|
from transformers import CLIPImageProcessor, BitsAndBytesConfig, AutoTokenizer |
|
|
|
from .caption import default_long_prompt, default_short_prompt, default_replacements, clean_caption |
|
import torch |
|
from PIL import Image |
|
|
|
|
|
class FuyuImageProcessor: |
|
def __init__(self, device='cuda'): |
|
from transformers import FuyuProcessor, FuyuForCausalLM |
|
self.device = device |
|
self.model: FuyuForCausalLM = None |
|
self.processor: FuyuProcessor = None |
|
self.dtype = torch.bfloat16 |
|
self.tokenizer: AutoTokenizer |
|
self.is_loaded = False |
|
|
|
def load_model(self): |
|
from transformers import FuyuProcessor, FuyuForCausalLM |
|
model_path = "adept/fuyu-8b" |
|
kwargs = {"device_map": self.device} |
|
kwargs['load_in_4bit'] = True |
|
kwargs['quantization_config'] = BitsAndBytesConfig( |
|
load_in_4bit=True, |
|
bnb_4bit_compute_dtype=self.dtype, |
|
bnb_4bit_use_double_quant=True, |
|
bnb_4bit_quant_type='nf4' |
|
) |
|
self.processor = FuyuProcessor.from_pretrained(model_path) |
|
self.model = FuyuForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) |
|
self.is_loaded = True |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.model = FuyuForCausalLM.from_pretrained(model_path, torch_dtype=self.dtype, **kwargs) |
|
self.processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=self.tokenizer) |
|
|
|
def generate_caption( |
|
self, image: Image, |
|
prompt: str = default_long_prompt, |
|
replacements=default_replacements, |
|
max_new_tokens=512 |
|
): |
|
|
|
|
|
|
|
|
|
model_inputs = self.processor(text=prompt, images=[image]) |
|
model_inputs = {k: v.to(dtype=self.dtype if torch.is_floating_point(v) else v.dtype, device=self.device) for k, v in |
|
model_inputs.items()} |
|
|
|
generation_output = self.model.generate(**model_inputs, max_new_tokens=max_new_tokens) |
|
prompt_len = model_inputs["input_ids"].shape[-1] |
|
output = self.tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) |
|
output = clean_caption(output, replacements=replacements) |
|
return output |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|