|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from collections import OrderedDict |
|
|
|
meta = OrderedDict() |
|
meta['format'] = "pt" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def reduce_weight(weight, target_size): |
|
weight = weight.to(device, torch.float32) |
|
original_shape = weight.shape |
|
|
|
if len(original_shape) == 1: |
|
|
|
return weight[:target_size] |
|
|
|
if original_shape[0] <= target_size: |
|
return weight |
|
|
|
|
|
flattened = weight.reshape(original_shape[0], -1) |
|
|
|
|
|
U, S, V = torch.svd(flattened) |
|
|
|
|
|
reduced = torch.mm(U[:target_size, :], torch.diag(S)).mm(V.t()) |
|
|
|
|
|
new_shape = (target_size,) + original_shape[1:] |
|
return reduced.reshape(new_shape) |
|
|
|
|
|
def reduce_bias(bias, target_size): |
|
bias = bias.to(device, torch.float32) |
|
return bias[:target_size] |
|
|
|
|
|
|
|
state_dict = load_file( |
|
"/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.orig.safetensors") |
|
|
|
|
|
new_state_dict = {} |
|
|
|
for key, value in state_dict.items(): |
|
value = value.to(device, torch.float32) |
|
|
|
if 'weight' in key or 'scale_shift_table' in key: |
|
if value.shape[0] == 1152: |
|
if len(value.shape) == 4: |
|
orig_shape = value.shape |
|
output_shape = (512, orig_shape[1], orig_shape[2], orig_shape[3]) |
|
|
|
value = value.view(value.shape[0], -1) |
|
value = reduce_weight(value, 512) |
|
value = value.view(output_shape) |
|
else: |
|
|
|
value = reduce_weight(value, 512) |
|
pass |
|
elif value.shape[0] == 4608: |
|
if len(value.shape) == 4: |
|
orig_shape = value.shape |
|
output_shape = (2048, orig_shape[1], orig_shape[2], orig_shape[3]) |
|
value = value.view(value.shape[0], -1) |
|
value = reduce_weight(value, 2048) |
|
value = value.view(output_shape) |
|
else: |
|
value = reduce_weight(value, 2048) |
|
elif value.shape[0] == 6912: |
|
if len(value.shape) == 4: |
|
orig_shape = value.shape |
|
output_shape = (3072, orig_shape[1], orig_shape[2], orig_shape[3]) |
|
value = value.view(value.shape[0], -1) |
|
value = reduce_weight(value, 3072) |
|
value = value.view(output_shape) |
|
else: |
|
value = reduce_weight(value, 3072) |
|
|
|
if len(value.shape) > 1 and value.shape[ |
|
1] == 1152 and 'attn2.to_k.weight' not in key and 'attn2.to_v.weight' not in key: |
|
value = reduce_weight(value.t(), 512).t().contiguous() |
|
pass |
|
elif len(value.shape) > 1 and value.shape[1] == 4608: |
|
value = reduce_weight(value.t(), 2048).t().contiguous() |
|
pass |
|
|
|
elif 'bias' in key: |
|
if value.shape[0] == 1152: |
|
value = reduce_bias(value, 512) |
|
elif value.shape[0] == 4608: |
|
value = reduce_bias(value, 2048) |
|
elif value.shape[0] == 6912: |
|
value = reduce_bias(value, 3072) |
|
|
|
new_state_dict[key] = value |
|
|
|
|
|
for key, value in new_state_dict.items(): |
|
new_state_dict[key] = value.cpu().to(torch.float16) |
|
|
|
|
|
save_file(new_state_dict, |
|
"/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-512_MS_t5large_raw/transformer/diffusion_pytorch_model.safetensors", |
|
metadata=meta) |
|
|
|
print("Done!") |