|
import math |
|
import os |
|
import random |
|
from collections import OrderedDict |
|
from typing import List |
|
|
|
import numpy as np |
|
from PIL import Image |
|
from diffusers import T2IAdapter |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from torch.utils.data import DataLoader |
|
from diffusers import StableDiffusionXLImg2ImgPipeline, PixArtSigmaPipeline |
|
from tqdm import tqdm |
|
|
|
from toolkit.config_modules import ModelConfig, GenerateImageConfig, preprocess_dataset_raw_config, DatasetConfig |
|
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO |
|
from toolkit.sampler import get_sampler |
|
from toolkit.stable_diffusion_model import StableDiffusion |
|
import gc |
|
import torch |
|
from jobs.process import BaseExtensionProcess |
|
from toolkit.data_loader import get_dataloader_from_datasets |
|
from toolkit.train_tools import get_torch_dtype |
|
from controlnet_aux.midas import MidasDetector |
|
from diffusers.utils import load_image |
|
from torchvision.transforms import ToTensor |
|
|
|
|
|
def flush(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
|
|
|
|
|
|
|
|
class GenerateConfig: |
|
|
|
def __init__(self, **kwargs): |
|
self.prompts: List[str] |
|
self.sampler = kwargs.get('sampler', 'ddpm') |
|
self.neg = kwargs.get('neg', '') |
|
self.seed = kwargs.get('seed', -1) |
|
self.walk_seed = kwargs.get('walk_seed', False) |
|
self.guidance_scale = kwargs.get('guidance_scale', 7) |
|
self.sample_steps = kwargs.get('sample_steps', 20) |
|
self.guidance_rescale = kwargs.get('guidance_rescale', 0.0) |
|
self.ext = kwargs.get('ext', 'png') |
|
self.denoise_strength = kwargs.get('denoise_strength', 0.5) |
|
self.trigger_word = kwargs.get('trigger_word', None) |
|
|
|
|
|
class Img2ImgGenerator(BaseExtensionProcess): |
|
|
|
def __init__(self, process_id: int, job, config: OrderedDict): |
|
super().__init__(process_id, job, config) |
|
self.output_folder = self.get_conf('output_folder', required=True) |
|
self.copy_inputs_to = self.get_conf('copy_inputs_to', None) |
|
self.device = self.get_conf('device', 'cuda') |
|
self.model_config = ModelConfig(**self.get_conf('model', required=True)) |
|
self.generate_config = GenerateConfig(**self.get_conf('generate', required=True)) |
|
self.is_latents_cached = True |
|
raw_datasets = self.get_conf('datasets', None) |
|
if raw_datasets is not None and len(raw_datasets) > 0: |
|
raw_datasets = preprocess_dataset_raw_config(raw_datasets) |
|
self.datasets = None |
|
self.datasets_reg = None |
|
self.dtype = self.get_conf('dtype', 'float16') |
|
self.torch_dtype = get_torch_dtype(self.dtype) |
|
self.params = [] |
|
if raw_datasets is not None and len(raw_datasets) > 0: |
|
for raw_dataset in raw_datasets: |
|
dataset = DatasetConfig(**raw_dataset) |
|
is_caching = dataset.cache_latents or dataset.cache_latents_to_disk |
|
if not is_caching: |
|
self.is_latents_cached = False |
|
if dataset.is_reg: |
|
if self.datasets_reg is None: |
|
self.datasets_reg = [] |
|
self.datasets_reg.append(dataset) |
|
else: |
|
if self.datasets is None: |
|
self.datasets = [] |
|
self.datasets.append(dataset) |
|
|
|
self.progress_bar = None |
|
self.sd = StableDiffusion( |
|
device=self.device, |
|
model_config=self.model_config, |
|
dtype=self.dtype, |
|
) |
|
print(f"Using device {self.device}") |
|
self.data_loader: DataLoader = None |
|
self.adapter: T2IAdapter = None |
|
|
|
def to_pil(self, img): |
|
|
|
img = (img + 1) / 2 |
|
img = img.clamp(0, 1) |
|
img = img[0].permute(1, 2, 0).cpu().numpy() |
|
img = (img * 255).astype(np.uint8) |
|
image = Image.fromarray(img) |
|
return image |
|
|
|
def run(self): |
|
with torch.no_grad(): |
|
super().run() |
|
print("Loading model...") |
|
self.sd.load_model() |
|
device = torch.device(self.device) |
|
|
|
if self.model_config.is_xl: |
|
pipe = StableDiffusionXLImg2ImgPipeline( |
|
vae=self.sd.vae, |
|
unet=self.sd.unet, |
|
text_encoder=self.sd.text_encoder[0], |
|
text_encoder_2=self.sd.text_encoder[1], |
|
tokenizer=self.sd.tokenizer[0], |
|
tokenizer_2=self.sd.tokenizer[1], |
|
scheduler=get_sampler(self.generate_config.sampler), |
|
).to(device, dtype=self.torch_dtype) |
|
elif self.model_config.is_pixart: |
|
pipe = self.sd.pipeline.to(device, dtype=self.torch_dtype) |
|
else: |
|
raise NotImplementedError("Only XL models are supported") |
|
pipe.set_progress_bar_config(disable=True) |
|
|
|
|
|
|
|
|
|
self.data_loader = get_dataloader_from_datasets(self.datasets, 1, self.sd) |
|
|
|
num_batches = len(self.data_loader) |
|
pbar = tqdm(total=num_batches, desc="Generating images") |
|
seed = self.generate_config.seed |
|
|
|
for i, batch in enumerate(self.data_loader): |
|
batch: DataLoaderBatchDTO = batch |
|
|
|
gen_seed = seed if seed > 0 else random.randint(0, 2 ** 32 - 1) |
|
generator = torch.manual_seed(gen_seed) |
|
|
|
file_item: FileItemDTO = batch.file_items[0] |
|
img_path = file_item.path |
|
img_filename = os.path.basename(img_path) |
|
img_filename_no_ext = os.path.splitext(img_filename)[0] |
|
img_filename = img_filename_no_ext + '.' + self.generate_config.ext |
|
output_path = os.path.join(self.output_folder, img_filename) |
|
output_caption_path = os.path.join(self.output_folder, img_filename_no_ext + '.txt') |
|
|
|
if self.copy_inputs_to is not None: |
|
output_inputs_path = os.path.join(self.copy_inputs_to, img_filename) |
|
output_inputs_caption_path = os.path.join(self.copy_inputs_to, img_filename_no_ext + '.txt') |
|
else: |
|
output_inputs_path = None |
|
output_inputs_caption_path = None |
|
|
|
caption = batch.get_caption_list()[0] |
|
if self.generate_config.trigger_word is not None: |
|
caption = caption.replace('[trigger]', self.generate_config.trigger_word) |
|
|
|
img: torch.Tensor = batch.tensor.clone() |
|
image = self.to_pil(img) |
|
|
|
|
|
if self.model_config.is_pixart: |
|
pipe: PixArtSigmaPipeline = pipe |
|
|
|
|
|
encoded_image = pipe.vae.encode( |
|
pipe.image_processor.preprocess(image).to(device=pipe.device, dtype=pipe.dtype)) |
|
if hasattr(encoded_image, "latent_dist"): |
|
latents = encoded_image.latent_dist.sample(generator) |
|
elif hasattr(encoded_image, "latents"): |
|
latents = encoded_image.latents |
|
else: |
|
raise AttributeError("Could not access latents of provided encoder_output") |
|
latents = pipe.vae.config.scaling_factor * latents |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
batch_size = 1 |
|
num_images_per_prompt = 1 |
|
|
|
shape = (batch_size, pipe.transformer.config.in_channels, image.height // pipe.vae_scale_factor, |
|
image.width // pipe.vae_scale_factor) |
|
noise = randn_tensor(shape, generator=generator, device=pipe.device, dtype=pipe.dtype) |
|
|
|
|
|
num_inference_steps = self.generate_config.sample_steps |
|
strength = self.generate_config.denoise_strength |
|
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps) |
|
t_start = max(num_inference_steps - init_timestep, 0) |
|
pipe.scheduler.set_timesteps(num_inference_steps, device="cpu") |
|
timesteps = pipe.scheduler.timesteps[t_start:] |
|
timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
latents = pipe.scheduler.add_noise(latents, noise, timestep) |
|
|
|
gen_images = pipe.__call__( |
|
prompt=caption, |
|
negative_prompt=self.generate_config.neg, |
|
latents=latents, |
|
timesteps=timesteps, |
|
width=image.width, |
|
height=image.height, |
|
num_inference_steps=num_inference_steps, |
|
num_images_per_prompt=num_images_per_prompt, |
|
guidance_scale=self.generate_config.guidance_scale, |
|
|
|
use_resolution_binning=False, |
|
output_type="np" |
|
).images[0] |
|
gen_images = (gen_images * 255).clip(0, 255).astype(np.uint8) |
|
gen_images = Image.fromarray(gen_images) |
|
else: |
|
pipe: StableDiffusionXLImg2ImgPipeline = pipe |
|
|
|
gen_images = pipe.__call__( |
|
prompt=caption, |
|
negative_prompt=self.generate_config.neg, |
|
image=image, |
|
num_inference_steps=self.generate_config.sample_steps, |
|
guidance_scale=self.generate_config.guidance_scale, |
|
strength=self.generate_config.denoise_strength, |
|
).images[0] |
|
os.makedirs(os.path.dirname(output_path), exist_ok=True) |
|
gen_images.save(output_path) |
|
|
|
|
|
with open(output_caption_path, 'w') as f: |
|
f.write(caption) |
|
|
|
if output_inputs_path is not None: |
|
os.makedirs(os.path.dirname(output_inputs_path), exist_ok=True) |
|
image.save(output_inputs_path) |
|
with open(output_inputs_caption_path, 'w') as f: |
|
f.write(caption) |
|
|
|
pbar.update(1) |
|
batch.cleanup() |
|
|
|
pbar.close() |
|
print("Done generating images") |
|
|
|
del self.sd |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|