File size: 5,028 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import copy
import math

from diffusers import (
    DDPMScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    DDIMScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
    LCMScheduler,
    FlowMatchEulerDiscreteScheduler,
)

from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler

from k_diffusion.external import CompVisDenoiser

from toolkit.samplers.custom_lcm_scheduler import CustomLCMScheduler

# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"

sd_config = {
    "_class_name": "EulerAncestralDiscreteScheduler",
    "_diffusers_version": "0.24.0.dev0",
    "beta_end": 0.012,
    "beta_schedule": "scaled_linear",
    "beta_start": 0.00085,
    "clip_sample": False,
    "interpolation_type": "linear",
    "num_train_timesteps": 1000,
    "prediction_type": "epsilon",
    "sample_max_value": 1.0,
    "set_alpha_to_one": False,
    # "skip_prk_steps": False,  # for training
    "skip_prk_steps": True,
    # "steps_offset": 1,
    "steps_offset": 0,
    # "timestep_spacing": "trailing", # for training
    "timestep_spacing": "leading",
    "trained_betas": None
}

pixart_config = {
  "_class_name": "DPMSolverMultistepScheduler",
  "_diffusers_version": "0.22.0.dev0",
  "algorithm_type": "dpmsolver++",
  "beta_end": 0.02,
  "beta_schedule": "linear",
  "beta_start": 0.0001,
  "dynamic_thresholding_ratio": 0.995,
  "euler_at_final": False,
  # "lambda_min_clipped": -Infinity,
  "lambda_min_clipped": -math.inf,
  "lower_order_final": True,
  "num_train_timesteps": 1000,
  "prediction_type": "epsilon",
  "sample_max_value": 1.0,
  "solver_order": 2,
  "solver_type": "midpoint",
  "steps_offset": 0,
  "thresholding": False,
  "timestep_spacing": "linspace",
  "trained_betas": None,
  "use_karras_sigmas": False,
  "use_lu_lambdas": False,
  "variance_type": None
}


def get_sampler(
        sampler: str,
        kwargs: dict = None,
        arch: str = "sd"
):
    sched_init_args = {}
    if kwargs is not None:
        sched_init_args.update(kwargs)

    config_to_use = copy.deepcopy(sd_config) if arch == "sd" else copy.deepcopy(pixart_config)

    if sampler.startswith("k_"):
        sched_init_args["use_karras_sigmas"] = True

    if sampler == "ddim":
        scheduler_cls = DDIMScheduler
    elif sampler == "ddpm":  # ddpm is not supported ?
        scheduler_cls = DDPMScheduler
    elif sampler == "pndm":
        scheduler_cls = PNDMScheduler
    elif sampler == "lms" or sampler == "k_lms":
        scheduler_cls = LMSDiscreteScheduler
    elif sampler == "euler" or sampler == "k_euler":
        scheduler_cls = EulerDiscreteScheduler
    elif sampler == "euler_a":
        scheduler_cls = EulerAncestralDiscreteScheduler
    elif sampler == "dpmsolver" or sampler == "dpmsolver++" or sampler == "k_dpmsolver" or sampler == "k_dpmsolver++":
        scheduler_cls = DPMSolverMultistepScheduler
        sched_init_args["algorithm_type"] = sampler.replace("k_", "")
    elif sampler == "dpmsingle":
        scheduler_cls = DPMSolverSinglestepScheduler
    elif sampler == "heun":
        scheduler_cls = HeunDiscreteScheduler
    elif sampler == "dpm_2":
        scheduler_cls = KDPM2DiscreteScheduler
    elif sampler == "dpm_2_a":
        scheduler_cls = KDPM2AncestralDiscreteScheduler
    elif sampler == "lcm":
        scheduler_cls = LCMScheduler
    elif sampler == "custom_lcm":
        scheduler_cls = CustomLCMScheduler
    elif sampler == "flowmatch":
        scheduler_cls = CustomFlowMatchEulerDiscreteScheduler
        config_to_use = {
            "_class_name": "FlowMatchEulerDiscreteScheduler",
            "_diffusers_version": "0.29.0.dev0",
            "num_train_timesteps": 1000,
            "shift": 3.0
        }
    else:
        raise ValueError(f"Sampler {sampler} not supported")


    config = copy.deepcopy(config_to_use)
    config.update(sched_init_args)

    scheduler = scheduler_cls.from_config(config)

    return scheduler


# testing
if __name__ == "__main__":
    from diffusers import DiffusionPipeline

    from diffusers import StableDiffusionKDiffusionPipeline
    import torch
    import os

    inference_steps = 25

    pipe = StableDiffusionKDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
    pipe = pipe.to("cuda")

    k_diffusion_model = CompVisDenoiser(model)

    pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion")
    pipe = pipe.to("cuda")

    prompt = "an astronaut riding a horse on mars"
    pipe.set_scheduler("sample_heun")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    image = pipe(prompt, generator=generator, num_inference_steps=20).images[0]

    image.save("./astronaut_heun_k_diffusion.png")