alatlatihlora / testing /merge_in_text_encoder_adapter.py
crystantine's picture
Upload 190 files
1ba389d verified
raw
history blame
6.12 kB
import os
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import StableDiffusionPipeline, UNet2DConditionModel, PixArtSigmaPipeline, Transformer2DModel, PixArtTransformer2DModel
from safetensors.torch import load_file, save_file
from collections import OrderedDict
import json
# model_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_v01_000527000"
# te_path = "google/flan-t5-xl"
# te_aug_path = "/mnt/Train/out/ip_adapter/t5xx_sd15_v1/t5xx_sd15_v1_000032000.safetensors"
# output_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_t5xl_raw"
model_path = "/home/jaret/Dev/models/hf/objective-reality-16ch"
te_path = "google/flan-t5-xl"
te_aug_path = "/mnt/Train2/out/ip_adapter/t5xl-sd15-16ch_v1/t5xl-sd15-16ch_v1_000115000.safetensors"
output_path = "/home/jaret/Dev/models/hf/t5xl-sd15-16ch_sd15_v1"
print("Loading te adapter")
te_aug_sd = load_file(te_aug_path)
print("Loading model")
is_diffusers = (not os.path.exists(model_path)) or os.path.isdir(model_path)
# if "pixart" in model_path.lower():
is_pixart = "pixart" in model_path.lower()
pipeline_class = StableDiffusionPipeline
# transformer = PixArtTransformer2DModel.from_pretrained('PixArt-alpha/PixArt-Sigma-XL-2-512-MS', subfolder='transformer', torch_dtype=torch.float16)
if is_pixart:
pipeline_class = PixArtSigmaPipeline
if is_diffusers:
sd = pipeline_class.from_pretrained(model_path, torch_dtype=torch.float16)
else:
sd = pipeline_class.from_single_file(model_path, torch_dtype=torch.float16)
print("Loading Text Encoder")
# Load the text encoder
te = T5EncoderModel.from_pretrained(te_path, torch_dtype=torch.float16)
# patch it
sd.text_encoder = te
sd.tokenizer = T5Tokenizer.from_pretrained(te_path)
if is_pixart:
unet = sd.transformer
unet_sd = sd.transformer.state_dict()
else:
unet = sd.unet
unet_sd = sd.unet.state_dict()
if is_pixart:
weight_idx = 0
else:
weight_idx = 1
new_cross_attn_dim = None
# count the num of params in state dict
start_params = sum([v.numel() for v in unet_sd.values()])
print("Building")
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
else:
attn_processor_keys = list(unet.attn_processors.keys())
for name in attn_processor_keys:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith(
"attn1") else \
unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config['block_out_channels'][block_id]
elif name.startswith("transformer"):
hidden_size = unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
pass
else:
layer_name = name.split(".processor")[0]
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
te_aug_name = None
while True:
if is_pixart:
te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter"
else:
te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter"
if f"{te_aug_name}.weight" in te_aug_sd:
# increment so we dont redo it next time
weight_idx += 1
break
else:
weight_idx += 1
if weight_idx > 1000:
raise ValueError("Could not find the next weight")
orig_weight_shape_k = list(unet_sd[layer_name + ".to_k.weight"].shape)
new_weight_shape_k = list(te_aug_sd[te_aug_name + ".weight"].shape)
orig_weight_shape_v = list(unet_sd[layer_name + ".to_v.weight"].shape)
new_weight_shape_v = list(te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"].shape)
unet_sd[layer_name + ".to_k.weight"] = te_aug_sd[te_aug_name + ".weight"]
unet_sd[layer_name + ".to_v.weight"] = te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"]
if new_cross_attn_dim is None:
new_cross_attn_dim = unet_sd[layer_name + ".to_k.weight"].shape[1]
if is_pixart:
# copy the caption_projection weight
del unet_sd['caption_projection.linear_1.bias']
del unet_sd['caption_projection.linear_1.weight']
del unet_sd['caption_projection.linear_2.bias']
del unet_sd['caption_projection.linear_2.weight']
print("Saving unmodified model")
sd = sd.to("cpu", torch.float16)
sd.save_pretrained(
output_path,
safe_serialization=True,
)
# overwrite the unet
if is_pixart:
unet_folder = os.path.join(output_path, "transformer")
else:
unet_folder = os.path.join(output_path, "unet")
# move state_dict to cpu
unet_sd = {k: v.clone().cpu().to(torch.float16) for k, v in unet_sd.items()}
meta = OrderedDict()
meta["format"] = "pt"
print("Patching")
save_file(unet_sd, os.path.join(unet_folder, "diffusion_pytorch_model.safetensors"), meta)
# load the json file
with open(os.path.join(unet_folder, "config.json"), 'r') as f:
config = json.load(f)
config['cross_attention_dim'] = new_cross_attn_dim
if is_pixart:
config['caption_channels'] = None
# save it
with open(os.path.join(unet_folder, "config.json"), 'w') as f:
json.dump(config, f, indent=2)
print("Done")
new_params = sum([v.numel() for v in unet_sd.values()])
# print new and old params with , formatted
print(f"Old params: {start_params:,}")
print(f"New params: {new_params:,}")