File size: 26,169 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
import json
import os
from collections import OrderedDict
from typing import Optional, Union, List, Type, TYPE_CHECKING, Dict, Any, Literal

import torch
from optimum.quanto import QTensor
from torch import nn
import weakref

from tqdm import tqdm

from toolkit.config_modules import NetworkConfig
from toolkit.lorm import extract_conv, extract_linear, count_parameters
from toolkit.metadata import add_model_hash_to_meta
from toolkit.paths import KEYMAPS_ROOT
from toolkit.saving import get_lora_keymap_from_model_keymap

if TYPE_CHECKING:
    from toolkit.lycoris_special import LycorisSpecialNetwork, LoConSpecialModule
    from toolkit.lora_special import LoRASpecialNetwork, LoRAModule
    from toolkit.stable_diffusion_model import StableDiffusion
    from toolkit.models.DoRA import DoRAModule

Network = Union['LycorisSpecialNetwork', 'LoRASpecialNetwork']
Module = Union['LoConSpecialModule', 'LoRAModule', 'DoRAModule']

LINEAR_MODULES = [
    'Linear',
    'LoRACompatibleLinear'
    # 'GroupNorm',
]
CONV_MODULES = [
    'Conv2d',
    'LoRACompatibleConv'
]

ExtractMode = Union[
    'existing'
    'fixed',
    'threshold',
    'ratio',
    'quantile',
    'percentage'
]


def broadcast_and_multiply(tensor, multiplier):
    # Determine the number of dimensions required
    num_extra_dims = tensor.dim() - multiplier.dim()

    # Unsqueezing the tensor to match the dimensionality
    for _ in range(num_extra_dims):
        multiplier = multiplier.unsqueeze(-1)

    try:
        # Multiplying the broadcasted tensor with the output tensor
        result = tensor * multiplier
    except RuntimeError as e:
        print(e)
        print(tensor.size())
        print(multiplier.size())
        raise e

    return result


def add_bias(tensor, bias):
    if bias is None:
        return tensor
    # add batch dim
    bias = bias.unsqueeze(0)
    bias = torch.cat([bias] * tensor.size(0), dim=0)
    # Determine the number of dimensions required
    num_extra_dims = tensor.dim() - bias.dim()

    # Unsqueezing the tensor to match the dimensionality
    for _ in range(num_extra_dims):
        bias = bias.unsqueeze(-1)

    # we may need to swap -1 for -2
    if bias.size(1) != tensor.size(1):
        if len(bias.size()) == 3:
            bias = bias.permute(0, 2, 1)
        elif len(bias.size()) == 4:
            bias = bias.permute(0, 3, 1, 2)

    # Multiplying the broadcasted tensor with the output tensor
    try:
        result = tensor + bias
    except RuntimeError as e:
        print(e)
        print(tensor.size())
        print(bias.size())
        raise e

    return result


class ExtractableModuleMixin:
    def extract_weight(
            self: Module,
            extract_mode: ExtractMode = "existing",
            extract_mode_param: Union[int, float] = None,
    ):
        device = self.lora_down.weight.device
        weight_to_extract = self.org_module[0].weight
        if extract_mode == "existing":
            extract_mode = 'fixed'
            extract_mode_param = self.lora_dim

        if self.org_module[0].__class__.__name__ in CONV_MODULES:
            # do conv extraction
            down_weight, up_weight, new_dim, diff = extract_conv(
                weight=weight_to_extract.clone().detach().float(),
                mode=extract_mode,
                mode_param=extract_mode_param,
                device=device
            )

        elif self.org_module[0].__class__.__name__ in LINEAR_MODULES:
            # do linear extraction
            down_weight, up_weight, new_dim, diff = extract_linear(
                weight=weight_to_extract.clone().detach().float(),
                mode=extract_mode,
                mode_param=extract_mode_param,
                device=device,
            )
        else:
            raise ValueError(f"Unknown module type: {self.org_module[0].__class__.__name__}")

        self.lora_dim = new_dim

        # inject weights into the param
        self.lora_down.weight.data = down_weight.to(self.lora_down.weight.dtype).clone().detach()
        self.lora_up.weight.data = up_weight.to(self.lora_up.weight.dtype).clone().detach()

        # copy bias if we have one and are using them
        if self.org_module[0].bias is not None and self.lora_up.bias is not None:
            self.lora_up.bias.data = self.org_module[0].bias.data.clone().detach()

        # set up alphas
        self.alpha = (self.alpha * 0) + down_weight.shape[0]
        self.scale = self.alpha / self.lora_dim

        # assign them

        # handle trainable scaler method locon does
        if hasattr(self, 'scalar'):
            # scaler is a parameter update the value with 1.0
            self.scalar.data = torch.tensor(1.0).to(self.scalar.device, self.scalar.dtype)


class ToolkitModuleMixin:
    def __init__(
            self: Module,
            *args,
            network: Network,
            **kwargs
    ):
        self.network_ref: weakref.ref = weakref.ref(network)
        self.is_checkpointing = False
        self._multiplier: Union[float, list, torch.Tensor] = None

    def _call_forward(self: Module, x):
        # module dropout
        if self.module_dropout is not None and self.training:
            if torch.rand(1) < self.module_dropout:
                return 0.0  # added to original forward

        if hasattr(self, 'lora_mid') and self.lora_mid is not None:
            lx = self.lora_mid(self.lora_down(x))
        else:
            try:
                lx = self.lora_down(x)
            except RuntimeError as e:
                print(f"Error in {self.__class__.__name__} lora_down")
                print(e)

        if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity):
            lx = self.dropout(lx)
        # normal dropout
        elif self.dropout is not None and self.training:
            lx = torch.nn.functional.dropout(lx, p=self.dropout)

        # rank dropout
        if self.rank_dropout is not None and self.rank_dropout > 0 and self.training:
            mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
            if len(lx.size()) == 3:
                mask = mask.unsqueeze(1)  # for Text Encoder
            elif len(lx.size()) == 4:
                mask = mask.unsqueeze(-1).unsqueeze(-1)  # for Conv2d
            lx = lx * mask

            # scaling for rank dropout: treat as if the rank is changed
            # maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
            scale = self.scale * (1.0 / (1.0 - self.rank_dropout))  # redundant for readability
        else:
            scale = self.scale

        lx = self.lora_up(lx)

        # handle trainable scaler method locon does
        if hasattr(self, 'scalar'):
            scale = scale * self.scalar

        return lx * scale

    def lorm_forward(self: Network, x, *args, **kwargs):
        network: Network = self.network_ref()
        if not network.is_active:
            return self.org_forward(x, *args, **kwargs)

        if network.lorm_train_mode == 'local':
            # we are going to predict input with both and do a loss on them
            inputs = x.detach()
            with torch.no_grad():
                # get the local prediction
                target_pred = self.org_forward(inputs, *args, **kwargs).detach()
            with torch.set_grad_enabled(True):
                # make a prediction with the lorm
                lorm_pred = self.lora_up(self.lora_down(inputs.requires_grad_(True)))

                local_loss = torch.nn.functional.mse_loss(target_pred.float(), lorm_pred.float())
                # backpropr
                local_loss.backward()

            network.module_losses.append(local_loss.detach())
            # return the original as we dont want our trainer to affect ones down the line
            return target_pred

        else:
            return self.lora_up(self.lora_down(x))

    def forward(self: Module, x, *args, **kwargs):
        skip = False
        network: Network = self.network_ref()
        if network.is_lorm:
            # we are doing lorm
            return self.lorm_forward(x, *args, **kwargs)

        # skip if not active
        if not network.is_active:
            skip = True

        # skip if is merged in
        if network.is_merged_in:
            skip = True

        # skip if multiplier is 0
        if network._multiplier == 0:
            skip = True

        if skip:
            # network is not active, avoid doing anything
            return self.org_forward(x, *args, **kwargs)

        # if self.__class__.__name__ == "DoRAModule":
        #     # return dora forward
        #     return self.dora_forward(x, *args, **kwargs)

        org_forwarded = self.org_forward(x, *args, **kwargs)

        if isinstance(x, QTensor):
            x = x.dequantize()
        # always cast to float32
        lora_input = x.to(self.lora_down.weight.dtype)
        lora_output = self._call_forward(lora_input)
        multiplier = self.network_ref().torch_multiplier

        lora_output_batch_size = lora_output.size(0)
        multiplier_batch_size = multiplier.size(0)
        if lora_output_batch_size != multiplier_batch_size:
            num_interleaves = lora_output_batch_size // multiplier_batch_size
            # todo check if this is correct, do we just concat when doing cfg?
            multiplier = multiplier.repeat_interleave(num_interleaves)

        scaled_lora_output = broadcast_and_multiply(lora_output, multiplier)
        scaled_lora_output = scaled_lora_output.to(org_forwarded.dtype)

        if self.__class__.__name__ == "DoRAModule":
            # ref https://github.com/huggingface/peft/blob/1e6d1d73a0850223b0916052fd8d2382a90eae5a/src/peft/tuners/lora/layer.py#L417
            # x = dropout(x)
            # todo this wont match the dropout applied to the lora
            if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity):
                lx = self.dropout(x)
            # normal dropout
            elif self.dropout is not None and self.training:
                lx = torch.nn.functional.dropout(x, p=self.dropout)
            else:
                lx = x
            lora_weight = self.lora_up.weight @ self.lora_down.weight
            # scale it here
            # todo handle our batch split scalers for slider training. For now take the mean of them
            scale = multiplier.mean()
            scaled_lora_weight = lora_weight * scale
            scaled_lora_output = scaled_lora_output + self.apply_dora(lx, scaled_lora_weight).to(org_forwarded.dtype)

        try:
            x = org_forwarded + scaled_lora_output
        except RuntimeError as e:
            print(e)
            print(org_forwarded.size())
            print(scaled_lora_output.size())
            raise e
        return x

    def enable_gradient_checkpointing(self: Module):
        self.is_checkpointing = True

    def disable_gradient_checkpointing(self: Module):
        self.is_checkpointing = False

    @torch.no_grad()
    def merge_out(self: Module, merge_out_weight=1.0):
        # make sure it is positive
        merge_out_weight = abs(merge_out_weight)
        # merging out is just merging in the negative of the weight
        self.merge_in(merge_weight=-merge_out_weight)

    @torch.no_grad()
    def merge_in(self: Module, merge_weight=1.0):
        if not self.can_merge_in:
            return
        # get up/down weight
        up_weight = self.lora_up.weight.clone().float()
        down_weight = self.lora_down.weight.clone().float()

        # extract weight from org_module
        org_sd = self.org_module[0].state_dict()
        # todo find a way to merge in weights when doing quantized model
        if 'weight._data' in org_sd:
            # quantized weight
            return

        weight_key = "weight"
        if 'weight._data' in org_sd:
            # quantized weight
            weight_key = "weight._data"

        orig_dtype = org_sd[weight_key].dtype
        weight = org_sd[weight_key].float()

        multiplier = merge_weight
        scale = self.scale
        # handle trainable scaler method locon does
        if hasattr(self, 'scalar'):
            scale = scale * self.scalar

        # merge weight
        if len(weight.size()) == 2:
            # linear
            weight = weight + multiplier * (up_weight @ down_weight) * scale
        elif down_weight.size()[2:4] == (1, 1):
            # conv2d 1x1
            weight = (
                    weight
                    + multiplier
                    * (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
                    * scale
            )
        else:
            # conv2d 3x3
            conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
            # print(conved.size(), weight.size(), module.stride, module.padding)
            weight = weight + multiplier * conved * scale

        # set weight to org_module
        org_sd[weight_key] = weight.to(orig_dtype)
        self.org_module[0].load_state_dict(org_sd)

    def setup_lorm(self: Module, state_dict: Optional[Dict[str, Any]] = None):
        # LoRM (Low Rank Middle) is a method reduce the number of parameters in a module while keeping the inputs and
        # outputs the same. It is basically a LoRA but with the original module removed

        # if a state dict is passed, use those weights instead of extracting
        # todo load from state dict
        network: Network = self.network_ref()
        lorm_config = network.network_config.lorm_config.get_config_for_module(self.lora_name)

        extract_mode = lorm_config.extract_mode
        extract_mode_param = lorm_config.extract_mode_param
        parameter_threshold = lorm_config.parameter_threshold
        self.extract_weight(
            extract_mode=extract_mode,
            extract_mode_param=extract_mode_param
        )


class ToolkitNetworkMixin:
    def __init__(
            self: Network,
            *args,
            train_text_encoder: Optional[bool] = True,
            train_unet: Optional[bool] = True,
            is_sdxl=False,
            is_v2=False,
            is_ssd=False,
            is_vega=False,
            network_config: Optional[NetworkConfig] = None,
            is_lorm=False,
            **kwargs
    ):
        self.train_text_encoder = train_text_encoder
        self.train_unet = train_unet
        self.is_checkpointing = False
        self._multiplier: float = 1.0
        self.is_active: bool = False
        self.is_sdxl = is_sdxl
        self.is_ssd = is_ssd
        self.is_vega = is_vega
        self.is_v2 = is_v2
        self.is_v1 = not is_v2 and not is_sdxl and not is_ssd and not is_vega
        self.is_merged_in = False
        self.is_lorm = is_lorm
        self.network_config: NetworkConfig = network_config
        self.module_losses: List[torch.Tensor] = []
        self.lorm_train_mode: Literal['local', None] = None
        self.can_merge_in = not is_lorm

    def get_keymap(self: Network, force_weight_mapping=False):
        use_weight_mapping = False

        if self.is_ssd:
            keymap_tail = 'ssd'
            use_weight_mapping = True
        elif self.is_vega:
            keymap_tail = 'vega'
            use_weight_mapping = True
        elif self.is_sdxl:
            keymap_tail = 'sdxl'
        elif self.is_v2:
            keymap_tail = 'sd2'
        else:
            keymap_tail = 'sd1'
            # todo double check this
            # use_weight_mapping = True

        if force_weight_mapping:
            use_weight_mapping = True

        # load keymap
        keymap_name = f"stable_diffusion_locon_{keymap_tail}.json"
        if use_weight_mapping:
            keymap_name = f"stable_diffusion_{keymap_tail}.json"

        keymap_path = os.path.join(KEYMAPS_ROOT, keymap_name)

        keymap = None
        # check if file exists
        if os.path.exists(keymap_path):
            with open(keymap_path, 'r') as f:
                keymap = json.load(f)['ldm_diffusers_keymap']

        if use_weight_mapping and keymap is not None:
            # get keymap from weights
            keymap = get_lora_keymap_from_model_keymap(keymap)

        # upgrade keymaps for DoRA
        if self.network_type.lower() == 'dora':
            if keymap is not None:
                new_keymap = {}
                for ldm_key, diffusers_key in keymap.items():
                    ldm_key = ldm_key.replace('.alpha', '.magnitude')
                    # ldm_key = ldm_key.replace('.lora_down.weight', '.lora_down')
                    # ldm_key = ldm_key.replace('.lora_up.weight', '.lora_up')

                    diffusers_key = diffusers_key.replace('.alpha', '.magnitude')
                    # diffusers_key = diffusers_key.replace('.lora_down.weight', '.lora_down')
                    # diffusers_key = diffusers_key.replace('.lora_up.weight', '.lora_up')

                    new_keymap[ldm_key] = diffusers_key

                keymap = new_keymap

        return keymap

    def save_weights(
            self: Network,
            file, dtype=torch.float16,
            metadata=None,
            extra_state_dict: Optional[OrderedDict] = None
    ):
        keymap = self.get_keymap()

        save_keymap = {}
        if keymap is not None:
            for ldm_key, diffusers_key in keymap.items():
                #  invert them
                save_keymap[diffusers_key] = ldm_key

        if metadata is not None and len(metadata) == 0:
            metadata = None

        state_dict = self.state_dict()
        save_dict = OrderedDict()

        for key in list(state_dict.keys()):
            v = state_dict[key]
            v = v.detach().clone().to("cpu").to(dtype)
            save_key = save_keymap[key] if key in save_keymap else key
            save_dict[save_key] = v
            del state_dict[key]

        if extra_state_dict is not None:
            # add extra items to state dict
            for key in list(extra_state_dict.keys()):
                v = extra_state_dict[key]
                v = v.detach().clone().to("cpu").to(dtype)
                save_dict[key] = v

        if self.peft_format:
            # lora_down = lora_A
            # lora_up = lora_B
            # no alpha

            new_save_dict = {}
            for key, value in save_dict.items():
                if key.endswith('.alpha'):
                    continue
                new_key = key
                new_key = new_key.replace('lora_down', 'lora_A')
                new_key = new_key.replace('lora_up', 'lora_B')
                # replace all $$ with .
                new_key = new_key.replace('$$', '.')
                new_save_dict[new_key] = value

            save_dict = new_save_dict

        if metadata is None:
            metadata = OrderedDict()
        metadata = add_model_hash_to_meta(state_dict, metadata)
        if os.path.splitext(file)[1] == ".safetensors":
            from safetensors.torch import save_file
            save_file(save_dict, file, metadata)
        else:
            torch.save(save_dict, file)

    def load_weights(self: Network, file, force_weight_mapping=False):
        # allows us to save and load to and from ldm weights
        keymap = self.get_keymap(force_weight_mapping)
        keymap = {} if keymap is None else keymap

        if isinstance(file, str):
            if os.path.splitext(file)[1] == ".safetensors":
                from safetensors.torch import load_file

                weights_sd = load_file(file)
            else:
                weights_sd = torch.load(file, map_location="cpu")
        else:
            # probably a state dict
            weights_sd = file

        load_sd = OrderedDict()
        for key, value in weights_sd.items():
            load_key = keymap[key] if key in keymap else key
            # replace old double __ with single _
            if self.is_pixart:
                load_key = load_key.replace('__', '_')

            if self.peft_format:
                # lora_down = lora_A
                # lora_up = lora_B
                # no alpha
                if load_key.endswith('.alpha'):
                    continue
                load_key = load_key.replace('lora_A', 'lora_down')
                load_key = load_key.replace('lora_B', 'lora_up')
                # replace all . with $$
                load_key = load_key.replace('.', '$$')
                load_key = load_key.replace('$$lora_down$$', '.lora_down.')
                load_key = load_key.replace('$$lora_up$$', '.lora_up.')

            load_sd[load_key] = value

        # extract extra items from state dict
        current_state_dict = self.state_dict()
        extra_dict = OrderedDict()
        to_delete = []
        for key in list(load_sd.keys()):
            if key not in current_state_dict:
                extra_dict[key] = load_sd[key]
                to_delete.append(key)
        for key in to_delete:
            del load_sd[key]

        print(f"Missing keys: {to_delete}")
        if len(to_delete) > 0 and self.is_v1 and not force_weight_mapping and not (
                len(to_delete) == 1 and 'emb_params' in to_delete):
            print(" Attempting to load with forced keymap")
            return self.load_weights(file, force_weight_mapping=True)

        info = self.load_state_dict(load_sd, False)
        if len(extra_dict.keys()) == 0:
            extra_dict = None
        return extra_dict

    @torch.no_grad()
    def _update_torch_multiplier(self: Network):
        # builds a tensor for fast usage in the forward pass of the network modules
        # without having to set it in every single module every time it changes
        multiplier = self._multiplier
        # get first module
        first_module = self.get_all_modules()[0]
        device = first_module.lora_down.weight.device
        dtype = first_module.lora_down.weight.dtype
        with torch.no_grad():
            tensor_multiplier = None
            if isinstance(multiplier, int) or isinstance(multiplier, float):
                tensor_multiplier = torch.tensor((multiplier,)).to(device, dtype=dtype)
            elif isinstance(multiplier, list):
                tensor_multiplier = torch.tensor(multiplier).to(device, dtype=dtype)
            elif isinstance(multiplier, torch.Tensor):
                tensor_multiplier = multiplier.clone().detach().to(device, dtype=dtype)

            self.torch_multiplier = tensor_multiplier.clone().detach()

    @property
    def multiplier(self) -> Union[float, List[float], List[List[float]]]:
        return self._multiplier

    @multiplier.setter
    def multiplier(self, value: Union[float, List[float], List[List[float]]]):
        # it takes time to update all the multipliers, so we only do it if the value has changed
        if self._multiplier == value:
            return
        # if we are setting a single value but have a list, keep the list if every item is the same as value
        self._multiplier = value
        self._update_torch_multiplier()

    # called when the context manager is entered
    # ie: with network:
    def __enter__(self: Network):
        self.is_active = True

    def __exit__(self: Network, exc_type, exc_value, tb):
        self.is_active = False

    def force_to(self: Network, device, dtype):
        self.to(device, dtype)
        loras = []
        if hasattr(self, 'unet_loras'):
            loras += self.unet_loras
        if hasattr(self, 'text_encoder_loras'):
            loras += self.text_encoder_loras
        for lora in loras:
            lora.to(device, dtype)

    def get_all_modules(self: Network) -> List[Module]:
        loras = []
        if hasattr(self, 'unet_loras'):
            loras += self.unet_loras
        if hasattr(self, 'text_encoder_loras'):
            loras += self.text_encoder_loras
        return loras

    def _update_checkpointing(self: Network):
        for module in self.get_all_modules():
            if self.is_checkpointing:
                module.enable_gradient_checkpointing()
            else:
                module.disable_gradient_checkpointing()

    def enable_gradient_checkpointing(self: Network):
        # not supported
        self.is_checkpointing = True
        self._update_checkpointing()

    def disable_gradient_checkpointing(self: Network):
        # not supported
        self.is_checkpointing = False
        self._update_checkpointing()

    def merge_in(self, merge_weight=1.0):
        if self.network_type.lower() == 'dora':
            return
        self.is_merged_in = True
        for module in self.get_all_modules():
            module.merge_in(merge_weight)

    def merge_out(self: Network, merge_weight=1.0):
        if not self.is_merged_in:
            return
        self.is_merged_in = False
        for module in self.get_all_modules():
            module.merge_out(merge_weight)

    def extract_weight(
            self: Network,
            extract_mode: ExtractMode = "existing",
            extract_mode_param: Union[int, float] = None,
    ):
        if extract_mode_param is None:
            raise ValueError("extract_mode_param must be set")
        for module in tqdm(self.get_all_modules(), desc="Extracting weights"):
            module.extract_weight(
                extract_mode=extract_mode,
                extract_mode_param=extract_mode_param
            )

    def setup_lorm(self: Network, state_dict: Optional[Dict[str, Any]] = None):
        for module in tqdm(self.get_all_modules(), desc="Extracting LoRM"):
            module.setup_lorm(state_dict=state_dict)

    def calculate_lorem_parameter_reduction(self):
        params_reduced = 0
        for module in self.get_all_modules():
            num_orig_module_params = count_parameters(module.org_module[0])
            num_lorem_params = count_parameters(module.lora_down) + count_parameters(module.lora_up)
            params_reduced += (num_orig_module_params - num_lorem_params)

        return params_reduced