File size: 2,580 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from typing import Union

import torch
import copy

empty_preset = {
    'vae': {
        'training': False,
        'device': 'cpu',
    },
    'unet': {
        'training': False,
        'requires_grad': False,
        'device': 'cpu',
    },
    'text_encoder': {
        'training': False,
        'requires_grad': False,
        'device': 'cpu',
    },
    'adapter': {
        'training': False,
        'requires_grad': False,
        'device': 'cpu',
    },
    'refiner_unet': {
        'training': False,
        'requires_grad': False,
        'device': 'cpu',
    },
}


def get_train_sd_device_state_preset(
        device: Union[str, torch.device],
        train_unet: bool = False,
        train_text_encoder: bool = False,
        cached_latents: bool = False,
        train_lora: bool = False,
        train_adapter: bool = False,
        train_embedding: bool = False,
        train_refiner: bool = False,
):
    preset = copy.deepcopy(empty_preset)
    if not cached_latents:
        preset['vae']['device'] = device

    if train_unet:
        preset['unet']['training'] = True
        preset['unet']['requires_grad'] = True
        preset['unet']['device'] = device
    else:
        preset['unet']['device'] = device

    if train_text_encoder:
        preset['text_encoder']['training'] = True
        preset['text_encoder']['requires_grad'] = True
        preset['text_encoder']['device'] = device
    else:
        preset['text_encoder']['device'] = device

    if train_embedding:
        preset['text_encoder']['training'] = True
        preset['text_encoder']['requires_grad'] = True
        preset['text_encoder']['training'] = True
        preset['unet']['training'] = True

    if train_refiner:
        preset['refiner_unet']['training'] = True
        preset['refiner_unet']['requires_grad'] = True
        preset['refiner_unet']['device'] = device
        # if not training unet, move that to cpu
        if not train_unet:
            preset['unet']['device'] = 'cpu'

    if train_lora:
        # preset['text_encoder']['requires_grad'] = False
        preset['unet']['requires_grad'] = False
        if train_refiner:
            preset['refiner_unet']['requires_grad'] = False

    if train_adapter:
        preset['adapter']['requires_grad'] = True
        preset['adapter']['training'] = True
        preset['adapter']['device'] = device
        preset['unet']['training'] = True
        preset['unet']['requires_grad'] = False
        preset['unet']['device'] = device
        preset['text_encoder']['device'] = device

    return preset