|
import os |
|
|
|
import torch |
|
from safetensors.torch import load_file |
|
from collections import OrderedDict |
|
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm, vae_keys_squished_on_diffusers |
|
import json |
|
|
|
|
|
|
|
|
|
device = torch.device('cpu') |
|
dtype = torch.float32 |
|
vae_path = '/mnt/Models/stable-diffusion/models/VAE/vae-ft-mse-840000-ema-pruned/vae-ft-mse-840000-ema-pruned.safetensors' |
|
|
|
find_matches = False |
|
|
|
state_dict_ldm = load_file(vae_path) |
|
diffusers_vae = load_vae(vae_path, dtype=torch.float32).to(device) |
|
|
|
ldm_keys = state_dict_ldm.keys() |
|
|
|
matched_keys = {} |
|
duplicated_keys = { |
|
|
|
} |
|
|
|
if find_matches: |
|
|
|
for ldm_key in ldm_keys: |
|
ldm_value = state_dict_ldm[ldm_key] |
|
for diffusers_key in list(diffusers_vae.state_dict().keys()): |
|
diffusers_value = diffusers_vae.state_dict()[diffusers_key] |
|
if diffusers_key in vae_keys_squished_on_diffusers: |
|
diffusers_value = diffusers_value.clone().unsqueeze(-1).unsqueeze(-1) |
|
|
|
if ldm_value.shape != diffusers_value.shape: |
|
continue |
|
mse = torch.nn.functional.mse_loss(ldm_value, diffusers_value) |
|
if mse < 1e-6: |
|
if ldm_key in list(matched_keys.keys()): |
|
print(f'{ldm_key} already matched to {matched_keys[ldm_key]}') |
|
if ldm_key in duplicated_keys: |
|
duplicated_keys[ldm_key].append(diffusers_key) |
|
else: |
|
duplicated_keys[ldm_key] = [diffusers_key] |
|
continue |
|
matched_keys[ldm_key] = diffusers_key |
|
is_matched = True |
|
break |
|
|
|
print(f'Found {len(matched_keys)} matches') |
|
|
|
dif_to_ldm_state_dict = convert_diffusers_back_to_ldm(diffusers_vae) |
|
dif_to_ldm_state_dict_keys = list(dif_to_ldm_state_dict.keys()) |
|
keys_in_both = [] |
|
|
|
keys_not_in_diffusers = [] |
|
for key in ldm_keys: |
|
if key not in dif_to_ldm_state_dict_keys: |
|
keys_not_in_diffusers.append(key) |
|
|
|
keys_not_in_ldm = [] |
|
for key in dif_to_ldm_state_dict_keys: |
|
if key not in ldm_keys: |
|
keys_not_in_ldm.append(key) |
|
|
|
keys_in_both = [] |
|
for key in ldm_keys: |
|
if key in dif_to_ldm_state_dict_keys: |
|
keys_in_both.append(key) |
|
|
|
|
|
keys_not_in_diffusers.sort() |
|
keys_not_in_ldm.sort() |
|
keys_in_both.sort() |
|
|
|
|
|
|
|
|
|
|
|
json_data = { |
|
"both": keys_in_both, |
|
"ldm": keys_not_in_diffusers, |
|
"diffusers": keys_not_in_ldm |
|
} |
|
json_data = json.dumps(json_data, indent=4) |
|
|
|
remaining_diffusers_values = OrderedDict() |
|
for key in keys_not_in_ldm: |
|
remaining_diffusers_values[key] = dif_to_ldm_state_dict[key] |
|
|
|
|
|
|
|
remaining_ldm_values = OrderedDict() |
|
for key in keys_not_in_diffusers: |
|
remaining_ldm_values[key] = state_dict_ldm[key] |
|
|
|
|
|
|
|
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) |
|
json_save_path = os.path.join(project_root, 'config', 'keys.json') |
|
json_matched_save_path = os.path.join(project_root, 'config', 'matched.json') |
|
json_duped_save_path = os.path.join(project_root, 'config', 'duped.json') |
|
|
|
with open(json_save_path, 'w') as f: |
|
f.write(json_data) |
|
if find_matches: |
|
with open(json_matched_save_path, 'w') as f: |
|
f.write(json.dumps(matched_keys, indent=4)) |
|
with open(json_duped_save_path, 'w') as f: |
|
f.write(json.dumps(duplicated_keys, indent=4)) |
|
|