File size: 11,147 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import weakref
from _weakref import ReferenceType
from typing import TYPE_CHECKING, List, Union
import torch
import random
from PIL import Image
from PIL.ImageOps import exif_transpose
from toolkit import image_utils
from toolkit.dataloader_mixins import CaptionProcessingDTOMixin, ImageProcessingDTOMixin, LatentCachingFileItemDTOMixin, \
ControlFileItemDTOMixin, ArgBreakMixin, PoiFileItemDTOMixin, MaskFileItemDTOMixin, AugmentationFileItemDTOMixin, \
UnconditionalFileItemDTOMixin, ClipImageFileItemDTOMixin
if TYPE_CHECKING:
from toolkit.config_modules import DatasetConfig
from toolkit.stable_diffusion_model import StableDiffusion
printed_messages = []
def print_once(msg):
global printed_messages
if msg not in printed_messages:
print(msg)
printed_messages.append(msg)
class FileItemDTO(
LatentCachingFileItemDTOMixin,
CaptionProcessingDTOMixin,
ImageProcessingDTOMixin,
ControlFileItemDTOMixin,
ClipImageFileItemDTOMixin,
MaskFileItemDTOMixin,
AugmentationFileItemDTOMixin,
UnconditionalFileItemDTOMixin,
PoiFileItemDTOMixin,
ArgBreakMixin,
):
def __init__(self, *args, **kwargs):
self.path = kwargs.get('path', '')
self.dataset_config: 'DatasetConfig' = kwargs.get('dataset_config', None)
size_database = kwargs.get('size_database', {})
filename = os.path.basename(self.path)
if filename in size_database:
w, h = size_database[filename]
else:
# process width and height
try:
w, h = image_utils.get_image_size(self.path)
except image_utils.UnknownImageFormat:
print_once(f'Warning: Some images in the dataset cannot be fast read. ' + \
f'This process is faster for png, jpeg')
img = exif_transpose(Image.open(self.path))
h, w = img.size
size_database[filename] = (w, h)
self.width: int = w
self.height: int = h
self.dataloader_transforms = kwargs.get('dataloader_transforms', None)
super().__init__(*args, **kwargs)
# self.caption_path: str = kwargs.get('caption_path', None)
self.raw_caption: str = kwargs.get('raw_caption', None)
# we scale first, then crop
self.scale_to_width: int = kwargs.get('scale_to_width', int(self.width * self.dataset_config.scale))
self.scale_to_height: int = kwargs.get('scale_to_height', int(self.height * self.dataset_config.scale))
# crop values are from scaled size
self.crop_x: int = kwargs.get('crop_x', 0)
self.crop_y: int = kwargs.get('crop_y', 0)
self.crop_width: int = kwargs.get('crop_width', self.scale_to_width)
self.crop_height: int = kwargs.get('crop_height', self.scale_to_height)
self.flip_x: bool = kwargs.get('flip_x', False)
self.flip_y: bool = kwargs.get('flip_x', False)
self.augments: List[str] = self.dataset_config.augments
self.loss_multiplier: float = self.dataset_config.loss_multiplier
self.network_weight: float = self.dataset_config.network_weight
self.is_reg = self.dataset_config.is_reg
self.tensor: Union[torch.Tensor, None] = None
def cleanup(self):
self.tensor = None
self.cleanup_latent()
self.cleanup_control()
self.cleanup_clip_image()
self.cleanup_mask()
self.cleanup_unconditional()
class DataLoaderBatchDTO:
def __init__(self, **kwargs):
try:
self.file_items: List['FileItemDTO'] = kwargs.get('file_items', None)
is_latents_cached = self.file_items[0].is_latent_cached
self.tensor: Union[torch.Tensor, None] = None
self.latents: Union[torch.Tensor, None] = None
self.control_tensor: Union[torch.Tensor, None] = None
self.clip_image_tensor: Union[torch.Tensor, None] = None
self.mask_tensor: Union[torch.Tensor, None] = None
self.unaugmented_tensor: Union[torch.Tensor, None] = None
self.unconditional_tensor: Union[torch.Tensor, None] = None
self.unconditional_latents: Union[torch.Tensor, None] = None
self.clip_image_embeds: Union[List[dict], None] = None
self.clip_image_embeds_unconditional: Union[List[dict], None] = None
self.sigmas: Union[torch.Tensor, None] = None # can be added elseware and passed along training code
self.extra_values: Union[torch.Tensor, None] = torch.tensor([x.extra_values for x in self.file_items]) if len(self.file_items[0].extra_values) > 0 else None
if not is_latents_cached:
# only return a tensor if latents are not cached
self.tensor: torch.Tensor = torch.cat([x.tensor.unsqueeze(0) for x in self.file_items])
# if we have encoded latents, we concatenate them
self.latents: Union[torch.Tensor, None] = None
if is_latents_cached:
self.latents = torch.cat([x.get_latent().unsqueeze(0) for x in self.file_items])
self.control_tensor: Union[torch.Tensor, None] = None
# if self.file_items[0].control_tensor is not None:
# if any have a control tensor, we concatenate them
if any([x.control_tensor is not None for x in self.file_items]):
# find one to use as a base
base_control_tensor = None
for x in self.file_items:
if x.control_tensor is not None:
base_control_tensor = x.control_tensor
break
control_tensors = []
for x in self.file_items:
if x.control_tensor is None:
control_tensors.append(torch.zeros_like(base_control_tensor))
else:
control_tensors.append(x.control_tensor)
self.control_tensor = torch.cat([x.unsqueeze(0) for x in control_tensors])
self.loss_multiplier_list: List[float] = [x.loss_multiplier for x in self.file_items]
if any([x.clip_image_tensor is not None for x in self.file_items]):
# find one to use as a base
base_clip_image_tensor = None
for x in self.file_items:
if x.clip_image_tensor is not None:
base_clip_image_tensor = x.clip_image_tensor
break
clip_image_tensors = []
for x in self.file_items:
if x.clip_image_tensor is None:
clip_image_tensors.append(torch.zeros_like(base_clip_image_tensor))
else:
clip_image_tensors.append(x.clip_image_tensor)
self.clip_image_tensor = torch.cat([x.unsqueeze(0) for x in clip_image_tensors])
if any([x.mask_tensor is not None for x in self.file_items]):
# find one to use as a base
base_mask_tensor = None
for x in self.file_items:
if x.mask_tensor is not None:
base_mask_tensor = x.mask_tensor
break
mask_tensors = []
for x in self.file_items:
if x.mask_tensor is None:
mask_tensors.append(torch.zeros_like(base_mask_tensor))
else:
mask_tensors.append(x.mask_tensor)
self.mask_tensor = torch.cat([x.unsqueeze(0) for x in mask_tensors])
# add unaugmented tensors for ones with augments
if any([x.unaugmented_tensor is not None for x in self.file_items]):
# find one to use as a base
base_unaugmented_tensor = None
for x in self.file_items:
if x.unaugmented_tensor is not None:
base_unaugmented_tensor = x.unaugmented_tensor
break
unaugmented_tensor = []
for x in self.file_items:
if x.unaugmented_tensor is None:
unaugmented_tensor.append(torch.zeros_like(base_unaugmented_tensor))
else:
unaugmented_tensor.append(x.unaugmented_tensor)
self.unaugmented_tensor = torch.cat([x.unsqueeze(0) for x in unaugmented_tensor])
# add unconditional tensors
if any([x.unconditional_tensor is not None for x in self.file_items]):
# find one to use as a base
base_unconditional_tensor = None
for x in self.file_items:
if x.unaugmented_tensor is not None:
base_unconditional_tensor = x.unconditional_tensor
break
unconditional_tensor = []
for x in self.file_items:
if x.unconditional_tensor is None:
unconditional_tensor.append(torch.zeros_like(base_unconditional_tensor))
else:
unconditional_tensor.append(x.unconditional_tensor)
self.unconditional_tensor = torch.cat([x.unsqueeze(0) for x in unconditional_tensor])
if any([x.clip_image_embeds is not None for x in self.file_items]):
self.clip_image_embeds = []
for x in self.file_items:
if x.clip_image_embeds is not None:
self.clip_image_embeds.append(x.clip_image_embeds)
else:
raise Exception("clip_image_embeds is None for some file items")
if any([x.clip_image_embeds_unconditional is not None for x in self.file_items]):
self.clip_image_embeds_unconditional = []
for x in self.file_items:
if x.clip_image_embeds_unconditional is not None:
self.clip_image_embeds_unconditional.append(x.clip_image_embeds_unconditional)
else:
raise Exception("clip_image_embeds_unconditional is None for some file items")
except Exception as e:
print(e)
raise e
def get_is_reg_list(self):
return [x.is_reg for x in self.file_items]
def get_network_weight_list(self):
return [x.network_weight for x in self.file_items]
def get_caption_list(
self,
trigger=None,
to_replace_list=None,
add_if_not_present=True
):
return [x.caption for x in self.file_items]
def get_caption_short_list(
self,
trigger=None,
to_replace_list=None,
add_if_not_present=True
):
return [x.caption_short for x in self.file_items]
def cleanup(self):
del self.latents
del self.tensor
del self.control_tensor
for file_item in self.file_items:
file_item.cleanup()
|