File size: 16,380 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# ref https://huggingface.co/spaces/editing-images/ledits/blob/main/inversion_utils.py

import torch
import os
from tqdm import tqdm

from toolkit import train_tools
from toolkit.prompt_utils import PromptEmbeds
from toolkit.stable_diffusion_model import StableDiffusion


def mu_tilde(model, xt, x0, timestep):
    "mu_tilde(x_t, x_0) DDPM paper eq. 7"
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[
        prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    alpha_t = model.scheduler.alphas[timestep]
    beta_t = 1 - alpha_t
    alpha_bar = model.scheduler.alphas_cumprod[timestep]
    return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1 - alpha_bar)) * x0 + (
            (alpha_t ** 0.5 * (1 - alpha_prod_t_prev)) / (1 - alpha_bar)) * xt


def sample_xts_from_x0(sd: StableDiffusion, sample: torch.Tensor, num_inference_steps=50):
    """
    Samples from P(x_1:T|x_0)
    """
    # torch.manual_seed(43256465436)
    alpha_bar = sd.noise_scheduler.alphas_cumprod
    sqrt_one_minus_alpha_bar = (1 - alpha_bar) ** 0.5
    alphas = sd.noise_scheduler.alphas
    betas = 1 - alphas
    # variance_noise_shape = (
    #     num_inference_steps,
    #     sd.unet.in_channels,
    #     sd.unet.sample_size,
    #     sd.unet.sample_size)
    variance_noise_shape = list(sample.shape)
    variance_noise_shape[0] = num_inference_steps

    timesteps = sd.noise_scheduler.timesteps.to(sd.device)
    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    xts = torch.zeros(variance_noise_shape).to(sample.device, dtype=torch.float16)
    for t in reversed(timesteps):
        idx = t_to_idx[int(t)]
        xts[idx] = sample * (alpha_bar[t] ** 0.5) + torch.randn_like(sample, dtype=torch.float16) * sqrt_one_minus_alpha_bar[t]
    xts = torch.cat([xts, sample], dim=0)

    return xts


def encode_text(model, prompts):
    text_input = model.tokenizer(
        prompts,
        padding="max_length",
        max_length=model.tokenizer.model_max_length,
        truncation=True,
        return_tensors="pt",
    )
    with torch.no_grad():
        text_encoding = model.text_encoder(text_input.input_ids.to(model.device))[0]
    return text_encoding


def forward_step(sd: StableDiffusion, model_output, timestep, sample):
    next_timestep = min(
        sd.noise_scheduler.config['num_train_timesteps'] - 2,
        timestep + sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps
    )

    # 2. compute alphas, betas
    alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep]
    # alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 else self.scheduler.final_alpha_cumprod

    beta_prod_t = 1 - alpha_prod_t

    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)

    # 5. TODO: simple noising implementation
    next_sample = sd.noise_scheduler.add_noise(
        pred_original_sample,
        model_output,
        torch.LongTensor([next_timestep]))
    return next_sample


def get_variance(sd: StableDiffusion, timestep):  # , prev_timestep):
    prev_timestep = timestep - sd.noise_scheduler.config['num_train_timesteps'] // sd.noise_scheduler.num_inference_steps
    alpha_prod_t = sd.noise_scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[
        prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod
    beta_prod_t = 1 - alpha_prod_t
    beta_prod_t_prev = 1 - alpha_prod_t_prev
    variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
    return variance


def get_time_ids_from_latents(sd: StableDiffusion, latents: torch.Tensor):
    VAE_SCALE_FACTOR = 2 ** (len(sd.vae.config['block_out_channels']) - 1)
    if sd.is_xl:
        bs, ch, h, w = list(latents.shape)

        height = h * VAE_SCALE_FACTOR
        width = w * VAE_SCALE_FACTOR

        dtype = latents.dtype
        # just do it without any cropping nonsense
        target_size = (height, width)
        original_size = (height, width)
        crops_coords_top_left = (0, 0)
        add_time_ids = list(original_size + crops_coords_top_left + target_size)
        add_time_ids = torch.tensor([add_time_ids])
        add_time_ids = add_time_ids.to(latents.device, dtype=dtype)

        batch_time_ids = torch.cat(
            [add_time_ids for _ in range(bs)]
        )
        return batch_time_ids
    else:
        return None


def inversion_forward_process(
        sd: StableDiffusion,
        sample: torch.Tensor,
        conditional_embeddings: PromptEmbeds,
        unconditional_embeddings: PromptEmbeds,
        etas=None,
        prog_bar=False,
        cfg_scale=3.5,
        num_inference_steps=50, eps=None
):
    current_num_timesteps = len(sd.noise_scheduler.timesteps)
    sd.noise_scheduler.set_timesteps(num_inference_steps, device=sd.device)

    timesteps = sd.noise_scheduler.timesteps.to(sd.device)
    # variance_noise_shape = (
    #     num_inference_steps,
    #     sd.unet.in_channels,
    #     sd.unet.sample_size,
    #     sd.unet.sample_size
    # )
    variance_noise_shape = list(sample.shape)
    variance_noise_shape[0] = num_inference_steps
    if etas is None or (type(etas) in [int, float] and etas == 0):
        eta_is_zero = True
        zs = None
    else:
        eta_is_zero = False
        if type(etas) in [int, float]: etas = [etas] * sd.noise_scheduler.num_inference_steps
        xts = sample_xts_from_x0(sd, sample, num_inference_steps=num_inference_steps)
        alpha_bar = sd.noise_scheduler.alphas_cumprod
        zs = torch.zeros(size=variance_noise_shape, device=sd.device, dtype=torch.float16)

    t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
    noisy_sample = sample
    op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps)

    for timestep in op:
        idx = t_to_idx[int(timestep)]
        # 1. predict noise residual
        if not eta_is_zero:
            noisy_sample = xts[idx][None]

        added_cond_kwargs = {}

        with torch.no_grad():
            text_embeddings = train_tools.concat_prompt_embeddings(
                unconditional_embeddings,  # negative embedding
                conditional_embeddings,  # positive embedding
                1,  # batch size
            )
            if sd.is_xl:
                add_time_ids = get_time_ids_from_latents(sd, noisy_sample)
                # add extra for cfg
                add_time_ids = torch.cat(
                    [add_time_ids] * 2, dim=0
                )

                added_cond_kwargs = {
                    "text_embeds": text_embeddings.pooled_embeds,
                    "time_ids": add_time_ids,
                }

            # double up for cfg
            latent_model_input = torch.cat(
                [noisy_sample] * 2, dim=0
            )

            noise_pred = sd.unet(
                latent_model_input,
                timestep,
                encoder_hidden_states=text_embeddings.text_embeds,
                added_cond_kwargs=added_cond_kwargs,
            ).sample

            noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)

            # out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=uncond_embedding)
            # cond_out = sd.unet.forward(noisy_sample, timestep=timestep, encoder_hidden_states=text_embeddings)

        noise_pred = noise_pred_uncond + cfg_scale * (noise_pred_text - noise_pred_uncond)

        if eta_is_zero:
            # 2. compute more noisy image and set x_t -> x_t+1
            noisy_sample = forward_step(sd, noise_pred, timestep, noisy_sample)
            xts = None

        else:
            xtm1 = xts[idx + 1][None]
            # pred of x0
            pred_original_sample = (noisy_sample - (1 - alpha_bar[timestep]) ** 0.5 * noise_pred) / alpha_bar[
                timestep] ** 0.5

            # direction to xt
            prev_timestep = timestep - sd.noise_scheduler.config[
                'num_train_timesteps'] // sd.noise_scheduler.num_inference_steps
            alpha_prod_t_prev = sd.noise_scheduler.alphas_cumprod[
                prev_timestep] if prev_timestep >= 0 else sd.noise_scheduler.final_alpha_cumprod

            variance = get_variance(sd, timestep)
            pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred

            mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction

            z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)
            zs[idx] = z

            # correction to avoid error accumulation
            xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z
            xts[idx + 1] = xtm1

    if not zs is None:
        zs[-1] = torch.zeros_like(zs[-1])

    # restore timesteps
    sd.noise_scheduler.set_timesteps(current_num_timesteps, device=sd.device)

    return noisy_sample, zs, xts


#
# def inversion_forward_process(
#         model,
#         sample,
#         etas=None,
#         prog_bar=False,
#         prompt="",
#         cfg_scale=3.5,
#         num_inference_steps=50, eps=None
# ):
#     if not prompt == "":
#         text_embeddings = encode_text(model, prompt)
#     uncond_embedding = encode_text(model, "")
#     timesteps = model.scheduler.timesteps.to(model.device)
#     variance_noise_shape = (
#         num_inference_steps,
#         model.unet.in_channels,
#         model.unet.sample_size,
#         model.unet.sample_size)
#     if etas is None or (type(etas) in [int, float] and etas == 0):
#         eta_is_zero = True
#         zs = None
#     else:
#         eta_is_zero = False
#         if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps
#         xts = sample_xts_from_x0(model, sample, num_inference_steps=num_inference_steps)
#         alpha_bar = model.scheduler.alphas_cumprod
#         zs = torch.zeros(size=variance_noise_shape, device=model.device, dtype=torch.float16)
#
#     t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
#     noisy_sample = sample
#     op = tqdm(reversed(timesteps), desc="Inverting...") if prog_bar else reversed(timesteps)
#
#     for t in op:
#         idx = t_to_idx[int(t)]
#         # 1. predict noise residual
#         if not eta_is_zero:
#             noisy_sample = xts[idx][None]
#
#         with torch.no_grad():
#             out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=uncond_embedding)
#             if not prompt == "":
#                 cond_out = model.unet.forward(noisy_sample, timestep=t, encoder_hidden_states=text_embeddings)
#
#         if not prompt == "":
#             ## classifier free guidance
#             noise_pred = out.sample + cfg_scale * (cond_out.sample - out.sample)
#         else:
#             noise_pred = out.sample
#
#         if eta_is_zero:
#             # 2. compute more noisy image and set x_t -> x_t+1
#             noisy_sample = forward_step(model, noise_pred, t, noisy_sample)
#
#         else:
#             xtm1 = xts[idx + 1][None]
#             # pred of x0
#             pred_original_sample = (noisy_sample - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
#
#             # direction to xt
#             prev_timestep = t - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
#             alpha_prod_t_prev = model.scheduler.alphas_cumprod[
#                 prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
#
#             variance = get_variance(model, t)
#             pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * noise_pred
#
#             mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
#
#             z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)
#             zs[idx] = z
#
#             # correction to avoid error accumulation
#             xtm1 = mu_xt + (etas[idx] * variance ** 0.5) * z
#             xts[idx + 1] = xtm1
#
#     if not zs is None:
#         zs[-1] = torch.zeros_like(zs[-1])
#
#     return noisy_sample, zs, xts


def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None):
    # 1. get previous step value (=t-1)
    prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
    # 2. compute alphas, betas
    alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
    alpha_prod_t_prev = model.scheduler.alphas_cumprod[
        prev_timestep] if prev_timestep >= 0 else model.scheduler.final_alpha_cumprod
    beta_prod_t = 1 - alpha_prod_t
    # 3. compute predicted original sample from predicted noise also called
    # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
    # 5. compute variance: "sigma_t(η)" -> see formula (16)
    # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
    # variance = self.scheduler._get_variance(timestep, prev_timestep)
    variance = get_variance(model, timestep)  # , prev_timestep)
    std_dev_t = eta * variance ** (0.5)
    # Take care of asymetric reverse process (asyrp)
    model_output_direction = model_output
    # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    # pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
    pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
    # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
    prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
    # 8. Add noice if eta > 0
    if eta > 0:
        if variance_noise is None:
            variance_noise = torch.randn(model_output.shape, device=model.device, dtype=torch.float16)
        sigma_z = eta * variance ** (0.5) * variance_noise
        prev_sample = prev_sample + sigma_z

    return prev_sample


def inversion_reverse_process(
        model,
        xT,
        etas=0,
        prompts="",
        cfg_scales=None,
        prog_bar=False,
        zs=None,
        controller=None,
        asyrp=False):
    batch_size = len(prompts)

    cfg_scales_tensor = torch.Tensor(cfg_scales).view(-1, 1, 1, 1).to(model.device, dtype=torch.float16)

    text_embeddings = encode_text(model, prompts)
    uncond_embedding = encode_text(model, [""] * batch_size)

    if etas is None: etas = 0
    if type(etas) in [int, float]: etas = [etas] * model.scheduler.num_inference_steps
    assert len(etas) == model.scheduler.num_inference_steps
    timesteps = model.scheduler.timesteps.to(model.device)

    xt = xT.expand(batch_size, -1, -1, -1)
    op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]

    t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}

    for t in op:
        idx = t_to_idx[int(t)]
        ## Unconditional embedding
        with torch.no_grad():
            uncond_out = model.unet.forward(xt, timestep=t,
                                            encoder_hidden_states=uncond_embedding)

            ## Conditional embedding
        if prompts:
            with torch.no_grad():
                cond_out = model.unet.forward(xt, timestep=t,
                                              encoder_hidden_states=text_embeddings)

        z = zs[idx] if not zs is None else None
        z = z.expand(batch_size, -1, -1, -1)
        if prompts:
            ## classifier free guidance
            noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
        else:
            noise_pred = uncond_out.sample
        # 2. compute less noisy image and set x_t -> x_t-1
        xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z)
        if controller is not None:
            xt = controller.step_callback(xt)
    return xt, zs