File size: 26,169 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 |
import json
import os
from collections import OrderedDict
from typing import Optional, Union, List, Type, TYPE_CHECKING, Dict, Any, Literal
import torch
from optimum.quanto import QTensor
from torch import nn
import weakref
from tqdm import tqdm
from toolkit.config_modules import NetworkConfig
from toolkit.lorm import extract_conv, extract_linear, count_parameters
from toolkit.metadata import add_model_hash_to_meta
from toolkit.paths import KEYMAPS_ROOT
from toolkit.saving import get_lora_keymap_from_model_keymap
if TYPE_CHECKING:
from toolkit.lycoris_special import LycorisSpecialNetwork, LoConSpecialModule
from toolkit.lora_special import LoRASpecialNetwork, LoRAModule
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.models.DoRA import DoRAModule
Network = Union['LycorisSpecialNetwork', 'LoRASpecialNetwork']
Module = Union['LoConSpecialModule', 'LoRAModule', 'DoRAModule']
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear'
# 'GroupNorm',
]
CONV_MODULES = [
'Conv2d',
'LoRACompatibleConv'
]
ExtractMode = Union[
'existing'
'fixed',
'threshold',
'ratio',
'quantile',
'percentage'
]
def broadcast_and_multiply(tensor, multiplier):
# Determine the number of dimensions required
num_extra_dims = tensor.dim() - multiplier.dim()
# Unsqueezing the tensor to match the dimensionality
for _ in range(num_extra_dims):
multiplier = multiplier.unsqueeze(-1)
try:
# Multiplying the broadcasted tensor with the output tensor
result = tensor * multiplier
except RuntimeError as e:
print(e)
print(tensor.size())
print(multiplier.size())
raise e
return result
def add_bias(tensor, bias):
if bias is None:
return tensor
# add batch dim
bias = bias.unsqueeze(0)
bias = torch.cat([bias] * tensor.size(0), dim=0)
# Determine the number of dimensions required
num_extra_dims = tensor.dim() - bias.dim()
# Unsqueezing the tensor to match the dimensionality
for _ in range(num_extra_dims):
bias = bias.unsqueeze(-1)
# we may need to swap -1 for -2
if bias.size(1) != tensor.size(1):
if len(bias.size()) == 3:
bias = bias.permute(0, 2, 1)
elif len(bias.size()) == 4:
bias = bias.permute(0, 3, 1, 2)
# Multiplying the broadcasted tensor with the output tensor
try:
result = tensor + bias
except RuntimeError as e:
print(e)
print(tensor.size())
print(bias.size())
raise e
return result
class ExtractableModuleMixin:
def extract_weight(
self: Module,
extract_mode: ExtractMode = "existing",
extract_mode_param: Union[int, float] = None,
):
device = self.lora_down.weight.device
weight_to_extract = self.org_module[0].weight
if extract_mode == "existing":
extract_mode = 'fixed'
extract_mode_param = self.lora_dim
if self.org_module[0].__class__.__name__ in CONV_MODULES:
# do conv extraction
down_weight, up_weight, new_dim, diff = extract_conv(
weight=weight_to_extract.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=device
)
elif self.org_module[0].__class__.__name__ in LINEAR_MODULES:
# do linear extraction
down_weight, up_weight, new_dim, diff = extract_linear(
weight=weight_to_extract.clone().detach().float(),
mode=extract_mode,
mode_param=extract_mode_param,
device=device,
)
else:
raise ValueError(f"Unknown module type: {self.org_module[0].__class__.__name__}")
self.lora_dim = new_dim
# inject weights into the param
self.lora_down.weight.data = down_weight.to(self.lora_down.weight.dtype).clone().detach()
self.lora_up.weight.data = up_weight.to(self.lora_up.weight.dtype).clone().detach()
# copy bias if we have one and are using them
if self.org_module[0].bias is not None and self.lora_up.bias is not None:
self.lora_up.bias.data = self.org_module[0].bias.data.clone().detach()
# set up alphas
self.alpha = (self.alpha * 0) + down_weight.shape[0]
self.scale = self.alpha / self.lora_dim
# assign them
# handle trainable scaler method locon does
if hasattr(self, 'scalar'):
# scaler is a parameter update the value with 1.0
self.scalar.data = torch.tensor(1.0).to(self.scalar.device, self.scalar.dtype)
class ToolkitModuleMixin:
def __init__(
self: Module,
*args,
network: Network,
**kwargs
):
self.network_ref: weakref.ref = weakref.ref(network)
self.is_checkpointing = False
self._multiplier: Union[float, list, torch.Tensor] = None
def _call_forward(self: Module, x):
# module dropout
if self.module_dropout is not None and self.training:
if torch.rand(1) < self.module_dropout:
return 0.0 # added to original forward
if hasattr(self, 'lora_mid') and self.lora_mid is not None:
lx = self.lora_mid(self.lora_down(x))
else:
try:
lx = self.lora_down(x)
except RuntimeError as e:
print(f"Error in {self.__class__.__name__} lora_down")
print(e)
if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity):
lx = self.dropout(lx)
# normal dropout
elif self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(lx, p=self.dropout)
# rank dropout
if self.rank_dropout is not None and self.rank_dropout > 0 and self.training:
mask = torch.rand((lx.size(0), self.lora_dim), device=lx.device) > self.rank_dropout
if len(lx.size()) == 3:
mask = mask.unsqueeze(1) # for Text Encoder
elif len(lx.size()) == 4:
mask = mask.unsqueeze(-1).unsqueeze(-1) # for Conv2d
lx = lx * mask
# scaling for rank dropout: treat as if the rank is changed
# maskから計算することも考えられるが、augmentation的な効果を期待してrank_dropoutを用いる
scale = self.scale * (1.0 / (1.0 - self.rank_dropout)) # redundant for readability
else:
scale = self.scale
lx = self.lora_up(lx)
# handle trainable scaler method locon does
if hasattr(self, 'scalar'):
scale = scale * self.scalar
return lx * scale
def lorm_forward(self: Network, x, *args, **kwargs):
network: Network = self.network_ref()
if not network.is_active:
return self.org_forward(x, *args, **kwargs)
if network.lorm_train_mode == 'local':
# we are going to predict input with both and do a loss on them
inputs = x.detach()
with torch.no_grad():
# get the local prediction
target_pred = self.org_forward(inputs, *args, **kwargs).detach()
with torch.set_grad_enabled(True):
# make a prediction with the lorm
lorm_pred = self.lora_up(self.lora_down(inputs.requires_grad_(True)))
local_loss = torch.nn.functional.mse_loss(target_pred.float(), lorm_pred.float())
# backpropr
local_loss.backward()
network.module_losses.append(local_loss.detach())
# return the original as we dont want our trainer to affect ones down the line
return target_pred
else:
return self.lora_up(self.lora_down(x))
def forward(self: Module, x, *args, **kwargs):
skip = False
network: Network = self.network_ref()
if network.is_lorm:
# we are doing lorm
return self.lorm_forward(x, *args, **kwargs)
# skip if not active
if not network.is_active:
skip = True
# skip if is merged in
if network.is_merged_in:
skip = True
# skip if multiplier is 0
if network._multiplier == 0:
skip = True
if skip:
# network is not active, avoid doing anything
return self.org_forward(x, *args, **kwargs)
# if self.__class__.__name__ == "DoRAModule":
# # return dora forward
# return self.dora_forward(x, *args, **kwargs)
org_forwarded = self.org_forward(x, *args, **kwargs)
if isinstance(x, QTensor):
x = x.dequantize()
# always cast to float32
lora_input = x.to(self.lora_down.weight.dtype)
lora_output = self._call_forward(lora_input)
multiplier = self.network_ref().torch_multiplier
lora_output_batch_size = lora_output.size(0)
multiplier_batch_size = multiplier.size(0)
if lora_output_batch_size != multiplier_batch_size:
num_interleaves = lora_output_batch_size // multiplier_batch_size
# todo check if this is correct, do we just concat when doing cfg?
multiplier = multiplier.repeat_interleave(num_interleaves)
scaled_lora_output = broadcast_and_multiply(lora_output, multiplier)
scaled_lora_output = scaled_lora_output.to(org_forwarded.dtype)
if self.__class__.__name__ == "DoRAModule":
# ref https://github.com/huggingface/peft/blob/1e6d1d73a0850223b0916052fd8d2382a90eae5a/src/peft/tuners/lora/layer.py#L417
# x = dropout(x)
# todo this wont match the dropout applied to the lora
if isinstance(self.dropout, nn.Dropout) or isinstance(self.dropout, nn.Identity):
lx = self.dropout(x)
# normal dropout
elif self.dropout is not None and self.training:
lx = torch.nn.functional.dropout(x, p=self.dropout)
else:
lx = x
lora_weight = self.lora_up.weight @ self.lora_down.weight
# scale it here
# todo handle our batch split scalers for slider training. For now take the mean of them
scale = multiplier.mean()
scaled_lora_weight = lora_weight * scale
scaled_lora_output = scaled_lora_output + self.apply_dora(lx, scaled_lora_weight).to(org_forwarded.dtype)
try:
x = org_forwarded + scaled_lora_output
except RuntimeError as e:
print(e)
print(org_forwarded.size())
print(scaled_lora_output.size())
raise e
return x
def enable_gradient_checkpointing(self: Module):
self.is_checkpointing = True
def disable_gradient_checkpointing(self: Module):
self.is_checkpointing = False
@torch.no_grad()
def merge_out(self: Module, merge_out_weight=1.0):
# make sure it is positive
merge_out_weight = abs(merge_out_weight)
# merging out is just merging in the negative of the weight
self.merge_in(merge_weight=-merge_out_weight)
@torch.no_grad()
def merge_in(self: Module, merge_weight=1.0):
if not self.can_merge_in:
return
# get up/down weight
up_weight = self.lora_up.weight.clone().float()
down_weight = self.lora_down.weight.clone().float()
# extract weight from org_module
org_sd = self.org_module[0].state_dict()
# todo find a way to merge in weights when doing quantized model
if 'weight._data' in org_sd:
# quantized weight
return
weight_key = "weight"
if 'weight._data' in org_sd:
# quantized weight
weight_key = "weight._data"
orig_dtype = org_sd[weight_key].dtype
weight = org_sd[weight_key].float()
multiplier = merge_weight
scale = self.scale
# handle trainable scaler method locon does
if hasattr(self, 'scalar'):
scale = scale * self.scalar
# merge weight
if len(weight.size()) == 2:
# linear
weight = weight + multiplier * (up_weight @ down_weight) * scale
elif down_weight.size()[2:4] == (1, 1):
# conv2d 1x1
weight = (
weight
+ multiplier
* (up_weight.squeeze(3).squeeze(2) @ down_weight.squeeze(3).squeeze(2)).unsqueeze(2).unsqueeze(3)
* scale
)
else:
# conv2d 3x3
conved = torch.nn.functional.conv2d(down_weight.permute(1, 0, 2, 3), up_weight).permute(1, 0, 2, 3)
# print(conved.size(), weight.size(), module.stride, module.padding)
weight = weight + multiplier * conved * scale
# set weight to org_module
org_sd[weight_key] = weight.to(orig_dtype)
self.org_module[0].load_state_dict(org_sd)
def setup_lorm(self: Module, state_dict: Optional[Dict[str, Any]] = None):
# LoRM (Low Rank Middle) is a method reduce the number of parameters in a module while keeping the inputs and
# outputs the same. It is basically a LoRA but with the original module removed
# if a state dict is passed, use those weights instead of extracting
# todo load from state dict
network: Network = self.network_ref()
lorm_config = network.network_config.lorm_config.get_config_for_module(self.lora_name)
extract_mode = lorm_config.extract_mode
extract_mode_param = lorm_config.extract_mode_param
parameter_threshold = lorm_config.parameter_threshold
self.extract_weight(
extract_mode=extract_mode,
extract_mode_param=extract_mode_param
)
class ToolkitNetworkMixin:
def __init__(
self: Network,
*args,
train_text_encoder: Optional[bool] = True,
train_unet: Optional[bool] = True,
is_sdxl=False,
is_v2=False,
is_ssd=False,
is_vega=False,
network_config: Optional[NetworkConfig] = None,
is_lorm=False,
**kwargs
):
self.train_text_encoder = train_text_encoder
self.train_unet = train_unet
self.is_checkpointing = False
self._multiplier: float = 1.0
self.is_active: bool = False
self.is_sdxl = is_sdxl
self.is_ssd = is_ssd
self.is_vega = is_vega
self.is_v2 = is_v2
self.is_v1 = not is_v2 and not is_sdxl and not is_ssd and not is_vega
self.is_merged_in = False
self.is_lorm = is_lorm
self.network_config: NetworkConfig = network_config
self.module_losses: List[torch.Tensor] = []
self.lorm_train_mode: Literal['local', None] = None
self.can_merge_in = not is_lorm
def get_keymap(self: Network, force_weight_mapping=False):
use_weight_mapping = False
if self.is_ssd:
keymap_tail = 'ssd'
use_weight_mapping = True
elif self.is_vega:
keymap_tail = 'vega'
use_weight_mapping = True
elif self.is_sdxl:
keymap_tail = 'sdxl'
elif self.is_v2:
keymap_tail = 'sd2'
else:
keymap_tail = 'sd1'
# todo double check this
# use_weight_mapping = True
if force_weight_mapping:
use_weight_mapping = True
# load keymap
keymap_name = f"stable_diffusion_locon_{keymap_tail}.json"
if use_weight_mapping:
keymap_name = f"stable_diffusion_{keymap_tail}.json"
keymap_path = os.path.join(KEYMAPS_ROOT, keymap_name)
keymap = None
# check if file exists
if os.path.exists(keymap_path):
with open(keymap_path, 'r') as f:
keymap = json.load(f)['ldm_diffusers_keymap']
if use_weight_mapping and keymap is not None:
# get keymap from weights
keymap = get_lora_keymap_from_model_keymap(keymap)
# upgrade keymaps for DoRA
if self.network_type.lower() == 'dora':
if keymap is not None:
new_keymap = {}
for ldm_key, diffusers_key in keymap.items():
ldm_key = ldm_key.replace('.alpha', '.magnitude')
# ldm_key = ldm_key.replace('.lora_down.weight', '.lora_down')
# ldm_key = ldm_key.replace('.lora_up.weight', '.lora_up')
diffusers_key = diffusers_key.replace('.alpha', '.magnitude')
# diffusers_key = diffusers_key.replace('.lora_down.weight', '.lora_down')
# diffusers_key = diffusers_key.replace('.lora_up.weight', '.lora_up')
new_keymap[ldm_key] = diffusers_key
keymap = new_keymap
return keymap
def save_weights(
self: Network,
file, dtype=torch.float16,
metadata=None,
extra_state_dict: Optional[OrderedDict] = None
):
keymap = self.get_keymap()
save_keymap = {}
if keymap is not None:
for ldm_key, diffusers_key in keymap.items():
# invert them
save_keymap[diffusers_key] = ldm_key
if metadata is not None and len(metadata) == 0:
metadata = None
state_dict = self.state_dict()
save_dict = OrderedDict()
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
save_key = save_keymap[key] if key in save_keymap else key
save_dict[save_key] = v
del state_dict[key]
if extra_state_dict is not None:
# add extra items to state dict
for key in list(extra_state_dict.keys()):
v = extra_state_dict[key]
v = v.detach().clone().to("cpu").to(dtype)
save_dict[key] = v
if self.peft_format:
# lora_down = lora_A
# lora_up = lora_B
# no alpha
new_save_dict = {}
for key, value in save_dict.items():
if key.endswith('.alpha'):
continue
new_key = key
new_key = new_key.replace('lora_down', 'lora_A')
new_key = new_key.replace('lora_up', 'lora_B')
# replace all $$ with .
new_key = new_key.replace('$$', '.')
new_save_dict[new_key] = value
save_dict = new_save_dict
if metadata is None:
metadata = OrderedDict()
metadata = add_model_hash_to_meta(state_dict, metadata)
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import save_file
save_file(save_dict, file, metadata)
else:
torch.save(save_dict, file)
def load_weights(self: Network, file, force_weight_mapping=False):
# allows us to save and load to and from ldm weights
keymap = self.get_keymap(force_weight_mapping)
keymap = {} if keymap is None else keymap
if isinstance(file, str):
if os.path.splitext(file)[1] == ".safetensors":
from safetensors.torch import load_file
weights_sd = load_file(file)
else:
weights_sd = torch.load(file, map_location="cpu")
else:
# probably a state dict
weights_sd = file
load_sd = OrderedDict()
for key, value in weights_sd.items():
load_key = keymap[key] if key in keymap else key
# replace old double __ with single _
if self.is_pixart:
load_key = load_key.replace('__', '_')
if self.peft_format:
# lora_down = lora_A
# lora_up = lora_B
# no alpha
if load_key.endswith('.alpha'):
continue
load_key = load_key.replace('lora_A', 'lora_down')
load_key = load_key.replace('lora_B', 'lora_up')
# replace all . with $$
load_key = load_key.replace('.', '$$')
load_key = load_key.replace('$$lora_down$$', '.lora_down.')
load_key = load_key.replace('$$lora_up$$', '.lora_up.')
load_sd[load_key] = value
# extract extra items from state dict
current_state_dict = self.state_dict()
extra_dict = OrderedDict()
to_delete = []
for key in list(load_sd.keys()):
if key not in current_state_dict:
extra_dict[key] = load_sd[key]
to_delete.append(key)
for key in to_delete:
del load_sd[key]
print(f"Missing keys: {to_delete}")
if len(to_delete) > 0 and self.is_v1 and not force_weight_mapping and not (
len(to_delete) == 1 and 'emb_params' in to_delete):
print(" Attempting to load with forced keymap")
return self.load_weights(file, force_weight_mapping=True)
info = self.load_state_dict(load_sd, False)
if len(extra_dict.keys()) == 0:
extra_dict = None
return extra_dict
@torch.no_grad()
def _update_torch_multiplier(self: Network):
# builds a tensor for fast usage in the forward pass of the network modules
# without having to set it in every single module every time it changes
multiplier = self._multiplier
# get first module
first_module = self.get_all_modules()[0]
device = first_module.lora_down.weight.device
dtype = first_module.lora_down.weight.dtype
with torch.no_grad():
tensor_multiplier = None
if isinstance(multiplier, int) or isinstance(multiplier, float):
tensor_multiplier = torch.tensor((multiplier,)).to(device, dtype=dtype)
elif isinstance(multiplier, list):
tensor_multiplier = torch.tensor(multiplier).to(device, dtype=dtype)
elif isinstance(multiplier, torch.Tensor):
tensor_multiplier = multiplier.clone().detach().to(device, dtype=dtype)
self.torch_multiplier = tensor_multiplier.clone().detach()
@property
def multiplier(self) -> Union[float, List[float], List[List[float]]]:
return self._multiplier
@multiplier.setter
def multiplier(self, value: Union[float, List[float], List[List[float]]]):
# it takes time to update all the multipliers, so we only do it if the value has changed
if self._multiplier == value:
return
# if we are setting a single value but have a list, keep the list if every item is the same as value
self._multiplier = value
self._update_torch_multiplier()
# called when the context manager is entered
# ie: with network:
def __enter__(self: Network):
self.is_active = True
def __exit__(self: Network, exc_type, exc_value, tb):
self.is_active = False
def force_to(self: Network, device, dtype):
self.to(device, dtype)
loras = []
if hasattr(self, 'unet_loras'):
loras += self.unet_loras
if hasattr(self, 'text_encoder_loras'):
loras += self.text_encoder_loras
for lora in loras:
lora.to(device, dtype)
def get_all_modules(self: Network) -> List[Module]:
loras = []
if hasattr(self, 'unet_loras'):
loras += self.unet_loras
if hasattr(self, 'text_encoder_loras'):
loras += self.text_encoder_loras
return loras
def _update_checkpointing(self: Network):
for module in self.get_all_modules():
if self.is_checkpointing:
module.enable_gradient_checkpointing()
else:
module.disable_gradient_checkpointing()
def enable_gradient_checkpointing(self: Network):
# not supported
self.is_checkpointing = True
self._update_checkpointing()
def disable_gradient_checkpointing(self: Network):
# not supported
self.is_checkpointing = False
self._update_checkpointing()
def merge_in(self, merge_weight=1.0):
if self.network_type.lower() == 'dora':
return
self.is_merged_in = True
for module in self.get_all_modules():
module.merge_in(merge_weight)
def merge_out(self: Network, merge_weight=1.0):
if not self.is_merged_in:
return
self.is_merged_in = False
for module in self.get_all_modules():
module.merge_out(merge_weight)
def extract_weight(
self: Network,
extract_mode: ExtractMode = "existing",
extract_mode_param: Union[int, float] = None,
):
if extract_mode_param is None:
raise ValueError("extract_mode_param must be set")
for module in tqdm(self.get_all_modules(), desc="Extracting weights"):
module.extract_weight(
extract_mode=extract_mode,
extract_mode_param=extract_mode_param
)
def setup_lorm(self: Network, state_dict: Optional[Dict[str, Any]] = None):
for module in tqdm(self.get_all_modules(), desc="Extracting LoRM"):
module.setup_lorm(state_dict=state_dict)
def calculate_lorem_parameter_reduction(self):
params_reduced = 0
for module in self.get_all_modules():
num_orig_module_params = count_parameters(module.org_module[0])
num_lorem_params = count_parameters(module.lora_down) + count_parameters(module.lora_up)
params_reduced += (num_orig_module_params - num_lorem_params)
return params_reduced
|