|
import copy |
|
import json |
|
import math |
|
import weakref |
|
import os |
|
import re |
|
import sys |
|
from typing import List, Optional, Dict, Type, Union |
|
import torch |
|
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel |
|
from transformers import CLIPTextModel |
|
|
|
from .config_modules import NetworkConfig |
|
from .lorm import count_parameters |
|
from .network_mixins import ToolkitNetworkMixin, ToolkitModuleMixin, ExtractableModuleMixin |
|
from .paths import SD_SCRIPTS_ROOT |
|
|
|
sys.path.append(SD_SCRIPTS_ROOT) |
|
|
|
from networks.lora import LoRANetwork, get_block_index |
|
from toolkit.models.DoRA import DoRAModule |
|
|
|
from torch.utils.checkpoint import checkpoint |
|
|
|
RE_UPDOWN = re.compile(r"(up|down)_blocks_(\d+)_(resnets|upsamplers|downsamplers|attentions)_(\d+)_") |
|
|
|
|
|
|
|
LINEAR_MODULES = [ |
|
'Linear', |
|
'LoRACompatibleLinear', |
|
'QLinear', |
|
|
|
] |
|
CONV_MODULES = [ |
|
'Conv2d', |
|
'LoRACompatibleConv', |
|
'QConv2d', |
|
] |
|
|
|
class LoRAModule(ToolkitModuleMixin, ExtractableModuleMixin, torch.nn.Module): |
|
""" |
|
replaces forward method of the original Linear, instead of replacing the original Linear module. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
lora_name, |
|
org_module: torch.nn.Module, |
|
multiplier=1.0, |
|
lora_dim=4, |
|
alpha=1, |
|
dropout=None, |
|
rank_dropout=None, |
|
module_dropout=None, |
|
network: 'LoRASpecialNetwork' = None, |
|
use_bias: bool = False, |
|
**kwargs |
|
): |
|
self.can_merge_in = True |
|
"""if alpha == 0 or None, alpha is rank (no scaling).""" |
|
ToolkitModuleMixin.__init__(self, network=network) |
|
torch.nn.Module.__init__(self) |
|
self.lora_name = lora_name |
|
self.orig_module_ref = weakref.ref(org_module) |
|
self.scalar = torch.tensor(1.0) |
|
|
|
if org_module.bias is None: |
|
use_bias = False |
|
|
|
if org_module.__class__.__name__ in CONV_MODULES: |
|
in_dim = org_module.in_channels |
|
out_dim = org_module.out_channels |
|
else: |
|
in_dim = org_module.in_features |
|
out_dim = org_module.out_features |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.lora_dim = lora_dim |
|
|
|
if org_module.__class__.__name__ in CONV_MODULES: |
|
kernel_size = org_module.kernel_size |
|
stride = org_module.stride |
|
padding = org_module.padding |
|
self.lora_down = torch.nn.Conv2d(in_dim, self.lora_dim, kernel_size, stride, padding, bias=False) |
|
self.lora_up = torch.nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=use_bias) |
|
else: |
|
self.lora_down = torch.nn.Linear(in_dim, self.lora_dim, bias=False) |
|
self.lora_up = torch.nn.Linear(self.lora_dim, out_dim, bias=use_bias) |
|
|
|
if type(alpha) == torch.Tensor: |
|
alpha = alpha.detach().float().numpy() |
|
alpha = self.lora_dim if alpha is None or alpha == 0 else alpha |
|
self.scale = alpha / self.lora_dim |
|
self.register_buffer("alpha", torch.tensor(alpha)) |
|
|
|
|
|
torch.nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5)) |
|
torch.nn.init.zeros_(self.lora_up.weight) |
|
|
|
self.multiplier: Union[float, List[float]] = multiplier |
|
|
|
self.org_module = [org_module] |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
self.is_checkpointing = False |
|
|
|
def apply_to(self): |
|
self.org_forward = self.org_module[0].forward |
|
self.org_module[0].forward = self.forward |
|
|
|
|
|
|
|
class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork): |
|
NUM_OF_BLOCKS = 12 |
|
|
|
|
|
|
|
UNET_TARGET_REPLACE_MODULE = ["UNet2DConditionModel"] |
|
|
|
UNET_TARGET_REPLACE_MODULE_CONV2D_3X3 = ["UNet2DConditionModel"] |
|
TEXT_ENCODER_TARGET_REPLACE_MODULE = ["CLIPAttention", "CLIPMLP"] |
|
LORA_PREFIX_UNET = "lora_unet" |
|
PEFT_PREFIX_UNET = "unet" |
|
LORA_PREFIX_TEXT_ENCODER = "lora_te" |
|
|
|
|
|
LORA_PREFIX_TEXT_ENCODER1 = "lora_te1" |
|
LORA_PREFIX_TEXT_ENCODER2 = "lora_te2" |
|
|
|
def __init__( |
|
self, |
|
text_encoder: Union[List[CLIPTextModel], CLIPTextModel], |
|
unet, |
|
multiplier: float = 1.0, |
|
lora_dim: int = 4, |
|
alpha: float = 1, |
|
dropout: Optional[float] = None, |
|
rank_dropout: Optional[float] = None, |
|
module_dropout: Optional[float] = None, |
|
conv_lora_dim: Optional[int] = None, |
|
conv_alpha: Optional[float] = None, |
|
block_dims: Optional[List[int]] = None, |
|
block_alphas: Optional[List[float]] = None, |
|
conv_block_dims: Optional[List[int]] = None, |
|
conv_block_alphas: Optional[List[float]] = None, |
|
modules_dim: Optional[Dict[str, int]] = None, |
|
modules_alpha: Optional[Dict[str, int]] = None, |
|
module_class: Type[object] = LoRAModule, |
|
varbose: Optional[bool] = False, |
|
train_text_encoder: Optional[bool] = True, |
|
use_text_encoder_1: bool = True, |
|
use_text_encoder_2: bool = True, |
|
train_unet: Optional[bool] = True, |
|
is_sdxl=False, |
|
is_v2=False, |
|
is_v3=False, |
|
is_pixart: bool = False, |
|
is_auraflow: bool = False, |
|
is_flux: bool = False, |
|
use_bias: bool = False, |
|
is_lorm: bool = False, |
|
ignore_if_contains = None, |
|
only_if_contains = None, |
|
parameter_threshold: float = 0.0, |
|
attn_only: bool = False, |
|
target_lin_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE, |
|
target_conv_modules=LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3, |
|
network_type: str = "lora", |
|
full_train_in_out: bool = False, |
|
transformer_only: bool = False, |
|
peft_format: bool = False, |
|
is_assistant_adapter: bool = False, |
|
**kwargs |
|
) -> None: |
|
""" |
|
LoRA network: すごく引数が多いが、パターンは以下の通り |
|
1. lora_dimとalphaを指定 |
|
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定 |
|
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない |
|
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する |
|
5. modules_dimとmodules_alphaを指定 (推論用) |
|
""" |
|
|
|
torch.nn.Module.__init__(self) |
|
ToolkitNetworkMixin.__init__( |
|
self, |
|
train_text_encoder=train_text_encoder, |
|
train_unet=train_unet, |
|
is_sdxl=is_sdxl, |
|
is_v2=is_v2, |
|
is_lorm=is_lorm, |
|
**kwargs |
|
) |
|
if ignore_if_contains is None: |
|
ignore_if_contains = [] |
|
self.ignore_if_contains = ignore_if_contains |
|
self.transformer_only = transformer_only |
|
|
|
self.only_if_contains: Union[List, None] = only_if_contains |
|
|
|
self.lora_dim = lora_dim |
|
self.alpha = alpha |
|
self.conv_lora_dim = conv_lora_dim |
|
self.conv_alpha = conv_alpha |
|
self.dropout = dropout |
|
self.rank_dropout = rank_dropout |
|
self.module_dropout = module_dropout |
|
self.is_checkpointing = False |
|
self._multiplier: float = 1.0 |
|
self.is_active: bool = False |
|
self.torch_multiplier = None |
|
|
|
self.multiplier = multiplier |
|
self.is_sdxl = is_sdxl |
|
self.is_v2 = is_v2 |
|
self.is_v3 = is_v3 |
|
self.is_pixart = is_pixart |
|
self.is_auraflow = is_auraflow |
|
self.is_flux = is_flux |
|
self.network_type = network_type |
|
self.is_assistant_adapter = is_assistant_adapter |
|
if self.network_type.lower() == "dora": |
|
self.module_class = DoRAModule |
|
module_class = DoRAModule |
|
|
|
self.peft_format = peft_format |
|
|
|
|
|
if self.is_flux: |
|
self.peft_format = True |
|
|
|
if self.peft_format: |
|
|
|
self.alpha = self.lora_dim |
|
alpha = self.alpha |
|
self.conv_alpha = self.conv_lora_dim |
|
conv_alpha = self.conv_alpha |
|
|
|
self.full_train_in_out = full_train_in_out |
|
|
|
if modules_dim is not None: |
|
print(f"create LoRA network from weights") |
|
elif block_dims is not None: |
|
print(f"create LoRA network from block_dims") |
|
print( |
|
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") |
|
print(f"block_dims: {block_dims}") |
|
print(f"block_alphas: {block_alphas}") |
|
if conv_block_dims is not None: |
|
print(f"conv_block_dims: {conv_block_dims}") |
|
print(f"conv_block_alphas: {conv_block_alphas}") |
|
else: |
|
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}") |
|
print( |
|
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}") |
|
if self.conv_lora_dim is not None: |
|
print( |
|
f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}") |
|
|
|
|
|
def create_modules( |
|
is_unet: bool, |
|
text_encoder_idx: Optional[int], |
|
root_module: torch.nn.Module, |
|
target_replace_modules: List[torch.nn.Module], |
|
) -> List[LoRAModule]: |
|
unet_prefix = self.LORA_PREFIX_UNET |
|
if self.peft_format: |
|
unet_prefix = self.PEFT_PREFIX_UNET |
|
if is_pixart or is_v3 or is_auraflow or is_flux: |
|
unet_prefix = f"lora_transformer" |
|
if self.peft_format: |
|
unet_prefix = "transformer" |
|
|
|
prefix = ( |
|
unet_prefix |
|
if is_unet |
|
else ( |
|
self.LORA_PREFIX_TEXT_ENCODER |
|
if text_encoder_idx is None |
|
else (self.LORA_PREFIX_TEXT_ENCODER1 if text_encoder_idx == 1 else self.LORA_PREFIX_TEXT_ENCODER2) |
|
) |
|
) |
|
loras = [] |
|
skipped = [] |
|
attached_modules = [] |
|
lora_shape_dict = {} |
|
for name, module in root_module.named_modules(): |
|
if module.__class__.__name__ in target_replace_modules: |
|
for child_name, child_module in module.named_modules(): |
|
is_linear = child_module.__class__.__name__ in LINEAR_MODULES |
|
is_conv2d = child_module.__class__.__name__ in CONV_MODULES |
|
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1) |
|
|
|
|
|
lora_name = [prefix, name, child_name] |
|
|
|
lora_name = [x for x in lora_name if x and x != ""] |
|
lora_name = ".".join(lora_name) |
|
|
|
lora_name.replace("..", ".") |
|
clean_name = lora_name |
|
if self.peft_format: |
|
|
|
lora_name = lora_name.replace(".", "$$") |
|
else: |
|
lora_name = lora_name.replace(".", "_") |
|
|
|
skip = False |
|
if any([word in clean_name for word in self.ignore_if_contains]): |
|
skip = True |
|
|
|
|
|
if count_parameters(child_module) < parameter_threshold: |
|
skip = True |
|
|
|
if self.transformer_only and self.is_pixart and is_unet: |
|
if "transformer_blocks" not in lora_name: |
|
skip = True |
|
if self.transformer_only and self.is_flux and is_unet: |
|
if "transformer_blocks" not in lora_name: |
|
skip = True |
|
|
|
if (is_linear or is_conv2d) and not skip: |
|
|
|
if self.only_if_contains is not None and not any([word in clean_name for word in self.only_if_contains]): |
|
continue |
|
|
|
dim = None |
|
alpha = None |
|
|
|
if modules_dim is not None: |
|
|
|
if lora_name in modules_dim: |
|
dim = modules_dim[lora_name] |
|
alpha = modules_alpha[lora_name] |
|
elif is_unet and block_dims is not None: |
|
|
|
block_idx = get_block_index(lora_name) |
|
if is_linear or is_conv2d_1x1: |
|
dim = block_dims[block_idx] |
|
alpha = block_alphas[block_idx] |
|
elif conv_block_dims is not None: |
|
dim = conv_block_dims[block_idx] |
|
alpha = conv_block_alphas[block_idx] |
|
else: |
|
|
|
if is_linear or is_conv2d_1x1: |
|
dim = self.lora_dim |
|
alpha = self.alpha |
|
elif self.conv_lora_dim is not None: |
|
dim = self.conv_lora_dim |
|
alpha = self.conv_alpha |
|
|
|
if dim is None or dim == 0: |
|
|
|
if is_linear or is_conv2d_1x1 or ( |
|
self.conv_lora_dim is not None or conv_block_dims is not None): |
|
skipped.append(lora_name) |
|
continue |
|
|
|
lora = module_class( |
|
lora_name, |
|
child_module, |
|
self.multiplier, |
|
dim, |
|
alpha, |
|
dropout=dropout, |
|
rank_dropout=rank_dropout, |
|
module_dropout=module_dropout, |
|
network=self, |
|
parent=module, |
|
use_bias=use_bias, |
|
) |
|
loras.append(lora) |
|
lora_shape_dict[lora_name] = [list(lora.lora_down.weight.shape), list(lora.lora_up.weight.shape) |
|
] |
|
return loras, skipped |
|
|
|
text_encoders = text_encoder if type(text_encoder) == list else [text_encoder] |
|
|
|
|
|
|
|
self.text_encoder_loras = [] |
|
skipped_te = [] |
|
if train_text_encoder: |
|
for i, text_encoder in enumerate(text_encoders): |
|
if not use_text_encoder_1 and i == 0: |
|
continue |
|
if not use_text_encoder_2 and i == 1: |
|
continue |
|
if len(text_encoders) > 1: |
|
index = i + 1 |
|
print(f"create LoRA for Text Encoder {index}:") |
|
else: |
|
index = None |
|
print(f"create LoRA for Text Encoder:") |
|
|
|
replace_modules = LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE |
|
|
|
if self.is_pixart: |
|
replace_modules = ["T5EncoderModel"] |
|
|
|
text_encoder_loras, skipped = create_modules(False, index, text_encoder, replace_modules) |
|
self.text_encoder_loras.extend(text_encoder_loras) |
|
skipped_te += skipped |
|
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.") |
|
|
|
|
|
target_modules = target_lin_modules |
|
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None: |
|
target_modules += target_conv_modules |
|
|
|
if is_v3: |
|
target_modules = ["SD3Transformer2DModel"] |
|
|
|
if is_pixart: |
|
target_modules = ["PixArtTransformer2DModel"] |
|
|
|
if is_auraflow: |
|
target_modules = ["AuraFlowTransformer2DModel"] |
|
|
|
if is_flux: |
|
target_modules = ["FluxTransformer2DModel"] |
|
|
|
if train_unet: |
|
self.unet_loras, skipped_un = create_modules(True, None, unet, target_modules) |
|
else: |
|
self.unet_loras = [] |
|
skipped_un = [] |
|
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.") |
|
|
|
skipped = skipped_te + skipped_un |
|
if varbose and len(skipped) > 0: |
|
print( |
|
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:" |
|
) |
|
for name in skipped: |
|
print(f"\t{name}") |
|
|
|
self.up_lr_weight: List[float] = None |
|
self.down_lr_weight: List[float] = None |
|
self.mid_lr_weight: float = None |
|
self.block_lr = False |
|
|
|
|
|
names = set() |
|
for lora in self.text_encoder_loras + self.unet_loras: |
|
assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}" |
|
names.add(lora.lora_name) |
|
|
|
if self.full_train_in_out: |
|
print("full train in out") |
|
|
|
if self.is_pixart: |
|
transformer: PixArtTransformer2DModel = unet |
|
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) |
|
self.transformer_proj_out = copy.deepcopy(transformer.proj_out) |
|
|
|
transformer.pos_embed = self.transformer_pos_embed |
|
transformer.proj_out = self.transformer_proj_out |
|
|
|
elif self.is_auraflow: |
|
transformer: AuraFlowTransformer2DModel = unet |
|
self.transformer_pos_embed = copy.deepcopy(transformer.pos_embed) |
|
self.transformer_proj_out = copy.deepcopy(transformer.proj_out) |
|
|
|
transformer.pos_embed = self.transformer_pos_embed |
|
transformer.proj_out = self.transformer_proj_out |
|
|
|
else: |
|
unet: UNet2DConditionModel = unet |
|
unet_conv_in: torch.nn.Conv2d = unet.conv_in |
|
unet_conv_out: torch.nn.Conv2d = unet.conv_out |
|
|
|
|
|
self.unet_conv_in = copy.deepcopy(unet_conv_in) |
|
self.unet_conv_out = copy.deepcopy(unet_conv_out) |
|
unet.conv_in = self.unet_conv_in |
|
unet.conv_out = self.unet_conv_out |
|
|
|
def prepare_optimizer_params(self, text_encoder_lr, unet_lr, default_lr): |
|
|
|
all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr) |
|
|
|
if self.full_train_in_out: |
|
if self.is_pixart or self.is_auraflow or self.is_flux: |
|
all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())}) |
|
all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())}) |
|
else: |
|
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_in.parameters())}) |
|
all_params.append({"lr": unet_lr, "params": list(self.unet_conv_out.parameters())}) |
|
|
|
return all_params |
|
|
|
|
|
|