|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from collections import OrderedDict |
|
|
|
model_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model_orig.safetensors" |
|
output_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model.safetensors" |
|
|
|
state_dict = load_file(model_path) |
|
|
|
meta = OrderedDict() |
|
meta["format"] = "pt" |
|
|
|
new_state_dict = {} |
|
|
|
|
|
for key, value in state_dict.items(): |
|
if not key.startswith("transformer_blocks."): |
|
new_state_dict[key] = value |
|
|
|
block_names = ['transformer_blocks.{idx}.attn1.to_k.bias', 'transformer_blocks.{idx}.attn1.to_k.weight', |
|
'transformer_blocks.{idx}.attn1.to_out.0.bias', 'transformer_blocks.{idx}.attn1.to_out.0.weight', |
|
'transformer_blocks.{idx}.attn1.to_q.bias', 'transformer_blocks.{idx}.attn1.to_q.weight', |
|
'transformer_blocks.{idx}.attn1.to_v.bias', 'transformer_blocks.{idx}.attn1.to_v.weight', |
|
'transformer_blocks.{idx}.attn2.to_k.bias', 'transformer_blocks.{idx}.attn2.to_k.weight', |
|
'transformer_blocks.{idx}.attn2.to_out.0.bias', 'transformer_blocks.{idx}.attn2.to_out.0.weight', |
|
'transformer_blocks.{idx}.attn2.to_q.bias', 'transformer_blocks.{idx}.attn2.to_q.weight', |
|
'transformer_blocks.{idx}.attn2.to_v.bias', 'transformer_blocks.{idx}.attn2.to_v.weight', |
|
'transformer_blocks.{idx}.ff.net.0.proj.bias', 'transformer_blocks.{idx}.ff.net.0.proj.weight', |
|
'transformer_blocks.{idx}.ff.net.2.bias', 'transformer_blocks.{idx}.ff.net.2.weight', |
|
'transformer_blocks.{idx}.scale_shift_table'] |
|
|
|
|
|
|
|
keep_blocks = [0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27] |
|
|
|
|
|
def weighted_merge(kept_block, removed_block, weight): |
|
return kept_block * (1 - weight) + removed_block * weight |
|
|
|
|
|
|
|
for i, old_idx in enumerate(keep_blocks): |
|
for name in block_names: |
|
old_key = name.format(idx=old_idx) |
|
new_key = name.format(idx=i) |
|
new_state_dict[new_key] = state_dict[old_key].clone() |
|
|
|
|
|
for i in range(28): |
|
if i not in keep_blocks: |
|
|
|
prev_kept = max([b for b in keep_blocks if b < i]) |
|
next_kept = min([b for b in keep_blocks if b > i]) |
|
|
|
|
|
weight = (i - prev_kept) / (next_kept - prev_kept) |
|
|
|
for name in block_names: |
|
removed_key = name.format(idx=i) |
|
prev_new_key = name.format(idx=keep_blocks.index(prev_kept)) |
|
next_new_key = name.format(idx=keep_blocks.index(next_kept)) |
|
|
|
|
|
new_state_dict[prev_new_key] = weighted_merge(new_state_dict[prev_new_key], state_dict[removed_key], weight) |
|
|
|
|
|
new_state_dict[next_new_key] = weighted_merge(new_state_dict[next_new_key], state_dict[removed_key], |
|
1 - weight) |
|
|
|
|
|
for key, value in new_state_dict.items(): |
|
new_state_dict[key] = value.to(torch.float16).cpu() |
|
|
|
|
|
save_file(new_state_dict, output_path, metadata=meta) |
|
|
|
new_param_count = sum([v.numel() for v in new_state_dict.values()]) |
|
old_param_count = sum([v.numel() for v in state_dict.values()]) |
|
|
|
print(f"Old param count: {old_param_count:,}") |
|
print(f"New param count: {new_param_count:,}") |