import torch from safetensors.torch import load_file, save_file from collections import OrderedDict meta = OrderedDict() meta['format'] = "pt" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def reduce_weight(weight, target_size): weight = weight.to(device, torch.float32) original_shape = weight.shape flattened = weight.view(-1, original_shape[-1]) if flattened.shape[1] <= target_size: return weight U, S, V = torch.svd(flattened) reduced = torch.mm(U[:, :target_size], torch.diag(S[:target_size])) if reduced.shape[1] < target_size: padding = torch.zeros(reduced.shape[0], target_size - reduced.shape[1], device=device) reduced = torch.cat((reduced, padding), dim=1) return reduced.view(original_shape[:-1] + (target_size,)) def reduce_bias(bias, target_size): bias = bias.to(device, torch.float32) original_size = bias.shape[0] if original_size <= target_size: return torch.nn.functional.pad(bias, (0, target_size - original_size)) else: return bias.view(-1, original_size // target_size).mean(dim=1)[:target_size] # Load your original state dict state_dict = load_file( "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.orig.safetensors") # Create a new state dict for the reduced model new_state_dict = {} source_hidden_size = 1152 target_hidden_size = 1024 for key, value in state_dict.items(): value = value.to(device, torch.float32) if 'weight' in key or 'scale_shift_table' in key: if value.shape[0] == source_hidden_size: value = value[:target_hidden_size] elif value.shape[0] == source_hidden_size * 4: value = value[:target_hidden_size * 4] elif value.shape[0] == source_hidden_size * 6: value = value[:target_hidden_size * 6] if len(value.shape) > 1 and value.shape[ 1] == source_hidden_size and 'attn2.to_k.weight' not in key and 'attn2.to_v.weight' not in key: value = value[:, :target_hidden_size] elif len(value.shape) > 1 and value.shape[1] == source_hidden_size * 4: value = value[:, :target_hidden_size * 4] elif 'bias' in key: if value.shape[0] == source_hidden_size: value = value[:target_hidden_size] elif value.shape[0] == source_hidden_size * 4: value = value[:target_hidden_size * 4] elif value.shape[0] == source_hidden_size * 6: value = value[:target_hidden_size * 6] new_state_dict[key] = value # Move all to CPU and convert to float16 for key, value in new_state_dict.items(): new_state_dict[key] = value.cpu().to(torch.float16) # Save the new state dict save_file(new_state_dict, "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.safetensors", metadata=meta) print("Done!")