File size: 11,147 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import weakref
from _weakref import ReferenceType
from typing import TYPE_CHECKING, List, Union
import torch
import random

from PIL import Image
from PIL.ImageOps import exif_transpose

from toolkit import image_utils
from toolkit.dataloader_mixins import CaptionProcessingDTOMixin, ImageProcessingDTOMixin, LatentCachingFileItemDTOMixin, \
    ControlFileItemDTOMixin, ArgBreakMixin, PoiFileItemDTOMixin, MaskFileItemDTOMixin, AugmentationFileItemDTOMixin, \
    UnconditionalFileItemDTOMixin, ClipImageFileItemDTOMixin


if TYPE_CHECKING:
    from toolkit.config_modules import DatasetConfig
    from toolkit.stable_diffusion_model import StableDiffusion

printed_messages = []


def print_once(msg):
    global printed_messages
    if msg not in printed_messages:
        print(msg)
        printed_messages.append(msg)


class FileItemDTO(
    LatentCachingFileItemDTOMixin,
    CaptionProcessingDTOMixin,
    ImageProcessingDTOMixin,
    ControlFileItemDTOMixin,
    ClipImageFileItemDTOMixin,
    MaskFileItemDTOMixin,
    AugmentationFileItemDTOMixin,
    UnconditionalFileItemDTOMixin,
    PoiFileItemDTOMixin,
    ArgBreakMixin,
):
    def __init__(self, *args, **kwargs):
        self.path = kwargs.get('path', '')
        self.dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
        size_database = kwargs.get('size_database', {})
        filename = os.path.basename(self.path)
        if filename in size_database:
            w, h = size_database[filename]
        else:
            # process width and height
            try:
                w, h = image_utils.get_image_size(self.path)
            except image_utils.UnknownImageFormat:
                print_once(f'Warning: Some images in the dataset cannot be fast read. ' + \
                           f'This process is faster for png, jpeg')
                img = exif_transpose(Image.open(self.path))
                h, w = img.size
            size_database[filename] = (w, h)
        self.width: int = w
        self.height: int = h
        self.dataloader_transforms = kwargs.get('dataloader_transforms', None)
        super().__init__(*args, **kwargs)

        # self.caption_path: str = kwargs.get('caption_path', None)
        self.raw_caption: str = kwargs.get('raw_caption', None)
        # we scale first, then crop
        self.scale_to_width: int = kwargs.get('scale_to_width', int(self.width * self.dataset_config.scale))
        self.scale_to_height: int = kwargs.get('scale_to_height', int(self.height * self.dataset_config.scale))
        # crop values are from scaled size
        self.crop_x: int = kwargs.get('crop_x', 0)
        self.crop_y: int = kwargs.get('crop_y', 0)
        self.crop_width: int = kwargs.get('crop_width', self.scale_to_width)
        self.crop_height: int = kwargs.get('crop_height', self.scale_to_height)
        self.flip_x: bool = kwargs.get('flip_x', False)
        self.flip_y: bool = kwargs.get('flip_x', False)
        self.augments: List[str] = self.dataset_config.augments
        self.loss_multiplier: float = self.dataset_config.loss_multiplier

        self.network_weight: float = self.dataset_config.network_weight
        self.is_reg = self.dataset_config.is_reg
        self.tensor: Union[torch.Tensor, None] = None

    def cleanup(self):
        self.tensor = None
        self.cleanup_latent()
        self.cleanup_control()
        self.cleanup_clip_image()
        self.cleanup_mask()
        self.cleanup_unconditional()


class DataLoaderBatchDTO:
    def __init__(self, **kwargs):
        try:
            self.file_items: List['FileItemDTO'] = kwargs.get('file_items', None)
            is_latents_cached = self.file_items[0].is_latent_cached
            self.tensor: Union[torch.Tensor, None] = None
            self.latents: Union[torch.Tensor, None] = None
            self.control_tensor: Union[torch.Tensor, None] = None
            self.clip_image_tensor: Union[torch.Tensor, None] = None
            self.mask_tensor: Union[torch.Tensor, None] = None
            self.unaugmented_tensor: Union[torch.Tensor, None] = None
            self.unconditional_tensor: Union[torch.Tensor, None] = None
            self.unconditional_latents: Union[torch.Tensor, None] = None
            self.clip_image_embeds: Union[List[dict], None] = None
            self.clip_image_embeds_unconditional: Union[List[dict], None] = None
            self.sigmas: Union[torch.Tensor, None] = None  # can be added elseware and passed along training code
            self.extra_values: Union[torch.Tensor, None] = torch.tensor([x.extra_values for x in self.file_items]) if len(self.file_items[0].extra_values) > 0 else None
            if not is_latents_cached:
                # only return a tensor if latents are not cached
                self.tensor: torch.Tensor = torch.cat([x.tensor.unsqueeze(0) for x in self.file_items])
            # if we have encoded latents, we concatenate them
            self.latents: Union[torch.Tensor, None] = None
            if is_latents_cached:
                self.latents = torch.cat([x.get_latent().unsqueeze(0) for x in self.file_items])
            self.control_tensor: Union[torch.Tensor, None] = None
            # if self.file_items[0].control_tensor is not None:
            # if any have a control tensor, we concatenate them
            if any([x.control_tensor is not None for x in self.file_items]):
                # find one to use as a base
                base_control_tensor = None
                for x in self.file_items:
                    if x.control_tensor is not None:
                        base_control_tensor = x.control_tensor
                        break
                control_tensors = []
                for x in self.file_items:
                    if x.control_tensor is None:
                        control_tensors.append(torch.zeros_like(base_control_tensor))
                    else:
                        control_tensors.append(x.control_tensor)
                self.control_tensor = torch.cat([x.unsqueeze(0) for x in control_tensors])

            self.loss_multiplier_list: List[float] = [x.loss_multiplier for x in self.file_items]

            if any([x.clip_image_tensor is not None for x in self.file_items]):
                # find one to use as a base
                base_clip_image_tensor = None
                for x in self.file_items:
                    if x.clip_image_tensor is not None:
                        base_clip_image_tensor = x.clip_image_tensor
                        break
                clip_image_tensors = []
                for x in self.file_items:
                    if x.clip_image_tensor is None:
                        clip_image_tensors.append(torch.zeros_like(base_clip_image_tensor))
                    else:
                        clip_image_tensors.append(x.clip_image_tensor)
                self.clip_image_tensor = torch.cat([x.unsqueeze(0) for x in clip_image_tensors])

            if any([x.mask_tensor is not None for x in self.file_items]):
                # find one to use as a base
                base_mask_tensor = None
                for x in self.file_items:
                    if x.mask_tensor is not None:
                        base_mask_tensor = x.mask_tensor
                        break
                mask_tensors = []
                for x in self.file_items:
                    if x.mask_tensor is None:
                        mask_tensors.append(torch.zeros_like(base_mask_tensor))
                    else:
                        mask_tensors.append(x.mask_tensor)
                self.mask_tensor = torch.cat([x.unsqueeze(0) for x in mask_tensors])

            # add unaugmented tensors for ones with augments
            if any([x.unaugmented_tensor is not None for x in self.file_items]):
                # find one to use as a base
                base_unaugmented_tensor = None
                for x in self.file_items:
                    if x.unaugmented_tensor is not None:
                        base_unaugmented_tensor = x.unaugmented_tensor
                        break
                unaugmented_tensor = []
                for x in self.file_items:
                    if x.unaugmented_tensor is None:
                        unaugmented_tensor.append(torch.zeros_like(base_unaugmented_tensor))
                    else:
                        unaugmented_tensor.append(x.unaugmented_tensor)
                self.unaugmented_tensor = torch.cat([x.unsqueeze(0) for x in unaugmented_tensor])

            # add unconditional tensors
            if any([x.unconditional_tensor is not None for x in self.file_items]):
                # find one to use as a base
                base_unconditional_tensor = None
                for x in self.file_items:
                    if x.unaugmented_tensor is not None:
                        base_unconditional_tensor = x.unconditional_tensor
                        break
                unconditional_tensor = []
                for x in self.file_items:
                    if x.unconditional_tensor is None:
                        unconditional_tensor.append(torch.zeros_like(base_unconditional_tensor))
                    else:
                        unconditional_tensor.append(x.unconditional_tensor)
                self.unconditional_tensor = torch.cat([x.unsqueeze(0) for x in unconditional_tensor])

            if any([x.clip_image_embeds is not None for x in self.file_items]):
                self.clip_image_embeds = []
                for x in self.file_items:
                    if x.clip_image_embeds is not None:
                        self.clip_image_embeds.append(x.clip_image_embeds)
                    else:
                        raise Exception("clip_image_embeds is None for some file items")

            if any([x.clip_image_embeds_unconditional is not None for x in self.file_items]):
                self.clip_image_embeds_unconditional = []
                for x in self.file_items:
                    if x.clip_image_embeds_unconditional is not None:
                        self.clip_image_embeds_unconditional.append(x.clip_image_embeds_unconditional)
                    else:
                        raise Exception("clip_image_embeds_unconditional is None for some file items")

        except Exception as e:
            print(e)
            raise e

    def get_is_reg_list(self):
        return [x.is_reg for x in self.file_items]

    def get_network_weight_list(self):
        return [x.network_weight for x in self.file_items]

    def get_caption_list(
            self,
            trigger=None,
            to_replace_list=None,
            add_if_not_present=True
    ):
        return [x.caption for x in self.file_items]

    def get_caption_short_list(
            self,
            trigger=None,
            to_replace_list=None,
            add_if_not_present=True
    ):
        return [x.caption_short for x in self.file_items]

    def cleanup(self):
        del self.latents
        del self.tensor
        del self.control_tensor
        for file_item in self.file_items:
            file_item.cleanup()