File size: 42,647 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
import os
import time
from typing import List, Optional, Literal, Union, TYPE_CHECKING, Dict
import random
import torch
from toolkit.prompt_utils import PromptEmbeds
ImgExt = Literal['jpg', 'png', 'webp']
SaveFormat = Literal['safetensors', 'diffusers']
if TYPE_CHECKING:
from toolkit.guidance import GuidanceType
class SaveConfig:
def __init__(self, **kwargs):
self.save_every: int = kwargs.get('save_every', 1000)
self.dtype: str = kwargs.get('dtype', 'float16')
self.max_step_saves_to_keep: int = kwargs.get('max_step_saves_to_keep', 5)
self.save_format: SaveFormat = kwargs.get('save_format', 'safetensors')
if self.save_format not in ['safetensors', 'diffusers']:
raise ValueError(f"save_format must be safetensors or diffusers, got {self.save_format}")
self.push_to_hub: bool = kwargs.get("push_to_hub", False)
self.hf_repo_id: Optional[str] = kwargs.get("hf_repo_id", None)
self.hf_private: Optional[str] = kwargs.get("hf_private", False)
class LogingConfig:
def __init__(self, **kwargs):
self.log_every: int = kwargs.get('log_every', 100)
self.verbose: bool = kwargs.get('verbose', False)
self.use_wandb: bool = kwargs.get('use_wandb', False)
class SampleConfig:
def __init__(self, **kwargs):
self.sampler: str = kwargs.get('sampler', 'ddpm')
self.sample_every: int = kwargs.get('sample_every', 100)
self.width: int = kwargs.get('width', 512)
self.height: int = kwargs.get('height', 512)
self.prompts: list[str] = kwargs.get('prompts', [])
self.neg = kwargs.get('neg', False)
self.seed = kwargs.get('seed', 0)
self.walk_seed = kwargs.get('walk_seed', False)
self.guidance_scale = kwargs.get('guidance_scale', 7)
self.sample_steps = kwargs.get('sample_steps', 20)
self.network_multiplier = kwargs.get('network_multiplier', 1)
self.guidance_rescale = kwargs.get('guidance_rescale', 0.0)
self.ext: ImgExt = kwargs.get('format', 'jpg')
self.adapter_conditioning_scale = kwargs.get('adapter_conditioning_scale', 1.0)
self.refiner_start_at = kwargs.get('refiner_start_at',
0.5) # step to start using refiner on sample if it exists
self.extra_values = kwargs.get('extra_values', [])
class LormModuleSettingsConfig:
def __init__(self, **kwargs):
self.contains: str = kwargs.get('contains', '4nt$3')
self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
# min num parameters to attach to
self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)
class LoRMConfig:
def __init__(self, **kwargs):
self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
self.do_conv: bool = kwargs.get('do_conv', False)
self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)
self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
module_settings = kwargs.get('module_settings', [])
default_module_settings = {
'extract_mode': self.extract_mode,
'extract_mode_param': self.extract_mode_param,
'parameter_threshold': self.parameter_threshold,
}
module_settings = [{**default_module_settings, **module_setting, } for module_setting in module_settings]
self.module_settings: List[LormModuleSettingsConfig] = [LormModuleSettingsConfig(**module_setting) for
module_setting in module_settings]
def get_config_for_module(self, block_name):
for setting in self.module_settings:
contain_pieces = setting.contains.split('|')
if all(contain_piece in block_name for contain_piece in contain_pieces):
return setting
# try replacing the . with _
contain_pieces = setting.contains.replace('.', '_').split('|')
if all(contain_piece in block_name for contain_piece in contain_pieces):
return setting
# do default
return LormModuleSettingsConfig(**{
'extract_mode': self.extract_mode,
'extract_mode_param': self.extract_mode_param,
'parameter_threshold': self.parameter_threshold,
})
NetworkType = Literal['lora', 'locon', 'lorm']
class NetworkConfig:
def __init__(self, **kwargs):
self.type: NetworkType = kwargs.get('type', 'lora')
rank = kwargs.get('rank', None)
linear = kwargs.get('linear', None)
if rank is not None:
self.rank: int = rank # rank for backward compatibility
self.linear: int = rank
elif linear is not None:
self.rank: int = linear
self.linear: int = linear
self.conv: int = kwargs.get('conv', None)
self.alpha: float = kwargs.get('alpha', 1.0)
self.linear_alpha: float = kwargs.get('linear_alpha', self.alpha)
self.conv_alpha: float = kwargs.get('conv_alpha', self.conv)
self.dropout: Union[float, None] = kwargs.get('dropout', None)
self.network_kwargs: dict = kwargs.get('network_kwargs', {})
self.lorm_config: Union[LoRMConfig, None] = None
lorm = kwargs.get('lorm', None)
if lorm is not None:
self.lorm_config: LoRMConfig = LoRMConfig(**lorm)
if self.type == 'lorm':
# set linear to arbitrary values so it makes them
self.linear = 4
self.rank = 4
if self.lorm_config.do_conv:
self.conv = 4
self.transformer_only = kwargs.get('transformer_only', True)
AdapterTypes = Literal['t2i', 'ip', 'ip+', 'clip', 'ilora', 'photo_maker', 'control_net']
CLIPLayer = Literal['penultimate_hidden_states', 'image_embeds', 'last_hidden_state']
class AdapterConfig:
def __init__(self, **kwargs):
self.type: AdapterTypes = kwargs.get('type', 't2i') # t2i, ip, clip, control_net
self.in_channels: int = kwargs.get('in_channels', 3)
self.channels: List[int] = kwargs.get('channels', [320, 640, 1280, 1280])
self.num_res_blocks: int = kwargs.get('num_res_blocks', 2)
self.downscale_factor: int = kwargs.get('downscale_factor', 8)
self.adapter_type: str = kwargs.get('adapter_type', 'full_adapter')
self.image_dir: str = kwargs.get('image_dir', None)
self.test_img_path: str = kwargs.get('test_img_path', None)
self.train: str = kwargs.get('train', False)
self.image_encoder_path: str = kwargs.get('image_encoder_path', None)
self.name_or_path = kwargs.get('name_or_path', None)
num_tokens = kwargs.get('num_tokens', None)
if num_tokens is None and self.type.startswith('ip'):
if self.type == 'ip+':
num_tokens = 16
num_tokens = 16
elif self.type == 'ip':
num_tokens = 4
self.num_tokens: int = num_tokens
self.train_image_encoder: bool = kwargs.get('train_image_encoder', False)
self.train_only_image_encoder: bool = kwargs.get('train_only_image_encoder', False)
if self.train_only_image_encoder:
self.train_image_encoder = True
self.train_only_image_encoder_positional_embedding: bool = kwargs.get(
'train_only_image_encoder_positional_embedding', False)
self.image_encoder_arch: str = kwargs.get('image_encoder_arch', 'clip') # clip vit vit_hybrid, safe
self.safe_reducer_channels: int = kwargs.get('safe_reducer_channels', 512)
self.safe_channels: int = kwargs.get('safe_channels', 2048)
self.safe_tokens: int = kwargs.get('safe_tokens', 8)
self.quad_image: bool = kwargs.get('quad_image', False)
# clip vision
self.trigger = kwargs.get('trigger', 'tri993r')
self.trigger_class_name = kwargs.get('trigger_class_name', None)
self.class_names = kwargs.get('class_names', [])
self.clip_layer: CLIPLayer = kwargs.get('clip_layer', None)
if self.clip_layer is None:
if self.type.startswith('ip+'):
self.clip_layer = 'penultimate_hidden_states'
else:
self.clip_layer = 'last_hidden_state'
# text encoder
self.text_encoder_path: str = kwargs.get('text_encoder_path', None)
self.text_encoder_arch: str = kwargs.get('text_encoder_arch', 'clip') # clip t5
self.train_scaler: bool = kwargs.get('train_scaler', False)
self.scaler_lr: Optional[float] = kwargs.get('scaler_lr', None)
# trains with a scaler to easy channel bias but merges it in on save
self.merge_scaler: bool = kwargs.get('merge_scaler', False)
# for ilora
self.head_dim: int = kwargs.get('head_dim', 1024)
self.num_heads: int = kwargs.get('num_heads', 1)
self.ilora_down: bool = kwargs.get('ilora_down', True)
self.ilora_mid: bool = kwargs.get('ilora_mid', True)
self.ilora_up: bool = kwargs.get('ilora_up', True)
self.flux_only_double: bool = kwargs.get('flux_only_double', False)
class EmbeddingConfig:
def __init__(self, **kwargs):
self.trigger = kwargs.get('trigger', 'custom_embedding')
self.tokens = kwargs.get('tokens', 4)
self.init_words = kwargs.get('init_words', '*')
self.save_format = kwargs.get('save_format', 'safetensors')
self.trigger_class_name = kwargs.get('trigger_class_name', None) # used for inverted masked prior
ContentOrStyleType = Literal['balanced', 'style', 'content']
LossTarget = Literal['noise', 'source', 'unaugmented', 'differential_noise']
class TrainConfig:
def __init__(self, **kwargs):
self.noise_scheduler = kwargs.get('noise_scheduler', 'ddpm')
self.content_or_style: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
self.content_or_style_reg: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
self.steps: int = kwargs.get('steps', 1000)
self.lr = kwargs.get('lr', 1e-6)
self.unet_lr = kwargs.get('unet_lr', self.lr)
self.text_encoder_lr = kwargs.get('text_encoder_lr', self.lr)
self.refiner_lr = kwargs.get('refiner_lr', self.lr)
self.embedding_lr = kwargs.get('embedding_lr', self.lr)
self.adapter_lr = kwargs.get('adapter_lr', self.lr)
self.optimizer = kwargs.get('optimizer', 'adamw')
self.optimizer_params = kwargs.get('optimizer_params', {})
self.lr_scheduler = kwargs.get('lr_scheduler', 'constant')
self.lr_scheduler_params = kwargs.get('lr_scheduler_params', {})
self.min_denoising_steps: int = kwargs.get('min_denoising_steps', 0)
self.max_denoising_steps: int = kwargs.get('max_denoising_steps', 1000)
self.batch_size: int = kwargs.get('batch_size', 1)
self.orig_batch_size: int = self.batch_size
self.dtype: str = kwargs.get('dtype', 'fp32')
self.xformers = kwargs.get('xformers', False)
self.sdp = kwargs.get('sdp', False)
self.train_unet = kwargs.get('train_unet', True)
self.train_text_encoder = kwargs.get('train_text_encoder', False)
self.train_refiner = kwargs.get('train_refiner', True)
self.train_turbo = kwargs.get('train_turbo', False)
self.show_turbo_outputs = kwargs.get('show_turbo_outputs', False)
self.min_snr_gamma = kwargs.get('min_snr_gamma', None)
self.snr_gamma = kwargs.get('snr_gamma', None)
# trains a gamma, offset, and scale to adjust loss to adapt to timestep differentials
# this should balance the learning rate across all timesteps over time
self.learnable_snr_gos = kwargs.get('learnable_snr_gos', False)
self.noise_offset = kwargs.get('noise_offset', 0.0)
self.skip_first_sample = kwargs.get('skip_first_sample', False)
self.force_first_sample = kwargs.get('force_first_sample', False)
self.gradient_checkpointing = kwargs.get('gradient_checkpointing', True)
self.weight_jitter = kwargs.get('weight_jitter', 0.0)
self.merge_network_on_save = kwargs.get('merge_network_on_save', False)
self.max_grad_norm = kwargs.get('max_grad_norm', 1.0)
self.start_step = kwargs.get('start_step', None)
self.free_u = kwargs.get('free_u', False)
self.adapter_assist_name_or_path: Optional[str] = kwargs.get('adapter_assist_name_or_path', None)
self.adapter_assist_type: Optional[str] = kwargs.get('adapter_assist_type', 't2i') # t2i, control_net
self.noise_multiplier = kwargs.get('noise_multiplier', 1.0)
self.target_noise_multiplier = kwargs.get('target_noise_multiplier', 1.0)
self.img_multiplier = kwargs.get('img_multiplier', 1.0)
self.noisy_latent_multiplier = kwargs.get('noisy_latent_multiplier', 1.0)
self.latent_multiplier = kwargs.get('latent_multiplier', 1.0)
self.negative_prompt = kwargs.get('negative_prompt', None)
self.max_negative_prompts = kwargs.get('max_negative_prompts', 1)
# multiplier applied to loos on regularization images
self.reg_weight = kwargs.get('reg_weight', 1.0)
self.num_train_timesteps = kwargs.get('num_train_timesteps', 1000)
self.random_noise_shift = kwargs.get('random_noise_shift', 0.0)
# automatically adapte the vae scaling based on the image norm
self.adaptive_scaling_factor = kwargs.get('adaptive_scaling_factor', False)
# dropout that happens before encoding. It functions independently per text encoder
self.prompt_dropout_prob = kwargs.get('prompt_dropout_prob', 0.0)
# match the norm of the noise before computing loss. This will help the model maintain its
# current understandin of the brightness of images.
self.match_noise_norm = kwargs.get('match_noise_norm', False)
# set to -1 to accumulate gradients for entire epoch
# warning, only do this with a small dataset or you will run out of memory
# This is legacy but left in for backwards compatibility
self.gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)
# this will do proper gradient accumulation where you will not see a step until the end of the accumulation
# the method above will show a step every accumulation
self.gradient_accumulation = kwargs.get('gradient_accumulation', 1)
if self.gradient_accumulation > 1:
if self.gradient_accumulation_steps != 1:
raise ValueError("gradient_accumulation and gradient_accumulation_steps are mutually exclusive")
# short long captions will double your batch size. This only works when a dataset is
# prepared with a json caption file that has both short and long captions in it. It will
# Double up every image and run it through with both short and long captions. The idea
# is that the network will learn how to generate good images with both short and long captions
self.short_and_long_captions = kwargs.get('short_and_long_captions', False)
# if above is NOT true, this will make it so the long caption foes to te2 and the short caption goes to te1 for sdxl only
self.short_and_long_captions_encoder_split = kwargs.get('short_and_long_captions_encoder_split', False)
# basically gradient accumulation but we run just 1 item through the network
# and accumulate gradients. This can be used as basic gradient accumulation but is very helpful
# for training tricks that increase batch size but need a single gradient step
self.single_item_batching = kwargs.get('single_item_batching', False)
match_adapter_assist = kwargs.get('match_adapter_assist', False)
self.match_adapter_chance = kwargs.get('match_adapter_chance', 0.0)
self.loss_target: LossTarget = kwargs.get('loss_target',
'noise') # noise, source, unaugmented, differential_noise
# When a mask is passed in a dataset, and this is true,
# we will predict noise without a the LoRa network and use the prediction as a target for
# unmasked reign. It is unmasked regularization basically
self.inverted_mask_prior = kwargs.get('inverted_mask_prior', False)
self.inverted_mask_prior_multiplier = kwargs.get('inverted_mask_prior_multiplier', 0.5)
# legacy
if match_adapter_assist and self.match_adapter_chance == 0.0:
self.match_adapter_chance = 1.0
# standardize inputs to the meand std of the model knowledge
self.standardize_images = kwargs.get('standardize_images', False)
self.standardize_latents = kwargs.get('standardize_latents', False)
if self.train_turbo and not self.noise_scheduler.startswith("euler"):
raise ValueError(f"train_turbo is only supported with euler and wuler_a noise schedulers")
self.dynamic_noise_offset = kwargs.get('dynamic_noise_offset', False)
self.do_cfg = kwargs.get('do_cfg', False)
self.do_random_cfg = kwargs.get('do_random_cfg', False)
self.cfg_scale = kwargs.get('cfg_scale', 1.0)
self.max_cfg_scale = kwargs.get('max_cfg_scale', self.cfg_scale)
self.cfg_rescale = kwargs.get('cfg_rescale', None)
if self.cfg_rescale is None:
self.cfg_rescale = self.cfg_scale
# applies the inverse of the prediction mean and std to the target to correct
# for norm drift
self.correct_pred_norm = kwargs.get('correct_pred_norm', False)
self.correct_pred_norm_multiplier = kwargs.get('correct_pred_norm_multiplier', 1.0)
self.loss_type = kwargs.get('loss_type', 'mse')
# scale the prediction by this. Increase for more detail, decrease for less
self.pred_scaler = kwargs.get('pred_scaler', 1.0)
# repeats the prompt a few times to saturate the encoder
self.prompt_saturation_chance = kwargs.get('prompt_saturation_chance', 0.0)
# applies negative loss on the prior to encourage network to diverge from it
self.do_prior_divergence = kwargs.get('do_prior_divergence', False)
ema_config: Union[Dict, None] = kwargs.get('ema_config', None)
if ema_config is not None:
ema_config['use_ema'] = True
print(f"Using EMA")
else:
ema_config = {'use_ema': False}
self.ema_config: EMAConfig = EMAConfig(**ema_config)
# adds an additional loss to the network to encourage it output a normalized standard deviation
self.target_norm_std = kwargs.get('target_norm_std', None)
self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0)
self.linear_timesteps = kwargs.get('linear_timesteps', False)
self.linear_timesteps2 = kwargs.get('linear_timesteps2', False)
self.disable_sampling = kwargs.get('disable_sampling', False)
class ModelConfig:
def __init__(self, **kwargs):
self.name_or_path: str = kwargs.get('name_or_path', None)
self.is_v2: bool = kwargs.get('is_v2', False)
self.is_xl: bool = kwargs.get('is_xl', False)
self.is_pixart: bool = kwargs.get('is_pixart', False)
self.is_pixart_sigma: bool = kwargs.get('is_pixart_sigma', False)
self.is_auraflow: bool = kwargs.get('is_auraflow', False)
self.is_v3: bool = kwargs.get('is_v3', False)
self.is_flux: bool = kwargs.get('is_flux', False)
if self.is_pixart_sigma:
self.is_pixart = True
self.use_flux_cfg = kwargs.get('use_flux_cfg', False)
self.is_ssd: bool = kwargs.get('is_ssd', False)
self.is_vega: bool = kwargs.get('is_vega', False)
self.is_v_pred: bool = kwargs.get('is_v_pred', False)
self.dtype: str = kwargs.get('dtype', 'float16')
self.vae_path = kwargs.get('vae_path', None)
self.refiner_name_or_path = kwargs.get('refiner_name_or_path', None)
self._original_refiner_name_or_path = self.refiner_name_or_path
self.refiner_start_at = kwargs.get('refiner_start_at', 0.5)
self.lora_path = kwargs.get('lora_path', None)
# mainly for decompression loras for distilled models
self.assistant_lora_path = kwargs.get('assistant_lora_path', None)
self.latent_space_version = kwargs.get('latent_space_version', None)
# only for SDXL models for now
self.use_text_encoder_1: bool = kwargs.get('use_text_encoder_1', True)
self.use_text_encoder_2: bool = kwargs.get('use_text_encoder_2', True)
self.experimental_xl: bool = kwargs.get('experimental_xl', False)
if self.name_or_path is None:
raise ValueError('name_or_path must be specified')
if self.is_ssd:
# sed sdxl as true since it is mostly the same architecture
self.is_xl = True
if self.is_vega:
self.is_xl = True
# for text encoder quant. Only works with pixart currently
self.text_encoder_bits = kwargs.get('text_encoder_bits', 16) # 16, 8, 4
self.unet_path = kwargs.get("unet_path", None)
self.unet_sample_size = kwargs.get("unet_sample_size", None)
self.vae_device = kwargs.get("vae_device", None)
self.vae_dtype = kwargs.get("vae_dtype", self.dtype)
self.te_device = kwargs.get("te_device", None)
self.te_dtype = kwargs.get("te_dtype", self.dtype)
# only for flux for now
self.quantize = kwargs.get("quantize", False)
self.low_vram = kwargs.get("low_vram", False)
self.attn_masking = kwargs.get("attn_masking", False)
if self.attn_masking and not self.is_flux:
raise ValueError("attn_masking is only supported with flux models currently")
pass
class EMAConfig:
def __init__(self, **kwargs):
self.use_ema: bool = kwargs.get('use_ema', False)
self.ema_decay: float = kwargs.get('ema_decay', 0.999)
# feeds back the decay difference into the parameter
self.use_feedback: bool = kwargs.get('use_feedback', False)
class ReferenceDatasetConfig:
def __init__(self, **kwargs):
# can pass with a side by side pait or a folder with pos and neg folder
self.pair_folder: str = kwargs.get('pair_folder', None)
self.pos_folder: str = kwargs.get('pos_folder', None)
self.neg_folder: str = kwargs.get('neg_folder', None)
self.network_weight: float = float(kwargs.get('network_weight', 1.0))
self.pos_weight: float = float(kwargs.get('pos_weight', self.network_weight))
self.neg_weight: float = float(kwargs.get('neg_weight', self.network_weight))
# make sure they are all absolute values no negatives
self.pos_weight = abs(self.pos_weight)
self.neg_weight = abs(self.neg_weight)
self.target_class: str = kwargs.get('target_class', '')
self.size: int = kwargs.get('size', 512)
class SliderTargetConfig:
def __init__(self, **kwargs):
self.target_class: str = kwargs.get('target_class', '')
self.positive: str = kwargs.get('positive', '')
self.negative: str = kwargs.get('negative', '')
self.multiplier: float = kwargs.get('multiplier', 1.0)
self.weight: float = kwargs.get('weight', 1.0)
self.shuffle: bool = kwargs.get('shuffle', False)
class GuidanceConfig:
def __init__(self, **kwargs):
self.target_class: str = kwargs.get('target_class', '')
self.guidance_scale: float = kwargs.get('guidance_scale', 1.0)
self.positive_prompt: str = kwargs.get('positive_prompt', '')
self.negative_prompt: str = kwargs.get('negative_prompt', '')
class SliderConfigAnchors:
def __init__(self, **kwargs):
self.prompt = kwargs.get('prompt', '')
self.neg_prompt = kwargs.get('neg_prompt', '')
self.multiplier = kwargs.get('multiplier', 1.0)
class SliderConfig:
def __init__(self, **kwargs):
targets = kwargs.get('targets', [])
anchors = kwargs.get('anchors', [])
anchors = [SliderConfigAnchors(**anchor) for anchor in anchors]
self.anchors: List[SliderConfigAnchors] = anchors
self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
self.prompt_file: str = kwargs.get('prompt_file', None)
self.prompt_tensors: str = kwargs.get('prompt_tensors', None)
self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
self.use_adapter: bool = kwargs.get('use_adapter', None) # depth
self.adapter_img_dir = kwargs.get('adapter_img_dir', None)
self.low_ram = kwargs.get('low_ram', False)
# expand targets if shuffling
from toolkit.prompt_utils import get_slider_target_permutations
self.targets: List[SliderTargetConfig] = []
targets = [SliderTargetConfig(**target) for target in targets]
# do permutations if shuffle is true
print(f"Building slider targets")
for target in targets:
if target.shuffle:
target_permutations = get_slider_target_permutations(target, max_permutations=8)
self.targets = self.targets + target_permutations
else:
self.targets.append(target)
print(f"Built {len(self.targets)} slider targets (with permutations)")
class DatasetConfig:
"""
Dataset config for sd-datasets
"""
def __init__(self, **kwargs):
self.type = kwargs.get('type', 'image') # sd, slider, reference
# will be legacy
self.folder_path: str = kwargs.get('folder_path', None)
# can be json or folder path
self.dataset_path: str = kwargs.get('dataset_path', None)
self.default_caption: str = kwargs.get('default_caption', None)
random_triggers = kwargs.get('random_triggers', [])
# if they are a string, load them from a file
if isinstance(random_triggers, str) and os.path.exists(random_triggers):
with open(random_triggers, 'r') as f:
random_triggers = f.read().splitlines()
# remove empty lines
random_triggers = [line for line in random_triggers if line.strip() != '']
self.random_triggers: List[str] = random_triggers
self.random_triggers_max: int = kwargs.get('random_triggers_max', 1)
self.caption_ext: str = kwargs.get('caption_ext', None)
self.random_scale: bool = kwargs.get('random_scale', False)
self.random_crop: bool = kwargs.get('random_crop', False)
self.resolution: int = kwargs.get('resolution', 512)
self.scale: float = kwargs.get('scale', 1.0)
self.buckets: bool = kwargs.get('buckets', True)
self.bucket_tolerance: int = kwargs.get('bucket_tolerance', 64)
self.is_reg: bool = kwargs.get('is_reg', False)
self.network_weight: float = float(kwargs.get('network_weight', 1.0))
self.token_dropout_rate: float = float(kwargs.get('token_dropout_rate', 0.0))
self.shuffle_tokens: bool = kwargs.get('shuffle_tokens', False)
self.caption_dropout_rate: float = float(kwargs.get('caption_dropout_rate', 0.0))
self.keep_tokens: int = kwargs.get('keep_tokens', 0) # #of first tokens to always keep unless caption dropped
self.flip_x: bool = kwargs.get('flip_x', False)
self.flip_y: bool = kwargs.get('flip_y', False)
self.augments: List[str] = kwargs.get('augments', [])
self.control_path: str = kwargs.get('control_path', None) # depth maps, etc
# instead of cropping ot match image, it will serve the full size control image (clip images ie for ip adapters)
self.full_size_control_images: bool = kwargs.get('full_size_control_images', False)
self.alpha_mask: bool = kwargs.get('alpha_mask', False) # if true, will use alpha channel as mask
self.mask_path: str = kwargs.get('mask_path',
None) # focus mask (black and white. White has higher loss than black)
self.unconditional_path: str = kwargs.get('unconditional_path',
None) # path where matching unconditional images are located
self.invert_mask: bool = kwargs.get('invert_mask', False) # invert mask
self.mask_min_value: float = kwargs.get('mask_min_value', 0.0) # min value for . 0 - 1
self.poi: Union[str, None] = kwargs.get('poi',
None) # if one is set and in json data, will be used as auto crop scale point of interes
self.num_repeats: int = kwargs.get('num_repeats', 1) # number of times to repeat dataset
# cache latents will store them in memory
self.cache_latents: bool = kwargs.get('cache_latents', False)
# cache latents to disk will store them on disk. If both are true, it will save to disk, but keep in memory
self.cache_latents_to_disk: bool = kwargs.get('cache_latents_to_disk', False)
self.cache_clip_vision_to_disk: bool = kwargs.get('cache_clip_vision_to_disk', False)
self.standardize_images: bool = kwargs.get('standardize_images', False)
# https://albumentations.ai/docs/api_reference/augmentations/transforms
# augmentations are returned as a separate image and cannot currently be cached
self.augmentations: List[dict] = kwargs.get('augmentations', None)
self.shuffle_augmentations: bool = kwargs.get('shuffle_augmentations', False)
has_augmentations = self.augmentations is not None and len(self.augmentations) > 0
if (len(self.augments) > 0 or has_augmentations) and (self.cache_latents or self.cache_latents_to_disk):
print(f"WARNING: Augments are not supported with caching latents. Setting cache_latents to False")
self.cache_latents = False
self.cache_latents_to_disk = False
# legacy compatability
legacy_caption_type = kwargs.get('caption_type', None)
if legacy_caption_type:
self.caption_ext = legacy_caption_type
self.caption_type = self.caption_ext
self.guidance_type: GuidanceType = kwargs.get('guidance_type', 'targeted')
# ip adapter / reference dataset
self.clip_image_path: str = kwargs.get('clip_image_path', None) # depth maps, etc
self.clip_image_augmentations: List[dict] = kwargs.get('clip_image_augmentations', None)
self.clip_image_shuffle_augmentations: bool = kwargs.get('clip_image_shuffle_augmentations', False)
self.replacements: List[str] = kwargs.get('replacements', [])
self.loss_multiplier: float = kwargs.get('loss_multiplier', 1.0)
self.num_workers: int = kwargs.get('num_workers', 2)
self.prefetch_factor: int = kwargs.get('prefetch_factor', 2)
self.extra_values: List[float] = kwargs.get('extra_values', [])
self.square_crop: bool = kwargs.get('square_crop', False)
# apply same augmentations to control images. Usually want this true unless special case
self.replay_transforms: bool = kwargs.get('replay_transforms', True)
def preprocess_dataset_raw_config(raw_config: List[dict]) -> List[dict]:
"""
This just splits up the datasets by resolutions so you dont have to do it manually
:param raw_config:
:return:
"""
# split up datasets by resolutions
new_config = []
for dataset in raw_config:
resolution = dataset.get('resolution', 512)
if isinstance(resolution, list):
resolution_list = resolution
else:
resolution_list = [resolution]
for res in resolution_list:
dataset_copy = dataset.copy()
dataset_copy['resolution'] = res
new_config.append(dataset_copy)
return new_config
class GenerateImageConfig:
def __init__(
self,
prompt: str = '',
prompt_2: Optional[str] = None,
width: int = 512,
height: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: str = '',
negative_prompt_2: Optional[str] = None,
seed: int = -1,
network_multiplier: float = 1.0,
guidance_rescale: float = 0.0,
# the tag [time] will be replaced with milliseconds since epoch
output_path: str = None, # full image path
output_folder: str = None, # folder to save image in if output_path is not specified
output_ext: str = ImgExt, # extension to save image as if output_path is not specified
output_tail: str = '', # tail to add to output filename
add_prompt_file: bool = False, # add a prompt file with generated image
adapter_image_path: str = None, # path to adapter image
adapter_conditioning_scale: float = 1.0, # scale for adapter conditioning
latents: Union[torch.Tensor | None] = None, # input latent to start with,
extra_kwargs: dict = None, # extra data to save with prompt file
refiner_start_at: float = 0.5, # start at this percentage of a step. 0.0 to 1.0 . 1.0 is the end
extra_values: List[float] = None, # extra values to save with prompt file
):
self.width: int = width
self.height: int = height
self.num_inference_steps: int = num_inference_steps
self.guidance_scale: float = guidance_scale
self.guidance_rescale: float = guidance_rescale
self.prompt: str = prompt
self.prompt_2: str = prompt_2
self.negative_prompt: str = negative_prompt
self.negative_prompt_2: str = negative_prompt_2
self.latents: Union[torch.Tensor | None] = latents
self.output_path: str = output_path
self.seed: int = seed
if self.seed == -1:
# generate random one
self.seed = random.randint(0, 2 ** 32 - 1)
self.network_multiplier: float = network_multiplier
self.output_folder: str = output_folder
self.output_ext: str = output_ext
self.add_prompt_file: bool = add_prompt_file
self.output_tail: str = output_tail
self.gen_time: int = int(time.time() * 1000)
self.adapter_image_path: str = adapter_image_path
self.adapter_conditioning_scale: float = adapter_conditioning_scale
self.extra_kwargs = extra_kwargs if extra_kwargs is not None else {}
self.refiner_start_at = refiner_start_at
self.extra_values = extra_values if extra_values is not None else []
# prompt string will override any settings above
self._process_prompt_string()
# handle dual text encoder prompts if nothing passed
if negative_prompt_2 is None:
self.negative_prompt_2 = negative_prompt
if prompt_2 is None:
self.prompt_2 = self.prompt
# parse prompt paths
if self.output_path is None and self.output_folder is None:
raise ValueError('output_path or output_folder must be specified')
elif self.output_path is not None:
self.output_folder = os.path.dirname(self.output_path)
self.output_ext = os.path.splitext(self.output_path)[1][1:]
self.output_filename_no_ext = os.path.splitext(os.path.basename(self.output_path))[0]
else:
self.output_filename_no_ext = '[time]_[count]'
if len(self.output_tail) > 0:
self.output_filename_no_ext += '_' + self.output_tail
self.output_path = os.path.join(self.output_folder, self.output_filename_no_ext + '.' + self.output_ext)
# adjust height
self.height = max(64, self.height - self.height % 8) # round to divisible by 8
self.width = max(64, self.width - self.width % 8) # round to divisible by 8
def set_gen_time(self, gen_time: int = None):
if gen_time is not None:
self.gen_time = gen_time
else:
self.gen_time = int(time.time() * 1000)
def _get_path_no_ext(self, count: int = 0, max_count=0):
# zero pad count
count_str = str(count).zfill(len(str(max_count)))
# replace [time] with gen time
filename = self.output_filename_no_ext.replace('[time]', str(self.gen_time))
# replace [count] with count
filename = filename.replace('[count]', count_str)
return filename
def get_image_path(self, count: int = 0, max_count=0):
filename = self._get_path_no_ext(count, max_count)
ext = self.output_ext
# if it does not start with a dot add one
if ext[0] != '.':
ext = '.' + ext
filename += ext
# join with folder
return os.path.join(self.output_folder, filename)
def get_prompt_path(self, count: int = 0, max_count=0):
filename = self._get_path_no_ext(count, max_count)
filename += '.txt'
# join with folder
return os.path.join(self.output_folder, filename)
def save_image(self, image, count: int = 0, max_count=0):
# make parent dirs
os.makedirs(self.output_folder, exist_ok=True)
self.set_gen_time()
# TODO save image gen header info for A1111 and us, our seeds probably wont match
image.save(self.get_image_path(count, max_count))
# do prompt file
if self.add_prompt_file:
self.save_prompt_file(count, max_count)
def save_prompt_file(self, count: int = 0, max_count=0):
# save prompt file
with open(self.get_prompt_path(count, max_count), 'w') as f:
prompt = self.prompt
if self.prompt_2 is not None:
prompt += ' --p2 ' + self.prompt_2
if self.negative_prompt is not None:
prompt += ' --n ' + self.negative_prompt
if self.negative_prompt_2 is not None:
prompt += ' --n2 ' + self.negative_prompt_2
prompt += ' --w ' + str(self.width)
prompt += ' --h ' + str(self.height)
prompt += ' --seed ' + str(self.seed)
prompt += ' --cfg ' + str(self.guidance_scale)
prompt += ' --steps ' + str(self.num_inference_steps)
prompt += ' --m ' + str(self.network_multiplier)
prompt += ' --gr ' + str(self.guidance_rescale)
# get gen info
f.write(self.prompt)
def _process_prompt_string(self):
# we will try to support all sd-scripts where we can
# FROM SD-SCRIPTS
# --n Treat everything until the next option as a negative prompt.
# --w Specify the width of the generated image.
# --h Specify the height of the generated image.
# --d Specify the seed for the generated image.
# --l Specify the CFG scale for the generated image.
# --s Specify the number of steps during generation.
# OURS and some QOL additions
# --m Specify the network multiplier for the generated image.
# --p2 Prompt for the second text encoder (SDXL only)
# --n2 Negative prompt for the second text encoder (SDXL only)
# --gr Specify the guidance rescale for the generated image (SDXL only)
# --seed Specify the seed for the generated image same as --d
# --cfg Specify the CFG scale for the generated image same as --l
# --steps Specify the number of steps during generation same as --s
# --network_multiplier Specify the network multiplier for the generated image same as --m
# process prompt string and update values if it has some
if self.prompt is not None and len(self.prompt) > 0:
# process prompt string
prompt = self.prompt
prompt = prompt.strip()
p_split = prompt.split('--')
self.prompt = p_split[0].strip()
if len(p_split) > 1:
for split in p_split[1:]:
# allows multi char flags
flag = split.split(' ')[0].strip()
content = split[len(flag):].strip()
if flag == 'p2':
self.prompt_2 = content
elif flag == 'n':
self.negative_prompt = content
elif flag == 'n2':
self.negative_prompt_2 = content
elif flag == 'w':
self.width = int(content)
elif flag == 'h':
self.height = int(content)
elif flag == 'd':
self.seed = int(content)
elif flag == 'seed':
self.seed = int(content)
elif flag == 'l':
self.guidance_scale = float(content)
elif flag == 'cfg':
self.guidance_scale = float(content)
elif flag == 's':
self.num_inference_steps = int(content)
elif flag == 'steps':
self.num_inference_steps = int(content)
elif flag == 'm':
self.network_multiplier = float(content)
elif flag == 'network_multiplier':
self.network_multiplier = float(content)
elif flag == 'gr':
self.guidance_rescale = float(content)
elif flag == 'a':
self.adapter_conditioning_scale = float(content)
elif flag == 'ref':
self.refiner_start_at = float(content)
elif flag == 'ev':
# split by comma
self.extra_values = [float(val) for val in content.split(',')]
elif flag == 'extra_values':
# split by comma
self.extra_values = [float(val) for val in content.split(',')]
def post_process_embeddings(
self,
conditional_prompt_embeds: PromptEmbeds,
unconditional_prompt_embeds: Optional[PromptEmbeds] = None,
):
# this is called after prompt embeds are encoded. We can override them in the future here
pass
|