File size: 25,884 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 |
import copy
import json
import os
import random
import traceback
from functools import lru_cache
from typing import List, TYPE_CHECKING
import cv2
import numpy as np
import torch
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from torch.utils.data import Dataset, DataLoader, ConcatDataset
from tqdm import tqdm
import albumentations as A
from toolkit.buckets import get_bucket_for_image_size, BucketResolution
from toolkit.config_modules import DatasetConfig, preprocess_dataset_raw_config
from toolkit.dataloader_mixins import CaptionMixin, BucketsMixin, LatentCachingMixin, Augments, CLIPCachingMixin
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
import platform
def is_native_windows():
return platform.system() == "Windows" and platform.release() != "2"
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
class RescaleTransform:
"""Transform to rescale images to the range [-1, 1]."""
def __call__(self, image):
return image * 2 - 1
class NormalizeSDXLTransform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([ 0.0002, -0.1034, -0.1879])
Standard Deviation: tensor([0.5436, 0.5116, 0.5033])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[0.0002, -0.1034, -0.1879],
std=[0.5436, 0.5116, 0.5033],
)(image)
class NormalizeSD15Transform:
"""
Transforms the range from 0 to 1 to SDXL mean and std per channel based on avgs over thousands of images
Mean: tensor([-0.1600, -0.2450, -0.3227])
Standard Deviation: tensor([0.5319, 0.4997, 0.5139])
"""
def __call__(self, image):
return transforms.Normalize(
mean=[-0.1600, -0.2450, -0.3227],
std=[0.5319, 0.4997, 0.5139],
)(image)
class ImageDataset(Dataset, CaptionMixin):
def __init__(self, config):
self.config = config
self.name = self.get_config('name', 'dataset')
self.path = self.get_config('path', required=True)
self.scale = self.get_config('scale', 1)
self.random_scale = self.get_config('random_scale', False)
self.include_prompt = self.get_config('include_prompt', False)
self.default_prompt = self.get_config('default_prompt', '')
if self.include_prompt:
self.caption_type = self.get_config('caption_ext', 'txt')
else:
self.caption_type = None
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else self.get_config('random_crop', False)
self.resolution = self.get_config('resolution', 256)
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
# this might take a while
print(f" - Preprocessing image dimensions")
new_file_list = []
bad_count = 0
for file in tqdm(self.file_list):
img = Image.open(file)
if int(min(img.size) * self.scale) >= self.resolution:
new_file_list.append(file)
else:
bad_count += 1
self.file_list = new_file_list
print(f" - Found {len(self.file_list)} images")
print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.path}"
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def __len__(self):
return len(self.file_list)
def __getitem__(self, index):
img_path = self.file_list[index]
try:
img = exif_transpose(Image.open(img_path)).convert('RGB')
except Exception as e:
print(f"Error opening image: {img_path}")
print(e)
# make a noise image if we can't open it
img = Image.fromarray(np.random.randint(0, 255, (1024, 1024, 3), dtype=np.uint8))
# Downscale the source image first
img = img.resize((int(img.size[0] * self.scale), int(img.size[1] * self.scale)), Image.BICUBIC)
min_img_size = min(img.size)
if self.random_crop:
if self.random_scale and min_img_size > self.resolution:
if min_img_size < self.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={img_path}")
scale_size = self.resolution
else:
scale_size = random.randint(self.resolution, int(min_img_size))
scaler = scale_size / min_img_size
scale_width = int((img.width + 5) * scaler)
scale_height = int((img.height + 5) * scaler)
img = img.resize((scale_width, scale_height), Image.BICUBIC)
img = transforms.RandomCrop(self.resolution)(img)
else:
img = transforms.CenterCrop(min_img_size)(img)
img = img.resize((self.resolution, self.resolution), Image.BICUBIC)
img = self.transform(img)
if self.include_prompt:
prompt = self.get_caption_item(index)
return img, prompt
else:
return img
class AugmentedImageDataset(ImageDataset):
def __init__(self, config):
super().__init__(config)
self.augmentations = self.get_config('augmentations', [])
self.augmentations = [Augments(**aug) for aug in self.augmentations]
augmentation_list = []
for aug in self.augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
self.aug_transform = A.Compose(augmentation_list)
self.original_transform = self.transform
# replace transform so we get raw pil image
self.transform = transforms.Compose([])
def __getitem__(self, index):
# get the original image
# image is a PIL image, convert to bgr
pil_image = super().__getitem__(index)
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# apply augmentations
augmented = self.aug_transform(image=open_cv_image)["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
# return both # return image as 0 - 1 tensor
return transforms.ToTensor()(pil_image), transforms.ToTensor()(augmented)
class PairedImageDataset(Dataset):
def __init__(self, config):
super().__init__()
self.config = config
self.size = self.get_config('size', 512)
self.path = self.get_config('path', None)
self.pos_folder = self.get_config('pos_folder', None)
self.neg_folder = self.get_config('neg_folder', None)
self.default_prompt = self.get_config('default_prompt', '')
self.network_weight = self.get_config('network_weight', 1.0)
self.pos_weight = self.get_config('pos_weight', self.network_weight)
self.neg_weight = self.get_config('neg_weight', self.network_weight)
supported_exts = ('.jpg', '.jpeg', '.png', '.webp', '.JPEG', '.JPG', '.PNG', '.WEBP')
if self.pos_folder is not None and self.neg_folder is not None:
# find matching files
self.pos_file_list = [os.path.join(self.pos_folder, file) for file in os.listdir(self.pos_folder) if
file.lower().endswith(supported_exts)]
self.neg_file_list = [os.path.join(self.neg_folder, file) for file in os.listdir(self.neg_folder) if
file.lower().endswith(supported_exts)]
matched_files = []
for pos_file in self.pos_file_list:
pos_file_no_ext = os.path.splitext(pos_file)[0]
for neg_file in self.neg_file_list:
neg_file_no_ext = os.path.splitext(neg_file)[0]
if os.path.basename(pos_file_no_ext) == os.path.basename(neg_file_no_ext):
matched_files.append((neg_file, pos_file))
break
# remove duplicates
matched_files = [t for t in (set(tuple(i) for i in matched_files))]
self.file_list = matched_files
print(f" - Found {len(self.file_list)} matching pairs")
else:
self.file_list = [os.path.join(self.path, file) for file in os.listdir(self.path) if
file.lower().endswith(supported_exts)]
print(f" - Found {len(self.file_list)} images")
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
def get_all_prompts(self):
prompts = []
for index in range(len(self.file_list)):
prompts.append(self.get_prompt_item(index))
# remove duplicates
prompts = list(set(prompts))
return prompts
def __len__(self):
return len(self.file_list)
def get_config(self, key, default=None, required=False):
if key in self.config:
value = self.config[key]
return value
elif required:
raise ValueError(f'config file error. Missing "config.dataset.{key}" key')
else:
return default
def get_prompt_item(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# check if either has a prompt file
path_no_ext = os.path.splitext(img_path_or_tuple[0])[0]
prompt_path = path_no_ext + '.txt'
if not os.path.exists(prompt_path):
path_no_ext = os.path.splitext(img_path_or_tuple[1])[0]
prompt_path = path_no_ext + '.txt'
else:
img_path = img_path_or_tuple
# see if prompt file exists
path_no_ext = os.path.splitext(img_path)[0]
prompt_path = path_no_ext + '.txt'
if os.path.exists(prompt_path):
with open(prompt_path, 'r', encoding='utf-8') as f:
prompt = f.read()
# remove any newlines
prompt = prompt.replace('\n', ', ')
# remove new lines for all operating systems
prompt = prompt.replace('\r', ', ')
prompt_split = prompt.split(',')
# remove empty strings
prompt_split = [p.strip() for p in prompt_split if p.strip()]
# join back together
prompt = ', '.join(prompt_split)
else:
prompt = self.default_prompt
return prompt
def __getitem__(self, index):
img_path_or_tuple = self.file_list[index]
if isinstance(img_path_or_tuple, tuple):
# load both images
img_path = img_path_or_tuple[0]
img1 = exif_transpose(Image.open(img_path)).convert('RGB')
img_path = img_path_or_tuple[1]
img2 = exif_transpose(Image.open(img_path)).convert('RGB')
# always use # 2 (pos)
bucket_resolution = get_bucket_for_image_size(
width=img2.width,
height=img2.height,
resolution=self.size,
# divisibility=self.
)
# images will be same base dimension, but may be trimmed. We need to shrink and then central crop
if bucket_resolution['width'] > bucket_resolution['height']:
img1_scale_to_height = bucket_resolution["height"]
img1_scale_to_width = int(img1.width * (bucket_resolution["height"] / img1.height))
img2_scale_to_height = bucket_resolution["height"]
img2_scale_to_width = int(img2.width * (bucket_resolution["height"] / img2.height))
else:
img1_scale_to_width = bucket_resolution["width"]
img1_scale_to_height = int(img1.height * (bucket_resolution["width"] / img1.width))
img2_scale_to_width = bucket_resolution["width"]
img2_scale_to_height = int(img2.height * (bucket_resolution["width"] / img2.width))
img1_crop_height = bucket_resolution["height"]
img1_crop_width = bucket_resolution["width"]
img2_crop_height = bucket_resolution["height"]
img2_crop_width = bucket_resolution["width"]
# scale then center crop images
img1 = img1.resize((img1_scale_to_width, img1_scale_to_height), Image.BICUBIC)
img1 = transforms.CenterCrop((img1_crop_height, img1_crop_width))(img1)
img2 = img2.resize((img2_scale_to_width, img2_scale_to_height), Image.BICUBIC)
img2 = transforms.CenterCrop((img2_crop_height, img2_crop_width))(img2)
# combine them side by side
img = Image.new('RGB', (img1.width + img2.width, max(img1.height, img2.height)))
img.paste(img1, (0, 0))
img.paste(img2, (img1.width, 0))
else:
img_path = img_path_or_tuple
img = exif_transpose(Image.open(img_path)).convert('RGB')
height = self.size
# determine width to keep aspect ratio
width = int(img.size[0] * height / img.size[1])
# Downscale the source image first
img = img.resize((width, height), Image.BICUBIC)
prompt = self.get_prompt_item(index)
img = self.transform(img)
return img, prompt, (self.neg_weight, self.pos_weight)
class AiToolkitDataset(LatentCachingMixin, CLIPCachingMixin, BucketsMixin, CaptionMixin, Dataset):
def __init__(
self,
dataset_config: 'DatasetConfig',
batch_size=1,
sd: 'StableDiffusion' = None,
):
super().__init__()
self.dataset_config = dataset_config
folder_path = dataset_config.folder_path
self.dataset_path = dataset_config.dataset_path
if self.dataset_path is None:
self.dataset_path = folder_path
self.is_caching_latents = dataset_config.cache_latents or dataset_config.cache_latents_to_disk
self.is_caching_latents_to_memory = dataset_config.cache_latents
self.is_caching_latents_to_disk = dataset_config.cache_latents_to_disk
self.is_caching_clip_vision_to_disk = dataset_config.cache_clip_vision_to_disk
self.epoch_num = 0
self.sd = sd
if self.sd is None and self.is_caching_latents:
raise ValueError(f"sd is required for caching latents")
self.caption_type = dataset_config.caption_ext
self.default_caption = dataset_config.default_caption
self.random_scale = dataset_config.random_scale
self.scale = dataset_config.scale
self.batch_size = batch_size
# we always random crop if random scale is enabled
self.random_crop = self.random_scale if self.random_scale else dataset_config.random_crop
self.resolution = dataset_config.resolution
self.caption_dict = None
self.file_list: List['FileItemDTO'] = []
# check if dataset_path is a folder or json
if os.path.isdir(self.dataset_path):
file_list = [os.path.join(root, file) for root, _, files in os.walk(self.dataset_path) for file in files if file.lower().endswith(('.jpg', '.jpeg', '.png', '.webp'))]
else:
# assume json
with open(self.dataset_path, 'r') as f:
self.caption_dict = json.load(f)
# keys are file paths
file_list = list(self.caption_dict.keys())
if self.dataset_config.num_repeats > 1:
# repeat the list
file_list = file_list * self.dataset_config.num_repeats
if self.dataset_config.standardize_images:
if self.sd.is_xl or self.sd.is_vega or self.sd.is_ssd:
NormalizeMethod = NormalizeSDXLTransform
else:
NormalizeMethod = NormalizeSD15Transform
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
NormalizeMethod(),
])
else:
self.transform = transforms.Compose([
transforms.ToTensor(),
RescaleTransform(),
])
# this might take a while
print(f"Dataset: {self.dataset_path}")
print(f" - Preprocessing image dimensions")
dataset_folder = self.dataset_path
if not os.path.isdir(self.dataset_path):
dataset_folder = os.path.dirname(dataset_folder)
dataset_size_file = os.path.join(dataset_folder, '.aitk_size.json')
if os.path.exists(dataset_size_file):
with open(dataset_size_file, 'r') as f:
self.size_database = json.load(f)
else:
self.size_database = {}
bad_count = 0
for file in tqdm(file_list):
try:
file_item = FileItemDTO(
sd=self.sd,
path=file,
dataset_config=dataset_config,
dataloader_transforms=self.transform,
size_database=self.size_database,
)
self.file_list.append(file_item)
except Exception as e:
print(traceback.format_exc())
print(f"Error processing image: {file}")
print(e)
bad_count += 1
# save the size database
with open(dataset_size_file, 'w') as f:
json.dump(self.size_database, f)
print(f" - Found {len(self.file_list)} images")
# print(f" - Found {bad_count} images that are too small")
assert len(self.file_list) > 0, f"no images found in {self.dataset_path}"
# handle x axis flips
if self.dataset_config.flip_x:
print(" - adding x axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the x axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_x = True
self.file_list.append(new_file_item)
# handle y axis flips
if self.dataset_config.flip_y:
print(" - adding y axis flips")
current_file_list = [x for x in self.file_list]
for file_item in current_file_list:
# create a copy that is flipped on the y axis
new_file_item = copy.deepcopy(file_item)
new_file_item.flip_y = True
self.file_list.append(new_file_item)
if self.dataset_config.flip_x or self.dataset_config.flip_y:
print(f" - Found {len(self.file_list)} images after adding flips")
self.setup_epoch()
def setup_epoch(self):
if self.epoch_num == 0:
# initial setup
# do not call for now
if self.dataset_config.buckets:
# setup buckets
self.setup_buckets()
if self.is_caching_latents:
self.cache_latents_all_latents()
if self.is_caching_clip_vision_to_disk:
self.cache_clip_vision_to_disk()
else:
if self.dataset_config.poi is not None:
# handle cropping to a specific point of interest
# setup buckets every epoch
self.setup_buckets(quiet=True)
self.epoch_num += 1
def __len__(self):
if self.dataset_config.buckets:
return len(self.batch_indices)
return len(self.file_list)
def _get_single_item(self, index) -> 'FileItemDTO':
file_item = copy.deepcopy(self.file_list[index])
file_item.load_and_process_image(self.transform)
file_item.load_caption(self.caption_dict)
return file_item
def __getitem__(self, item):
if self.dataset_config.buckets:
# for buckets we collate ourselves for now
# todo allow a scheduler to dynamically make buckets
# we collate ourselves
if len(self.batch_indices) - 1 < item:
# tried everything to solve this. No way to reset length when redoing things. Pick another index
item = random.randint(0, len(self.batch_indices) - 1)
idx_list = self.batch_indices[item]
return [self._get_single_item(idx) for idx in idx_list]
else:
# Dataloader is batching
return self._get_single_item(item)
def get_dataloader_from_datasets(
dataset_options,
batch_size=1,
sd: 'StableDiffusion' = None,
) -> DataLoader:
if dataset_options is None or len(dataset_options) == 0:
return None
datasets = []
has_buckets = False
is_caching_latents = False
dataset_config_list = []
# preprocess them all
for dataset_option in dataset_options:
if isinstance(dataset_option, DatasetConfig):
dataset_config_list.append(dataset_option)
else:
# preprocess raw data
split_configs = preprocess_dataset_raw_config([dataset_option])
for x in split_configs:
dataset_config_list.append(DatasetConfig(**x))
for config in dataset_config_list:
if config.type == 'image':
dataset = AiToolkitDataset(config, batch_size=batch_size, sd=sd)
datasets.append(dataset)
if config.buckets:
has_buckets = True
if config.cache_latents or config.cache_latents_to_disk:
is_caching_latents = True
else:
raise ValueError(f"invalid dataset type: {config.type}")
concatenated_dataset = ConcatDataset(datasets)
# todo build scheduler that can get buckets from all datasets that match
# todo and evenly distribute reg images
def dto_collation(batch: List['FileItemDTO']):
# create DTO batch
batch = DataLoaderBatchDTO(
file_items=batch
)
return batch
# check if is caching latents
dataloader_kwargs = {}
if is_native_windows():
dataloader_kwargs['num_workers'] = 0
else:
dataloader_kwargs['num_workers'] = dataset_config_list[0].num_workers
dataloader_kwargs['prefetch_factor'] = dataset_config_list[0].prefetch_factor
if has_buckets:
# make sure they all have buckets
for dataset in datasets:
assert dataset.dataset_config.buckets, f"buckets not found on dataset {dataset.dataset_config.folder_path}, you either need all buckets or none"
data_loader = DataLoader(
concatenated_dataset,
batch_size=None, # we batch in the datasets for now
drop_last=False,
shuffle=True,
collate_fn=dto_collation, # Use the custom collate function
**dataloader_kwargs
)
else:
data_loader = DataLoader(
concatenated_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=dto_collation,
**dataloader_kwargs
)
return data_loader
def trigger_dataloader_setup_epoch(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
dataloader.len = None
if isinstance(dataloader.dataset, list):
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
elif hasattr(dataset, 'setup_epoch'):
dataset.setup_epoch()
dataset.len = None
elif hasattr(dataloader.dataset, 'setup_epoch'):
dataloader.dataset.setup_epoch()
dataloader.dataset.len = None
elif hasattr(dataloader.dataset, 'datasets'):
dataloader.dataset.len = None
for sub_dataset in dataloader.dataset.datasets:
if hasattr(sub_dataset, 'setup_epoch'):
sub_dataset.setup_epoch()
sub_dataset.len = None
def get_dataloader_datasets(dataloader: DataLoader):
# hacky but needed because of different types of datasets and dataloaders
if isinstance(dataloader.dataset, list):
datasets = []
for dataset in dataloader.dataset:
if hasattr(dataset, 'datasets'):
for sub_dataset in dataset.datasets:
datasets.append(sub_dataset)
else:
datasets.append(dataset)
return datasets
elif hasattr(dataloader.dataset, 'datasets'):
return dataloader.dataset.datasets
else:
return [dataloader.dataset]
|