File size: 5,901 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import torch.nn as nn
import numpy as np
import itertools


class LosslessLatentDecoder(nn.Module):
    def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
        super(LosslessLatentDecoder, self).__init__()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.latent_depth = latent_depth
        self.in_channels = in_channels
        self.out_channels = int(in_channels // (latent_depth * latent_depth))
        numpy_kernel = self.build_kernel(in_channels, latent_depth)
        numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
        if trainable:
            self.kernel = nn.Parameter(numpy_kernel)
        else:
            self.kernel = numpy_kernel

    def build_kernel(self, in_channels, latent_depth):
        # my old code from tensorflow.
        # tensorflow kernel is  (height, width, out_channels, in_channels)
        # pytorch kernel is     (in_channels, out_channels, height, width)
        out_channels = self.out_channels

        # kernel_shape = [kernel_filter_size, kernel_filter_size, out_channels, in_channels] # tensorflow
        kernel_shape = [in_channels, out_channels, latent_depth, latent_depth]  # pytorch
        kernel = np.zeros(kernel_shape, np.float32)

        # Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel.
        for c in range(0, out_channels):
            i = 0
            for x, y in itertools.product(range(latent_depth), repeat=2):
                # kernel[y, x, c, c * latent_depth * latent_depth + i] = 1  # tensorflow
                kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0  # pytorch
                i += 1

        return kernel

    def forward(self, x):
        dtype = x.dtype
        if self.kernel.dtype != dtype:
            self.kernel = self.kernel.to(dtype=dtype)

        # Deconvolve input tensor with the kernel
        return nn.functional.conv_transpose2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1)


class LosslessLatentEncoder(nn.Module):
    def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
        super(LosslessLatentEncoder, self).__init__()
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.latent_depth = latent_depth
        self.in_channels = in_channels
        self.out_channels = int(in_channels * (latent_depth * latent_depth))
        numpy_kernel = self.build_kernel(in_channels, latent_depth)
        numpy_kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
        if trainable:
            self.kernel = nn.Parameter(numpy_kernel)
        else:
            self.kernel = numpy_kernel


    def build_kernel(self, in_channels, latent_depth):
        # my old code from tensorflow.
        # tensorflow kernel is  (height, width, in_channels, out_channels)
        # pytorch kernel is     (out_channels, in_channels, height, width)
        out_channels = self.out_channels

        # kernel_shape = [latent_depth, latent_depth, in_channels, out_channels] # tensorflow
        kernel_shape = [out_channels, in_channels, latent_depth, latent_depth]  # pytorch
        kernel = np.zeros(kernel_shape, np.float32)

        # Build the kernel so that a 4 pixel cluster has each pixel come from a separate channel.
        for c in range(0, in_channels):
            i = 0
            for x, y in itertools.product(range(latent_depth), repeat=2):
                # kernel[y, x, c, c * latent_depth * latent_depth + i] = 1  # tensorflow
                kernel[c * latent_depth * latent_depth + i, c, y, x] = 1.0  # pytorch
                i += 1
        return kernel

    def forward(self, x):
        dtype = x.dtype
        if self.kernel.dtype != dtype:
            self.kernel = self.kernel.to(dtype=dtype)
        # Convolve input tensor with the kernel
        return nn.functional.conv2d(x, self.kernel, stride=self.latent_depth, padding=0, groups=1)


class LosslessLatentVAE(nn.Module):
    def __init__(self, in_channels, latent_depth, dtype=torch.float32, trainable=False):
        super(LosslessLatentVAE, self).__init__()
        self.latent_depth = latent_depth
        self.in_channels = in_channels
        self.encoder = LosslessLatentEncoder(in_channels, latent_depth, dtype=dtype, trainable=trainable)
        encoder_out_channels = self.encoder.out_channels
        self.decoder = LosslessLatentDecoder(encoder_out_channels, latent_depth, dtype=dtype, trainable=trainable)

    def forward(self, x):
        latent = self.latent_encoder(x)
        out = self.latent_decoder(latent)
        return out

    def encode(self, x):
        return self.encoder(x)

    def decode(self, x):
        return self.decoder(x)


# test it
if __name__ == '__main__':
    import os
    from PIL import Image
    import torchvision.transforms as transforms
    user_path = os.path.expanduser('~')
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    dtype = torch.float32

    input_path = os.path.join(user_path, "Pictures/sample_2_512.png")
    output_path = os.path.join(user_path, "Pictures/sample_2_512_llvae.png")
    img = Image.open(input_path)
    img_tensor = transforms.ToTensor()(img)
    img_tensor = img_tensor.unsqueeze(0).to(device=device, dtype=dtype)
    print("input_shape: ", list(img_tensor.shape))
    vae = LosslessLatentVAE(in_channels=3, latent_depth=8, dtype=dtype).to(device=device, dtype=dtype)
    latent = vae.encode(img_tensor)
    print("latent_shape: ", list(latent.shape))
    out_tensor = vae.decode(latent)
    print("out_shape: ", list(out_tensor.shape))

    mse_loss = nn.MSELoss()
    mse = mse_loss(img_tensor, out_tensor)
    print("roundtrip_loss: ", mse.item())
    out_img = transforms.ToPILImage()(out_tensor.squeeze(0))
    out_img.save(output_path)