = torch.nn.functional.mse_loss(target_pred.float(), lorm_pred.float()) # backpropr local_loss.backward() network.module_losses.append(local_loss.detach()) # return the original as we dont want our trainer to affect ones down the line return target_pred else: return self.lora_up(self.lora_down(x)) def forward(self: Module, x, *args, **kwargs): skip = False network: Network = self.network_ref() if network.is_lorm: # we are doing lorm return self.lorm_forward(x, *args, **kwargs) # skip if not active if not network.is_active: skip = True # skip if is merged in if network.is_merged_in: skip = True # skip if multiplier is 0 if network._multiplier == 0: skip = True if skip: # network is not active, avoid doing anything return self.org_forward(x, *args, **kwargs) # if self.__class__.__name__ == "DoRAModule": # # return dora forward # return self.dora_forward(x, *args, **kwargs) org_forwarded = self.org_forward(x, *args, **kwargs) if isinstance(x, QTensor): x = x.dequantize() # always cast to float32 lora_input = x.to(self.lora_down.weight.dtype) lora_output = self._call_forward(lora_input) multiplier = self.network_ref().torch_multiplier lora_output_batch_size = lora_output.size(0) multiplier_batch_size = multiplier.size(0) if lora_output_batch_size != multiplier_batch_size: num_interleaves = lora_output_batch_size // multiplier_batch_size # todo check if this is correct, do we just concat when doing cfg? multiplier = multiplier.repeat_interleave(num_interleaves) scaled_lora_output = broadcast_and_multiply(lora_output, multiplier) scaled_lora_output = scaled_lora_output.to(org_forwarded.dtype) if self.__class__.__name__ == "DoRAModule": # ref https://github.com/huggingface/peft/blob/1e6d1d73a0850223b0916052fd8d2382a90eae5a/src/peft/tuners/lora/layer.py#L417 # x = dropout(x) # todo this wont match the dropout applied to the lora if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity): lx = self.dropout(x) # normal dropout elif self.dropout is not None and self.training: lx = torch.nn.functional.dropout(x, p=self.dropout) else: lx = x lora_weight = self.lora_up.weight @ self.lora_down.weight # scale it here # todo handle our batch split scalers for slider training. For now take the mean of them scale = multiplier.mean() scaled_lora_weight = lora_weight * scale scaled_lora_output = scaled_lora_output + self.apply_dora(lx, scaled_lora_weight).to(org_forwarded.dtype) try: x = org_forwarded + scaled_lora_output except RuntimeError as e: print(e) print(org_forwarded.size()) print(scaled_lora_output.size()) raise e return x def enable_gradient_checkpointing(self: Module): self.is_checkpointing = True def disable_gradient_checkpointing(self: Module): self.is_checkpointing = False @torch.no_grad() def merge_out(self: Module, merge_out_weight=1.0): # make sure it is positive merge_out_weight = abs(merge_out_weight) # merging out is just merging in the negative of the weight self.merge_in(merge_weight=-merge_out_weight) @torch.no_grad() def merge_in(self: Module, merge_weight=1.0): if not self.can_merge_in: return # get up/down weight up_weight = self.lora_up.weight.clone().float() down_weight = self.lora_down.weight.clone().float() # extract weight from org_module org_sd = self.org_module[0].state_dict() # todo find a way to merge in weights when doing quantized model if 'weight._data' in org_sd: # quantized weight return weight_key = "weight" if 'weight._data' in org_sd: # quantized weight weight_key = "weight._data" orig_dtype = org_sd[weight_key].dtype weight = org_sd[weight_key].float() multiplier = merge_weight scale = self.scale # handle trainable scaler method locon does if hasattr(self, 'scalar'): scale = scale * self.scalar # merge weight if len(weight.size()) == 2: # linear weight = weight + multiplier * (up_weight @ down_weight) * scale elif down_weight.size()[2:4] == (1, 1): # conv2d 1x1 weight = ( weight + multiplier * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3) * scale ) else: # conv2d 3x3 conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3) # print(conved.size(), weight.size(), module.stride, module.padding) weight = weight + multiplier * conved * scale # set weight to org_module org_sd[weight_key] = weight.to(orig_dtype) self.org_module[0].load_state_dict(org_sd) def setup_lorm(self: Module, state_dict: Optional[Dict[str, Any]] = None): # LoRM (Low Rank Middle) is a method reduce the number of parameters in a module while keeping the inputs and # outputs the same. It is basically a LoRA but with the original module removed # if a state dict is passed, use those weights instead of extracting # todo load from state dict network: Network = self.network_ref() lorm_config = network.network_config.lorm_config.get_config_for_module(self.lora_name) extract_mode = lorm_config.extract_mode extract_mode_param = lorm_config.extract_mode_param parameter_threshold = lorm_config.parameter_threshold self.extract_weight( extract_mode=extract_mode, extract_mode_param=extract_mode_param ) class ToolkitNetworkMixin: def __init__( self: Network, *args, train_text_encoder: Optional[bool] = True, train_unet: Optional[bool] = True, is_sdxl=False, is_v2=False, is_ssd=False, is_vega=False, network_config: Optional[NetworkConfig] = None, is_lorm=False, **kwargs ): self.train_text_encoder = train_text_encoder self.train_unet = train_unet self.is_checkpointing = False self._multiplier: float = 1.0 self.is_active: bool = False self.is_sdxl = is_sdxl self.is_ssd = is_ssd self.is_vega = is_vega self.is_v2 = is_v2 self.is_v1 = not is_v2 and not is_sdxl and not is_ssd and not is_vega self.is_merged_in = False self.is_lorm = is_lorm self.network_config: NetworkConfig = network_config self.module_losses: List[torch.Tensor] = [] self.lorm_train_mode: Literal['local', None] = None self.can_merge_in = not is_lorm def get_keymap(self: Network, force_weight_mapping=False): use_weight_mapping = False if self.is_ssd: keymap_tail = 'ssd' use_weight_mapping = True elif self.is_vega: keymap_tail = 'vega' use_weight_mapping = True elif self.is_sdxl: keymap_tail = 'sdxl' elif self.is_v2: keymap_tail = 'sd2' else: keymap_tail = 'sd1' # todo double check this # use_weight_mapping = True if force_weight_mapping: use_weight_mapping = True # load keymap keymap_name = f"stable_diffusion_locon_{keymap_tail}.json" if use_weight_mapping: keymap_name = f"stable_diffusion_{keymap_tail}.json" keymap_path = os.path.join(KEYMAPS_ROOT, keymap_name) keymap = None # check if file exists if os.path.exists(keymap_path): with open(keymap_path, 'r') as f: keymap = json.load(f)['ldm_diffusers_keymap'] if use_weight_mapping and keymap is not None: # get keymap from weights keymap = get_lora_keymap_from_model_keymap(keymap) # upgrade keymaps for DoRA if self.network_type.lower() == 'dora': if keymap is not None: new_keymap = {} for ldm_key, diffusers_key in keymap.items(): ldm_key = ldm_key.replace('.alpha', '.magnitude') # ldm_key = ldm_key.replace('.lora_down.weight', '.lora_down') # ldm_key = ldm_key.replace('.lora_up.weight', '.lora_up') diffusers_key = diffusers_key.replace('.alpha', '.magnitude') # diffusers_key = diffusers_key.replace('.lora_down.weight', '.lora_down') # diffusers_key = diffusers_key.replace('.lora_up.weight', '.lora_up') new_keymap[ldm_key] = diffusers_key keymap = new_keymap return keymap def save_weights( self: Network, file, dtype=torch.float16, metadata=None, extra_state_dict: Optional[OrderedDict] = None ): keymap = self.get_keymap() save_keymap = {} if keymap is not None: for ldm_key, diffusers_key in keymap.items(): # invert them save_keymap[diffusers_key] = ldm_key if metadata is not None and len(metadata) == 0: metadata = None state_dict = self.state_dict() save_dict = OrderedDict() for key in list(state_dict.keys()): v = state_dict[key] v = v.detach().clone().to("cpu").to(dtype) save_key = save_keymap[key] if key in save_keymap else key save_dict[save_key] = v del state_dict[key] if extra_state_dict is not None: # add extra items to state dict for key in list(extra_state_dict.keys()): v = extra_state_dict[key] v = v.detach().clone().to("cpu").to(dtype) save_dict[key] = v if self.peft_format: # lora_down = lora_A # lora_up = lora_B # no alpha new_save_dict = {} for key, value in save_dict.items(): if key.endswith('.alpha'): continue new_key = key new_key = new_key.replace('lora_down', 'lora_A') new_key = new_key.replace('lora_up', 'lora_B') # replace all $$ with . new_key = new_key.replace('$$', '.') new_save_dict[new_key] = value save_dict = new_save_dict if metadata is None: metadata = OrderedDict() metadata = add_model_hash_to_meta(state_dict, metadata) if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import save_file save_file(save_dict, file, metadata) else: torch.save(save_dict, file) def load_weights(self: Network, file, force_weight_mapping=False): # allows us to save and load to and from ldm weights keymap = self.get_keymap(force_weight_mapping) keymap = {} if keymap is None else keymap if isinstance(file, str): if os.path.splitext(file)[1] == ".safetensors": from safetensors.torch import load_file weights_sd = load_file(file) else: weights_sd = torch.load(file, map_location="cpu") else: # probably a state dict weights_sd = file load_sd = OrderedDict() for key, value in weights_sd.items(): load_key = keymap[key] if key in keymap else key # replace old double __ with single _ if self.is_pixart: load_key = load_key.replace('__', '_') if self.peft_format: # lora_down = lora_A # lora_up = lora_B # no alpha if load_key.endswith('.alpha'): continue load_key = load_key.replace('lora_A', 'lora_down') load_key = load_key.replace('lora_B', 'lora_up') # replace all . with $$ load_key = load_key.replace('.', '$$') load_key = load_key.replace('$$lora_down$$', '.lora_down.') load_key = load_key.replace('$$lora_up$$', '.lora_up.') load_sd[load_key] = value # extract extra items from state dict current_state_dict = self.state_dict() extra_dict = OrderedDict() to_delete = [] for key in list(load_sd.keys()): if key not in current_state_dict: extra_dict[key] = load_sd[key] to_delete.append(key) for key in to_delete: del load_sd[key] print(f"Missing keys: {to_delete}") if len(to_delete) > 0 and self.is_v1 and not force_weight_mapping and not ( len(to_delete) == 1 and 'emb_params' in to_delete): print(" Attempting to load with forced keymap") return self.load_weights(file, force_weight_mapping=True) info = self.load_state_dict(load_sd, False) if len(extra_dict.keys()) == 0: extra_dict = None return extra_dict @torch.no_grad() def _update_torch_multiplier(self: Network): # builds a tensor for fast usage in the forward pass of the network modules # without having to set it in every single module every time it changes multiplier = self._multiplier # get first module first_module = self.get_all_modules()[0] device = first_module.lora_down.weight.device dtype = first_module.lora_down.weight.dtype with torch.no_grad(): tensor_multiplier = None if isinstance(multiplier, int) or isinstance(multiplier, float): tensor_multiplier = torch.tensor((multiplier,)).to(device, dtype=dtype) elif isinstance(multiplier, list): tensor_multiplier = torch.tensor(multiplier).to(device, dtype=dtype) elif isinstance(multiplier, torch.Tensor): tensor_multiplier = multiplier.clone().detach().to(device, dtype=dtype) self.torch_multiplier = tensor_multiplier.clone().detach() @property def multiplier(self) -> Union[float, List[float], List[List[float]]]: return self._multiplier @multiplier.setter def multiplier(self, value: Union[float, List[float], List[List[float]]]): # it takes time to update all the multipliers, so we only do it if the value has changed if self._multiplier == value: return # if we are setting a single value but have a list, keep the list if every item is the same as value self._multiplier = value self._update_torch_multiplier() # called when the context manager is entered # ie: with network: def __enter__(self: Network): self.is_active = True def __exit__(self: Network, exc_type, exc_value, tb): self.is_active = False def force_to(self: Network, device, dtype): self.to(device, dtype) loras = [] if hasattr(self, 'unet_loras'): loras += self.unet_loras if hasattr(self, 'text_encoder_loras'): loras += self.text_encoder_loras for lora in loras: lora.to(device, dtype) def get_all_modules(self: Network) -> List[Module]: loras = [] if hasattr(self, 'unet_loras'): loras += self.unet_loras if hasattr(self, 'text_encoder_loras'): loras += self.text_encoder_loras return loras def _update_checkpointing(self: Network): for module in self.get_all_modules(): if self.is_checkpointing: module.enable_gradient_checkpointing() else: module.disable_gradient_checkpointing() def enable_gradient_checkpointing(self: Network): # not supported self.is_checkpointing = True self._update_checkpointing() def disable_gradient_checkpointing(self: Network): # not supported self.is_checkpointing = False self._update_checkpointing() def merge_in(self, merge_weight=1.0): if self.network_type.lower() == 'dora': return self.is_merged_in = True for module in self.get_all_modules(): module.merge_in(merge_weight) def merge_out(self: Network, merge_weight=1.0): if not self.is_merged_in: return self.is_merged_in = False for module in self.get_all_modules(): module.merge_out(merge_weight) def extract_weight( self: Network, extract_mode: ExtractMode = "existing", extract_mode_param: Union[int, float] = None, ): if extract_mode_param is None: raise ValueError("extract_mode_param must be set") for module in tqdm(self.get_all_modules(), desc="Extracting weights"): module.extract_weight( extract_mode=extract_mode, extract_mode_param=extract_mode_param ) def setup_lorm(self: Network, state_dict: Optional[Dict[str, Any]] = None): for module in tqdm(self.get_all_modules(), desc="Extracting LoRM"): module.setup_lorm(state_dict=state_dict) def calculate_lorem_parameter_reduction(self): params_reduced = 0 for module in self.get_all_modules(): num_orig_module_params = count_parameters(module.org_module[0]) num_lorem_params = count_parameters(module.lora_down) + count_parameters(module.lora_up) params_reduced += (num_orig_module_params - num_lorem_params) return params_reduced