|
import torch |
|
from typing import Optional |
|
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION, get_constant_schedule_with_warmup |
|
|
|
|
|
def get_lr_scheduler( |
|
name: Optional[str], |
|
optimizer: torch.optim.Optimizer, |
|
**kwargs, |
|
): |
|
if name == "cosine": |
|
if 'total_iters' in kwargs: |
|
kwargs['T_max'] = kwargs.pop('total_iters') |
|
return torch.optim.lr_scheduler.CosineAnnealingLR( |
|
optimizer, **kwargs |
|
) |
|
elif name == "cosine_with_restarts": |
|
if 'total_iters' in kwargs: |
|
kwargs['T_0'] = kwargs.pop('total_iters') |
|
return torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( |
|
optimizer, **kwargs |
|
) |
|
elif name == "step": |
|
|
|
return torch.optim.lr_scheduler.StepLR( |
|
optimizer, **kwargs |
|
) |
|
elif name == "constant": |
|
if 'factor' not in kwargs: |
|
kwargs['factor'] = 1.0 |
|
|
|
return torch.optim.lr_scheduler.ConstantLR(optimizer, **kwargs) |
|
elif name == "linear": |
|
|
|
return torch.optim.lr_scheduler.LinearLR( |
|
optimizer, **kwargs |
|
) |
|
elif name == 'constant_with_warmup': |
|
|
|
if 'num_warmup_steps' not in kwargs: |
|
print(f"WARNING: num_warmup_steps not in kwargs. Using default value of 1000") |
|
kwargs['num_warmup_steps'] = 1000 |
|
del kwargs['total_iters'] |
|
return get_constant_schedule_with_warmup(optimizer, **kwargs) |
|
else: |
|
|
|
print(f"Trying to use diffusers scheduler {name}") |
|
try: |
|
name = SchedulerType(name) |
|
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name] |
|
return schedule_func(optimizer, **kwargs) |
|
except Exception as e: |
|
print(e) |
|
pass |
|
raise ValueError( |
|
"Scheduler must be cosine, cosine_with_restarts, step, linear or constant" |
|
) |
|
|