|
import argparse |
|
from collections import OrderedDict |
|
|
|
import torch |
|
|
|
from toolkit.config_modules import ModelConfig |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
'input_path', |
|
type=str, |
|
help='Path to original sdxl model' |
|
) |
|
parser.add_argument( |
|
'output_path', |
|
type=str, |
|
help='output path' |
|
) |
|
parser.add_argument('--sdxl', action='store_true', help='is sdxl model') |
|
parser.add_argument('--refiner', action='store_true', help='is refiner model') |
|
parser.add_argument('--ssd', action='store_true', help='is ssd model') |
|
parser.add_argument('--sd2', action='store_true', help='is sd 2 model') |
|
|
|
args = parser.parse_args() |
|
device = torch.device('cpu') |
|
dtype = torch.float32 |
|
|
|
print(f"Loading model from {args.input_path}") |
|
|
|
if args.sdxl: |
|
adapter_id = "latent-consistency/lcm-lora-sdxl" |
|
if args.refiner: |
|
adapter_id = "latent-consistency/lcm-lora-sdxl" |
|
elif args.ssd: |
|
adapter_id = "latent-consistency/lcm-lora-ssd-1b" |
|
else: |
|
adapter_id = "latent-consistency/lcm-lora-sdv1-5" |
|
|
|
|
|
diffusers_model_config = ModelConfig( |
|
name_or_path=args.input_path, |
|
is_xl=args.sdxl, |
|
is_v2=args.sd2, |
|
is_ssd=args.ssd, |
|
dtype=dtype, |
|
) |
|
diffusers_sd = StableDiffusion( |
|
model_config=diffusers_model_config, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
diffusers_sd.load_model() |
|
|
|
|
|
print(f"Loaded model from {args.input_path}") |
|
|
|
diffusers_sd.pipeline.load_lora_weights(adapter_id) |
|
diffusers_sd.pipeline.fuse_lora() |
|
|
|
meta = OrderedDict() |
|
|
|
diffusers_sd.save(args.output_path, meta=meta) |
|
|
|
|
|
print(f"Saved to {args.output_path}") |
|
|