|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from collections import OrderedDict |
|
|
|
model_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model_orig.safetensors" |
|
output_path = "/home/jaret/Dev/models/hf/PixArt-Sigma-XL-2-1024_tiny/transformer/diffusion_pytorch_model.safetensors" |
|
|
|
state_dict = load_file(model_path) |
|
|
|
meta = OrderedDict() |
|
meta["format"] = "pt" |
|
|
|
new_state_dict = {} |
|
|
|
|
|
for key, value in state_dict.items(): |
|
if not key.startswith("transformer_blocks."): |
|
new_state_dict[key] = value |
|
|
|
block_names = ['transformer_blocks.{idx}.attn1.to_k.bias', 'transformer_blocks.{idx}.attn1.to_k.weight', |
|
'transformer_blocks.{idx}.attn1.to_out.0.bias', 'transformer_blocks.{idx}.attn1.to_out.0.weight', |
|
'transformer_blocks.{idx}.attn1.to_q.bias', 'transformer_blocks.{idx}.attn1.to_q.weight', |
|
'transformer_blocks.{idx}.attn1.to_v.bias', 'transformer_blocks.{idx}.attn1.to_v.weight', |
|
'transformer_blocks.{idx}.attn2.to_k.bias', 'transformer_blocks.{idx}.attn2.to_k.weight', |
|
'transformer_blocks.{idx}.attn2.to_out.0.bias', 'transformer_blocks.{idx}.attn2.to_out.0.weight', |
|
'transformer_blocks.{idx}.attn2.to_q.bias', 'transformer_blocks.{idx}.attn2.to_q.weight', |
|
'transformer_blocks.{idx}.attn2.to_v.bias', 'transformer_blocks.{idx}.attn2.to_v.weight', |
|
'transformer_blocks.{idx}.ff.net.0.proj.bias', 'transformer_blocks.{idx}.ff.net.0.proj.weight', |
|
'transformer_blocks.{idx}.ff.net.2.bias', 'transformer_blocks.{idx}.ff.net.2.weight', |
|
'transformer_blocks.{idx}.scale_shift_table'] |
|
|
|
|
|
|
|
current_idx = 0 |
|
for i in range(28): |
|
if i not in [0, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 27]: |
|
|
|
for name in block_names: |
|
try: |
|
new_state_dict_key = name.format(idx=current_idx - 1) |
|
old_state_dict_key = name.format(idx=i) |
|
new_state_dict[new_state_dict_key] = (new_state_dict[new_state_dict_key] * 0.5) + (state_dict[old_state_dict_key] * 0.5) |
|
except KeyError: |
|
raise KeyError(f"KeyError: {name.format(idx=current_idx)}") |
|
else: |
|
for name in block_names: |
|
new_state_dict[name.format(idx=current_idx)] = state_dict[name.format(idx=i)] |
|
current_idx += 1 |
|
|
|
|
|
|
|
for key, value in new_state_dict.items(): |
|
new_state_dict[key] = value.to(torch.float16).cpu() |
|
|
|
|
|
save_file(new_state_dict, output_path, metadata=meta) |
|
|
|
new_param_count = sum([v.numel() for v in new_state_dict.values()]) |
|
old_param_count = sum([v.numel() for v in state_dict.values()]) |
|
|
|
print(f"Old param count: {old_param_count:,}") |
|
print(f"New param count: {new_param_count:,}") |