alatlatihlora / toolkit /lora_special.py
crystantine's picture
Upload 190 files
1ba389d verified
import copy
import json
import math
import weakref
import os
import re
import sys
from typing import List, Optional, Dict, Type, Union
import torch
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel
from transformers import CLIPTextModel
from .config_modules import NetworkConfig
from .lorm import count_parameters
from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin
from .paths import SD_SCRIPTS_ROOT
sys.path.append(SD_SCRIPTS_ROOT)
from networks.lora import LoRANetwork, get_block_index
from toolkit.models.DoRA import DoRAModule
from torch.utils.checkpoint import checkpoint
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_")
# diffusers specific stuff
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear',
'QLinear',
# 'GroupNorm',
]
CONV_MODULES = [
'Conv2d',
'LoRACompatibleConv',
'QConv2d',
]
class LoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module):
"""
replaces forward method of the original Linear, instead of replacing the original Linear module.
"""
def __init__(
self,
lora_name,
org_module: torch.nn.Module,
multiplier=1.0,
lora_dim=4,
alpha=1,
dropout=None,
rank_dropout=None,
module_dropout=None,
network: 'LoRASpecialNetwork' = None,
use_bias: bool = False,
**kwargs
):
self.can_merge_in = True
"""if alpha == 0 or None, alpha is rank (no scaling)."""
ToolkitModuleMixin.__init__(self, network=network)
torch.nn.Module.__init__(self)
self.lora_name = lora_name
self.orig_module_ref = weakref.ref(org_module)
self.scalar = torch.tensor(1.0)
# check if parent has bias. if not force use_bias to False
if org_module.bias is None:
use_bias = False
if org_module.__class__.__name__ in CONV_MODULES:
in_dim = org_module.in_channels
out_dim = org_module.out_channels
else:
in_dim = org_module.in_features
out_dim = org_module.out_features
# if limit_rank:
# self.lora_dim = min(lora_dim, in_dim, out_dim)
# if self.lora_dim != lora_dim:
# print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
# else:
self.lora_dim = lora_dim
if org_module.__class__.__name__ in CONV_MODULES:
kernel_size = org_module.kernel_size
stride = org_module.stride
padding = org_module.padding
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False)
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=use_bias)
else:
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False)
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=use_bias)
if type(alpha) == torch.Tensor:
alpha = alpha.detach().float().numpy() # without casting, bf16 causes error
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha
self.scale = alpha / self.lora_dim
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
# same as microsoft's
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
torch.nn.init.zeros_(self.lora_up.weight)
self.multiplier: Union[float, List[float]] = multiplier
# wrap the original module so it doesn't get weights updated
self.org_module = [org_module]
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.is_checkpointing = False
def apply_to(self):
self.org_forward = self.org_module[0].forward
self.org_module[0].forward = self.forward
# del self.org_module
class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork):
NUM_OF_BLOCKS = 12 # フルモデル相当でのup,downの層の数
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel"]
# UNET_TARGET_REPLACE_MODULE = ["Transformer2DModel", "ResnetBlock2D"]
UNET_TARGET_REPLACE_MODULE = ["UNet2DConditionModel"]
# UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["ResnetBlock2D", "Downsample2D", "Upsample2D"]
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["UNet2DConditionModel"]
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"]
LORA_PREFIX_UNET = "lora_unet"
PEFT_PREFIX_UNET = "unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
# SDXL: must starts with LORA_PREFIX_TEXT_ENCODER
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1"
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2"
def __init__(
self,
text_encoder: Union[List[CLIPTextModel], CLIPTextModel],
unet,
multiplier: float = 1.0,
lora_dim: int = 4,
alpha: float = 1,
dropout: Optional[float] = None,
rank_dropout: Optional[float] = None,
module_dropout: Optional[float] = None,
conv_lora_dim: Optional[int] = None,
conv_alpha: Optional[float] = None,
block_dims: Optional[List[int]] = None,
block_alphas: Optional[List[float]] = None,
conv_block_dims: Optional[List[int]] = None,
conv_block_alphas: Optional[List[float]] = None,
modules_dim: Optional[Dict[str, int]] = None,
modules_alpha: Optional[Dict[str, int]] = None,
module_class: Type[object] = LoRAModule,
varbose: Optional[bool] = False,
train_text_encoder: Optional[bool] = True,
use_text_encoder_1: bool = True,
use_text_encoder_2: bool = True,
train_unet: Optional[bool] = True,
is_sdxl=False,
is_v2=False,
is_v3=False,
is_pixart: bool = False,
is_auraflow: bool = False,
is_flux: bool = False,
use_bias: bool = False,
is_lorm: bool = False,
ignore_if_contains = None,
only_if_contains = None,
parameter_threshold: float = 0.0,
attn_only: bool = False,
target_lin_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE,
target_conv_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3,
network_type: str = "lora",
full_train_in_out: bool = False,
transformer_only: bool = False,
peft_format: bool = False,
is_assistant_adapter: bool = False,
**kwargs
) -> None:
"""
LoRA network: すごく引数が多いが、パターンは以下の通り
1. lora_dimとalphaを指定
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
5. modules_dimとmodules_alphaを指定 (推論用)
"""
# call the parent of the parent we are replacing (LoRANetwork) init
torch.nn.Module.__init__(self)
ToolkitNetworkMixin.__init__(
self,
train_text_encoder=train_text_encoder,
train_unet=train_unet,
is_sdxl=is_sdxl,
is_v2=is_v2,
is_lorm=is_lorm,
**kwargs
)
if ignore_if_contains is None:
ignore_if_contains = []
self.ignore_if_contains = ignore_if_contains
self.transformer_only = transformer_only
self.only_if_contains: Union[List, None] = only_if_contains
self.lora_dim = lora_dim
self.alpha = alpha
self.conv_lora_dim = conv_lora_dim
self.conv_alpha = conv_alpha
self.dropout = dropout
self.rank_dropout = rank_dropout
self.module_dropout = module_dropout
self.is_checkpointing = False
self._multiplier: float = 1.0
self.is_active: bool = False
self.torch_multiplier = None
# triggers the state updates
self.multiplier = multiplier
self.is_sdxl = is_sdxl
self.is_v2 = is_v2
self.is_v3 = is_v3
self.is_pixart = is_pixart
self.is_auraflow = is_auraflow
self.is_flux = is_flux
self.network_type = network_type
self.is_assistant_adapter = is_assistant_adapter
if self.network_type.lower() == "dora":
self.module_class = DoRAModule
module_class = DoRAModule
self.peft_format = peft_format
# always do peft for flux only for now
if self.is_flux:
self.peft_format = True
if self.peft_format:
# no alpha for peft
self.alpha = self.lora_dim
alpha = self.alpha
self.conv_alpha = self.conv_lora_dim
conv_alpha = self.conv_alpha
self.full_train_in_out = full_train_in_out
if modules_dim is not None:
print(f"create LoRA network from weights")
elif block_dims is not None:
print(f"create LoRA network from block_dims")
print(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
print(f"block_dims: {block_dims}")
print(f"block_alphas: {block_alphas}")
if conv_block_dims is not None:
print(f"conv_block_dims: {conv_block_dims}")
print(f"conv_block_alphas: {conv_block_alphas}")
else:
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
print(
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
if self.conv_lora_dim is not None:
print(
f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
# create module instances
def create_modules(
is_unet: bool,
text_encoder_idx: Optional[int], # None, 1, 2
root_module: torch.nn.Module,
target_replace_modules: List[torch.nn.Module],
) -> List[LoRAModule]:
unet_prefix = self.LORA_PREFIX_UNET
if self.peft_format:
unet_prefix = self.PEFT_PREFIX_UNET
if is_pixart or is_v3 or is_auraflow or is_flux:
unet_prefix = f"lora_transformer"
if self.peft_format:
unet_prefix = "transformer"
prefix = (
unet_prefix
if is_unet
else (
self.LORA_PREFIX_TEXT_ENCODER
if text_encoder_idx is None
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2)
)
)
loras = []
skipped = []
attached_modules = []
lora_shape_dict = {}
for name, module in root_module.named_modules():
if module.__class__.__name__ in target_replace_modules:
for child_name, child_module in module.named_modules():
is_linear = child_module.__class__.__name__ in LINEAR_MODULES
is_conv2d = child_module.__class__.__name__ in CONV_MODULES
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
lora_name = [prefix, name, child_name]
# filter out blank
lora_name = [x for x in lora_name if x and x != ""]
lora_name = ".".join(lora_name)
# if it doesnt have a name, it wil have two dots
lora_name.replace("..", ".")
clean_name = lora_name
if self.peft_format:
# we replace this on saving
lora_name = lora_name.replace(".", "$$")
else:
lora_name = lora_name.replace(".", "_")
skip = False
if any([word in clean_name for word in self.ignore_if_contains]):
skip = True
# see if it is over threshold
if count_parameters(child_module) < parameter_threshold:
skip = True
if self.transformer_only and self.is_pixart and is_unet:
if "transformer_blocks" not in lora_name:
skip = True
if self.transformer_only and self.is_flux and is_unet:
if "transformer_blocks" not in lora_name:
skip = True
if (is_linear or is_conv2d) and not skip:
if self.only_if_contains is not None and not any([word in clean_name for word in self.only_if_contains]):
continue
dim = None
alpha = None
if modules_dim is not None:
# モジュール指定あり
if lora_name in modules_dim:
dim = modules_dim[lora_name]
alpha = modules_alpha[lora_name]
elif is_unet and block_dims is not None:
# U-Netでblock_dims指定あり
block_idx = get_block_index(lora_name)
if is_linear or is_conv2d_1x1:
dim = block_dims[block_idx]
alpha = block_alphas[block_idx]
elif conv_block_dims is not None:
dim = conv_block_dims[block_idx]
alpha = conv_block_alphas[block_idx]
else:
# 通常、すべて対象とする
if is_linear or is_conv2d_1x1:
dim = self.lora_dim
alpha = self.alpha
elif self.conv_lora_dim is not None:
dim = self.conv_lora_dim
alpha = self.conv_alpha
if dim is None or dim == 0:
# skipした情報を出力
if is_linear or is_conv2d_1x1 or (
self.conv_lora_dim is not None or conv_block_dims is not None):
skipped.append(lora_name)
continue
lora = module_class(
lora_name,
child_module,
self.multiplier,
dim,
alpha,
dropout=dropout,
rank_dropout=rank_dropout,
module_dropout=module_dropout,
network=self,
parent=module,
use_bias=use_bias,
)
loras.append(lora)
lora_shape_dict[lora_name] = [list(lora.lora_down.weight.shape), list(lora.lora_up.weight.shape)
]
return loras, skipped
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder]
# create LoRA for text encoder
# 毎回すべてのモジュールを作るのは無駄なので要検討
self.text_encoder_loras = []
skipped_te = []
if train_text_encoder:
for i, text_encoder in enumerate(text_encoders):
if not use_text_encoder_1 and i == 0:
continue
if not use_text_encoder_2 and i == 1:
continue
if len(text_encoders) > 1:
index = i + 1
print(f"create LoRA for Text Encoder {index}:")
else:
index = None
print(f"create LoRA for Text Encoder:")
replace_modules = LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE
if self.is_pixart:
replace_modules = ["T5EncoderModel"]
text_encoder_loras, skipped = create_modules(False, index, text_encoder, replace_modules)
self.text_encoder_loras.extend(text_encoder_loras)
skipped_te += skipped
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
target_modules = target_lin_modules
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
target_modules += target_conv_modules
if is_v3:
target_modules = ["SD3Transformer2DModel"]
if is_pixart:
target_modules = ["PixArtTransformer2DModel"]
if is_auraflow:
target_modules = ["AuraFlowTransformer2DModel"]
if is_flux:
target_modules = ["FluxTransformer2DModel"]
if train_unet:
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules)
else:
self.unet_loras = []
skipped_un = []
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
skipped = skipped_te + skipped_un
if varbose and len(skipped) > 0:
print(
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
)
for name in skipped:
print(f"\t{name}")
self.up_lr_weight: List[float] = None
self.down_lr_weight: List[float] = None
self.mid_lr_weight: float = None
self.block_lr = False
# assertion
names = set()
for lora in self.text_encoder_loras + self.unet_loras:
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
names.add(lora.lora_name)
if self.full_train_in_out:
print("full train in out")
# we are going to retrain the main in out layers for VAE change usually
if self.is_pixart:
transformer: PixArtTransformer2DModel = unet
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed)
self.transformer_proj_out = copy.deepcopy(transformer.proj_out)
transformer.pos_embed = self.transformer_pos_embed
transformer.proj_out = self.transformer_proj_out
elif self.is_auraflow:
transformer: AuraFlowTransformer2DModel = unet
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed)
self.transformer_proj_out = copy.deepcopy(transformer.proj_out)
transformer.pos_embed = self.transformer_pos_embed
transformer.proj_out = self.transformer_proj_out
else:
unet: UNet2DConditionModel = unet
unet_conv_in: torch.nn.Conv2d = unet.conv_in
unet_conv_out: torch.nn.Conv2d = unet.conv_out
# clone these and replace their forwards with ours
self.unet_conv_in = copy.deepcopy(unet_conv_in)
self.unet_conv_out = copy.deepcopy(unet_conv_out)
unet.conv_in = self.unet_conv_in
unet.conv_out = self.unet_conv_out
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr):
# call Lora prepare_optimizer_params
all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr)
if self.full_train_in_out:
if self.is_pixart or self.is_auraflow or self.is_flux:
all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())})
all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())})
else:
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_in.parameters())})
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_out.parameters())})
return all_params