import argparse import os from PIL import Image import torch from torchvision.transforms import Resize, ToTensor from diffusers import AutoencoderKL from pytorch_fid import fid_score from skimage.metrics import peak_signal_noise_ratio as psnr import lpips from tqdm import tqdm from torchvision import transforms device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def load_images(folder_path): images = [] for filename in os.listdir(folder_path): if filename.lower().endswith(('.png', '.jpg', '.jpeg')): img_path = os.path.join(folder_path, filename) images.append(img_path) return images def paramiter_count(model): state_dict = model.state_dict() paramiter_count = 0 for key in state_dict: paramiter_count += torch.numel(state_dict[key]) return int(paramiter_count) def calculate_metrics(vae, images, max_imgs=-1): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") vae = vae.to(device) lpips_model = lpips.LPIPS(net='alex').to(device) rfid_scores = [] psnr_scores = [] lpips_scores = [] # transform = transforms.Compose([ # transforms.Resize(256, antialias=True), # transforms.CenterCrop(256) # ]) # needs values between -1 and 1 to_tensor = ToTensor() if max_imgs > 0 and len(images) > max_imgs: images = images[:max_imgs] for img_path in tqdm(images): try: img = Image.open(img_path).convert('RGB') # img_tensor = to_tensor(transform(img)).unsqueeze(0).to(device) img_tensor = to_tensor(img).unsqueeze(0).to(device) img_tensor = 2 * img_tensor - 1 # if width or height is not divisible by 8, crop it if img_tensor.shape[2] % 8 != 0 or img_tensor.shape[3] % 8 != 0: img_tensor = img_tensor[:, :, :img_tensor.shape[2] // 8 * 8, :img_tensor.shape[3] // 8 * 8] except Exception as e: print(f"Error processing {img_path}: {e}") continue with torch.no_grad(): reconstructed = vae.decode(vae.encode(img_tensor).latent_dist.sample()).sample # Calculate rFID # rfid = fid_score.calculate_frechet_distance(vae, img_tensor, reconstructed) # rfid_scores.append(rfid) # Calculate PSNR psnr_val = psnr(img_tensor.cpu().numpy(), reconstructed.cpu().numpy()) psnr_scores.append(psnr_val) # Calculate LPIPS lpips_val = lpips_model(img_tensor, reconstructed).item() lpips_scores.append(lpips_val) # avg_rfid = sum(rfid_scores) / len(rfid_scores) avg_rfid = 0 avg_psnr = sum(psnr_scores) / len(psnr_scores) avg_lpips = sum(lpips_scores) / len(lpips_scores) return avg_rfid, avg_psnr, avg_lpips def main(): parser = argparse.ArgumentParser(description="Calculate average rFID, PSNR, and LPIPS for VAE reconstructions") parser.add_argument("--vae_path", type=str, required=True, help="Path to the VAE model") parser.add_argument("--image_folder", type=str, required=True, help="Path to the folder containing images") parser.add_argument("--max_imgs", type=int, default=-1, help="Max num of images. Default is -1 for all images.") args = parser.parse_args() if os.path.isfile(args.vae_path): vae = AutoencoderKL.from_single_file(args.vae_path) else: vae = AutoencoderKL.from_pretrained(args.vae_path) vae.eval() vae = vae.to(device) print(f"Model has {paramiter_count(vae)} parameters") images = load_images(args.image_folder) avg_rfid, avg_psnr, avg_lpips = calculate_metrics(vae, images, args.max_imgs) # print(f"Average rFID: {avg_rfid}") print(f"Average PSNR: {avg_psnr}") print(f"Average LPIPS: {avg_lpips}") if __name__ == "__main__": main()