File size: 15,949 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# ref https://github.com/scardine/image_size/blob/master/get_image_size.py
import atexit
import collections
import json
import os
import io
import struct
import threading
from typing import TYPE_CHECKING

import cv2
import numpy as np
import torch
from diffusers import AutoencoderTiny

FILE_UNKNOWN = "Sorry, don't know how to get size for this file."


class UnknownImageFormat(Exception):
    pass


types = collections.OrderedDict()
BMP = types['BMP'] = 'BMP'
GIF = types['GIF'] = 'GIF'
ICO = types['ICO'] = 'ICO'
JPEG = types['JPEG'] = 'JPEG'
PNG = types['PNG'] = 'PNG'
TIFF = types['TIFF'] = 'TIFF'

image_fields = ['path', 'type', 'file_size', 'width', 'height']


class Image(collections.namedtuple('Image', image_fields)):

    def to_str_row(self):
        return ("%d\t%d\t%d\t%s\t%s" % (
            self.width,
            self.height,
            self.file_size,
            self.type,
            self.path.replace('\t', '\\t'),
        ))

    def to_str_row_verbose(self):
        return ("%d\t%d\t%d\t%s\t%s\t##%s" % (
            self.width,
            self.height,
            self.file_size,
            self.type,
            self.path.replace('\t', '\\t'),
            self))

    def to_str_json(self, indent=None):
        return json.dumps(self._asdict(), indent=indent)


def get_image_size(file_path):
    """
    Return (width, height) for a given img file content - no external
    dependencies except the os and struct builtin modules
    """
    img = get_image_metadata(file_path)
    return (img.width, img.height)


def get_image_size_from_bytesio(input, size):
    """
    Return (width, height) for a given img file content - no external
    dependencies except the os and struct builtin modules

    Args:
        input (io.IOBase): io object support read & seek
        size (int): size of buffer in byte
    """
    img = get_image_metadata_from_bytesio(input, size)
    return (img.width, img.height)


def get_image_metadata(file_path):
    """
    Return an `Image` object for a given img file content - no external
    dependencies except the os and struct builtin modules

    Args:
        file_path (str): path to an image file

    Returns:
        Image: (path, type, file_size, width, height)
    """
    size = os.path.getsize(file_path)

    # be explicit with open arguments - we need binary mode
    with io.open(file_path, "rb") as input:
        return get_image_metadata_from_bytesio(input, size, file_path)


def get_image_metadata_from_bytesio(input, size, file_path=None):
    """
    Return an `Image` object for a given img file content - no external
    dependencies except the os and struct builtin modules

    Args:
        input (io.IOBase): io object support read & seek
        size (int): size of buffer in byte
        file_path (str): path to an image file

    Returns:
        Image: (path, type, file_size, width, height)
    """
    height = -1
    width = -1
    data = input.read(26)
    msg = " raised while trying to decode as JPEG."

    if (size >= 10) and data[:6] in (b'GIF87a', b'GIF89a'):
        # GIFs
        imgtype = GIF
        w, h = struct.unpack("<HH", data[6:10])
        width = int(w)
        height = int(h)
    elif ((size >= 24) and data.startswith(b'\211PNG\r\n\032\n')
          and (data[12:16] == b'IHDR')):
        # PNGs
        imgtype = PNG
        w, h = struct.unpack(">LL", data[16:24])
        width = int(w)
        height = int(h)
    elif (size >= 16) and data.startswith(b'\211PNG\r\n\032\n'):
        # older PNGs
        imgtype = PNG
        w, h = struct.unpack(">LL", data[8:16])
        width = int(w)
        height = int(h)
    elif (size >= 2) and data.startswith(b'\377\330'):
        # JPEG
        imgtype = JPEG
        input.seek(0)
        input.read(2)
        b = input.read(1)
        try:
            while (b and ord(b) != 0xDA):
                while (ord(b) != 0xFF):
                    b = input.read(1)
                while (ord(b) == 0xFF):
                    b = input.read(1)
                if (ord(b) >= 0xC0 and ord(b) <= 0xC3):
                    input.read(3)
                    h, w = struct.unpack(">HH", input.read(4))
                    break
                else:
                    input.read(
                        int(struct.unpack(">H", input.read(2))[0]) - 2)
                b = input.read(1)
            width = int(w)
            height = int(h)
        except struct.error:
            raise UnknownImageFormat("StructError" + msg)
        except ValueError:
            raise UnknownImageFormat("ValueError" + msg)
        except Exception as e:
            raise UnknownImageFormat(e.__class__.__name__ + msg)
    elif (size >= 26) and data.startswith(b'BM'):
        # BMP
        imgtype = 'BMP'
        headersize = struct.unpack("<I", data[14:18])[0]
        if headersize == 12:
            w, h = struct.unpack("<HH", data[18:22])
            width = int(w)
            height = int(h)
        elif headersize >= 40:
            w, h = struct.unpack("<ii", data[18:26])
            width = int(w)
            # as h is negative when stored upside down
            height = abs(int(h))
        else:
            raise UnknownImageFormat(
                "Unkown DIB header size:" +
                str(headersize))
    elif (size >= 8) and data[:4] in (b"II\052\000", b"MM\000\052"):
        # Standard TIFF, big- or little-endian
        # BigTIFF and other different but TIFF-like formats are not
        # supported currently
        imgtype = TIFF
        byteOrder = data[:2]
        boChar = ">" if byteOrder == "MM" else "<"
        # maps TIFF type id to size (in bytes)
        # and python format char for struct
        tiffTypes = {
            1: (1, boChar + "B"),  # BYTE
            2: (1, boChar + "c"),  # ASCII
            3: (2, boChar + "H"),  # SHORT
            4: (4, boChar + "L"),  # LONG
            5: (8, boChar + "LL"),  # RATIONAL
            6: (1, boChar + "b"),  # SBYTE
            7: (1, boChar + "c"),  # UNDEFINED
            8: (2, boChar + "h"),  # SSHORT
            9: (4, boChar + "l"),  # SLONG
            10: (8, boChar + "ll"),  # SRATIONAL
            11: (4, boChar + "f"),  # FLOAT
            12: (8, boChar + "d")  # DOUBLE
        }
        ifdOffset = struct.unpack(boChar + "L", data[4:8])[0]
        try:
            countSize = 2
            input.seek(ifdOffset)
            ec = input.read(countSize)
            ifdEntryCount = struct.unpack(boChar + "H", ec)[0]
            # 2 bytes: TagId + 2 bytes: type + 4 bytes: count of values + 4
            # bytes: value offset
            ifdEntrySize = 12
            for i in range(ifdEntryCount):
                entryOffset = ifdOffset + countSize + i * ifdEntrySize
                input.seek(entryOffset)
                tag = input.read(2)
                tag = struct.unpack(boChar + "H", tag)[0]
                if (tag == 256 or tag == 257):
                    # if type indicates that value fits into 4 bytes, value
                    # offset is not an offset but value itself
                    type = input.read(2)
                    type = struct.unpack(boChar + "H", type)[0]
                    if type not in tiffTypes:
                        raise UnknownImageFormat(
                            "Unkown TIFF field type:" +
                            str(type))
                    typeSize = tiffTypes[type][0]
                    typeChar = tiffTypes[type][1]
                    input.seek(entryOffset + 8)
                    value = input.read(typeSize)
                    value = int(struct.unpack(typeChar, value)[0])
                    if tag == 256:
                        width = value
                    else:
                        height = value
                if width > -1 and height > -1:
                    break
        except Exception as e:
            raise UnknownImageFormat(str(e))
    elif size >= 2:
        # see http://en.wikipedia.org/wiki/ICO_(file_format)
        imgtype = 'ICO'
        input.seek(0)
        reserved = input.read(2)
        if 0 != struct.unpack("<H", reserved)[0]:
            raise UnknownImageFormat(FILE_UNKNOWN)
        format = input.read(2)
        assert 1 == struct.unpack("<H", format)[0]
        num = input.read(2)
        num = struct.unpack("<H", num)[0]
        if num > 1:
            import warnings
            warnings.warn("ICO File contains more than one image")
        # http://msdn.microsoft.com/en-us/library/ms997538.aspx
        w = input.read(1)
        h = input.read(1)
        width = ord(w)
        height = ord(h)
    else:
        raise UnknownImageFormat(FILE_UNKNOWN)

    return Image(path=file_path,
                 type=imgtype,
                 file_size=size,
                 width=width,
                 height=height)


import unittest


class Test_get_image_size(unittest.TestCase):
    data = [{
        'path': 'lookmanodeps.png',
        'width': 251,
        'height': 208,
        'file_size': 22228,
        'type': 'PNG'}]

    def setUp(self):
        pass

    def test_get_image_size_from_bytesio(self):
        img = self.data[0]
        p = img['path']
        with io.open(p, 'rb') as fp:
            b = fp.read()
        fp = io.BytesIO(b)
        sz = len(b)
        output = get_image_size_from_bytesio(fp, sz)
        self.assertTrue(output)
        self.assertEqual(output,
                         (img['width'],
                          img['height']))

    def test_get_image_metadata_from_bytesio(self):
        img = self.data[0]
        p = img['path']
        with io.open(p, 'rb') as fp:
            b = fp.read()
        fp = io.BytesIO(b)
        sz = len(b)
        output = get_image_metadata_from_bytesio(fp, sz)
        self.assertTrue(output)
        for field in image_fields:
            self.assertEqual(getattr(output, field), None if field == 'path' else img[field])

    def test_get_image_metadata(self):
        img = self.data[0]
        output = get_image_metadata(img['path'])
        self.assertTrue(output)
        for field in image_fields:
            self.assertEqual(getattr(output, field), img[field])

    def test_get_image_metadata__ENOENT_OSError(self):
        with self.assertRaises(OSError):
            get_image_metadata('THIS_DOES_NOT_EXIST')

    def test_get_image_metadata__not_an_image_UnknownImageFormat(self):
        with self.assertRaises(UnknownImageFormat):
            get_image_metadata('README.rst')

    def test_get_image_size(self):
        img = self.data[0]
        output = get_image_size(img['path'])
        self.assertTrue(output)
        self.assertEqual(output,
                         (img['width'],
                          img['height']))

    def tearDown(self):
        pass


def main(argv=None):
    """
    Print image metadata fields for the given file path.

    Keyword Arguments:
        argv (list): commandline arguments (e.g. sys.argv[1:])
    Returns:
        int: zero for OK
    """
    import logging
    import optparse
    import sys

    prs = optparse.OptionParser(
        usage="%prog [-v|--verbose] [--json|--json-indent] <path0> [<pathN>]",
        description="Print metadata for the given image paths "
                    "(without image library bindings).")

    prs.add_option('--json',
                   dest='json',
                   action='store_true')
    prs.add_option('--json-indent',
                   dest='json_indent',
                   action='store_true')

    prs.add_option('-v', '--verbose',
                   dest='verbose',
                   action='store_true', )
    prs.add_option('-q', '--quiet',
                   dest='quiet',
                   action='store_true', )
    prs.add_option('-t', '--test',
                   dest='run_tests',
                   action='store_true', )

    argv = list(argv) if argv is not None else sys.argv[1:]
    (opts, args) = prs.parse_args(args=argv)
    loglevel = logging.INFO
    if opts.verbose:
        loglevel = logging.DEBUG
    elif opts.quiet:
        loglevel = logging.ERROR
    logging.basicConfig(level=loglevel)
    log = logging.getLogger()
    log.debug('argv: %r', argv)
    log.debug('opts: %r', opts)
    log.debug('args: %r', args)

    if opts.run_tests:
        import sys
        sys.argv = [sys.argv[0]] + args
        import unittest
        return unittest.main()

    output_func = Image.to_str_row
    if opts.json_indent:
        import functools
        output_func = functools.partial(Image.to_str_json, indent=2)
    elif opts.json:
        output_func = Image.to_str_json
    elif opts.verbose:
        output_func = Image.to_str_row_verbose

    EX_OK = 0
    EX_NOT_OK = 2

    if len(args) < 1:
        prs.print_help()
        print('')
        prs.error("You must specify one or more paths to image files")

    errors = []
    for path_arg in args:
        try:
            img = get_image_metadata(path_arg)
            print(output_func(img))
        except KeyboardInterrupt:
            raise
        except OSError as e:
            log.error((path_arg, e))
            errors.append((path_arg, e))
        except Exception as e:
            log.exception(e)
            errors.append((path_arg, e))
            pass
    if len(errors):
        import pprint
        print("ERRORS", file=sys.stderr)
        print("======", file=sys.stderr)
        print(pprint.pformat(errors, indent=2), file=sys.stderr)
        return EX_NOT_OK
    return EX_OK


is_window_shown = False
display_lock = threading.Lock()
current_img = None
update_event = threading.Event()

def update_image(img, name):
    global current_img
    with display_lock:
        current_img = (img, name)
        update_event.set()

def display_image_in_thread():
    global is_window_shown

    def display_img():
        global current_img
        while True:
            update_event.wait()
            with display_lock:
                if current_img:
                    img, name = current_img
                    cv2.imshow(name, img)
                    current_img = None
                    update_event.clear()
                if cv2.waitKey(1) & 0xFF == 27:  # Esc key to stop
                    cv2.destroyAllWindows()
                    print('\nESC pressed, stopping')
                    break

    if not is_window_shown:
        is_window_shown = True
        threading.Thread(target=display_img, daemon=True).start()


def show_img(img, name='AI Toolkit'):
    img = np.clip(img, 0, 255).astype(np.uint8)
    update_image(img[:, :, ::-1], name)
    if not is_window_shown:
        display_image_in_thread()


def show_tensors(imgs: torch.Tensor, name='AI Toolkit'):
    if len(imgs.shape) == 4:
        img_list = torch.chunk(imgs, imgs.shape[0], dim=0)
    else:
        img_list = [imgs]

    img = torch.cat(img_list, dim=3)
    img = img / 2 + 0.5
    img_numpy = img.to(torch.float32).detach().cpu().numpy()
    img_numpy = np.clip(img_numpy, 0, 1) * 255
    img_numpy = img_numpy.transpose(0, 2, 3, 1)
    img_numpy = img_numpy.astype(np.uint8)

    show_img(img_numpy[0], name=name)


def show_latents(latents: torch.Tensor, vae: 'AutoencoderTiny', name='AI Toolkit'):
    if vae.device == 'cpu':
        vae.to(latents.device)
    latents = latents / vae.config['scaling_factor']
    imgs = vae.decode(latents).sample
    show_tensors(imgs, name=name)


def on_exit():
    if is_window_shown:
        cv2.destroyAllWindows()


def reduce_contrast(tensor, factor):
    # Ensure factor is between 0 and 1
    factor = max(0, min(factor, 1))

    # Calculate the mean of the tensor
    mean = torch.mean(tensor)

    # Reduce contrast
    adjusted_tensor = (tensor - mean) * factor + mean

    # Clip values to ensure they stay within -1 to 1 range
    return torch.clamp(adjusted_tensor, -1.0, 1.0)

atexit.register(on_exit)

if __name__ == "__main__":
    import sys

    sys.exit(main(argv=sys.argv[1:]))