File size: 42,647 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
import os
import time
from typing import List, Optional, Literal, Union, TYPE_CHECKING, Dict
import random

import torch

from toolkit.prompt_utils import PromptEmbeds

ImgExt = Literal['jpg', 'png', 'webp']

SaveFormat = Literal['safetensors', 'diffusers']

if TYPE_CHECKING:
    from toolkit.guidance import GuidanceType


class SaveConfig:
    def __init__(self, **kwargs):
        self.save_every: int = kwargs.get('save_every', 1000)
        self.dtype: str = kwargs.get('dtype', 'float16')
        self.max_step_saves_to_keep: int = kwargs.get('max_step_saves_to_keep', 5)
        self.save_format: SaveFormat = kwargs.get('save_format', 'safetensors')
        if self.save_format not in ['safetensors', 'diffusers']:
            raise ValueError(f"save_format must be safetensors or diffusers, got {self.save_format}")
        self.push_to_hub: bool = kwargs.get("push_to_hub", False)
        self.hf_repo_id: Optional[str] = kwargs.get("hf_repo_id", None)
        self.hf_private: Optional[str] = kwargs.get("hf_private", False)

class LogingConfig:
    def __init__(self, **kwargs):
        self.log_every: int = kwargs.get('log_every', 100)
        self.verbose: bool = kwargs.get('verbose', False)
        self.use_wandb: bool = kwargs.get('use_wandb', False)


class SampleConfig:
    def __init__(self, **kwargs):
        self.sampler: str = kwargs.get('sampler', 'ddpm')
        self.sample_every: int = kwargs.get('sample_every', 100)
        self.width: int = kwargs.get('width', 512)
        self.height: int = kwargs.get('height', 512)
        self.prompts: list[str] = kwargs.get('prompts', [])
        self.neg = kwargs.get('neg', False)
        self.seed = kwargs.get('seed', 0)
        self.walk_seed = kwargs.get('walk_seed', False)
        self.guidance_scale = kwargs.get('guidance_scale', 7)
        self.sample_steps = kwargs.get('sample_steps', 20)
        self.network_multiplier = kwargs.get('network_multiplier', 1)
        self.guidance_rescale = kwargs.get('guidance_rescale', 0.0)
        self.ext: ImgExt = kwargs.get('format', 'jpg')
        self.adapter_conditioning_scale = kwargs.get('adapter_conditioning_scale', 1.0)
        self.refiner_start_at = kwargs.get('refiner_start_at',
                                           0.5)  # step to start using refiner on sample if it exists
        self.extra_values = kwargs.get('extra_values', [])


class LormModuleSettingsConfig:
    def __init__(self, **kwargs):
        self.contains: str = kwargs.get('contains', '4nt$3')
        self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
        # min num parameters to attach to
        self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
        self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)


class LoRMConfig:
    def __init__(self, **kwargs):
        self.extract_mode: str = kwargs.get('extract_mode', 'ratio')
        self.do_conv: bool = kwargs.get('do_conv', False)
        self.extract_mode_param: dict = kwargs.get('extract_mode_param', 0.25)
        self.parameter_threshold: int = kwargs.get('parameter_threshold', 0)
        module_settings = kwargs.get('module_settings', [])
        default_module_settings = {
            'extract_mode': self.extract_mode,
            'extract_mode_param': self.extract_mode_param,
            'parameter_threshold': self.parameter_threshold,
        }
        module_settings = [{**default_module_settings, **module_setting, } for module_setting in module_settings]
        self.module_settings: List[LormModuleSettingsConfig] = [LormModuleSettingsConfig(**module_setting) for
                                                                module_setting in module_settings]

    def get_config_for_module(self, block_name):
        for setting in self.module_settings:
            contain_pieces = setting.contains.split('|')
            if all(contain_piece in block_name for contain_piece in contain_pieces):
                return setting
            # try replacing the . with _
            contain_pieces = setting.contains.replace('.', '_').split('|')
            if all(contain_piece in block_name for contain_piece in contain_pieces):
                return setting
            # do default
        return LormModuleSettingsConfig(**{
            'extract_mode': self.extract_mode,
            'extract_mode_param': self.extract_mode_param,
            'parameter_threshold': self.parameter_threshold,
        })


NetworkType = Literal['lora', 'locon', 'lorm']


class NetworkConfig:
    def __init__(self, **kwargs):
        self.type: NetworkType = kwargs.get('type', 'lora')
        rank = kwargs.get('rank', None)
        linear = kwargs.get('linear', None)
        if rank is not None:
            self.rank: int = rank  # rank for backward compatibility
            self.linear: int = rank
        elif linear is not None:
            self.rank: int = linear
            self.linear: int = linear
        self.conv: int = kwargs.get('conv', None)
        self.alpha: float = kwargs.get('alpha', 1.0)
        self.linear_alpha: float = kwargs.get('linear_alpha', self.alpha)
        self.conv_alpha: float = kwargs.get('conv_alpha', self.conv)
        self.dropout: Union[float, None] = kwargs.get('dropout', None)
        self.network_kwargs: dict = kwargs.get('network_kwargs', {})

        self.lorm_config: Union[LoRMConfig, None] = None
        lorm = kwargs.get('lorm', None)
        if lorm is not None:
            self.lorm_config: LoRMConfig = LoRMConfig(**lorm)

        if self.type == 'lorm':
            # set linear to arbitrary values so it makes them
            self.linear = 4
            self.rank = 4
            if self.lorm_config.do_conv:
                self.conv = 4

        self.transformer_only = kwargs.get('transformer_only', True)


AdapterTypes = Literal['t2i', 'ip', 'ip+', 'clip', 'ilora', 'photo_maker', 'control_net']

CLIPLayer = Literal['penultimate_hidden_states', 'image_embeds', 'last_hidden_state']


class AdapterConfig:
    def __init__(self, **kwargs):
        self.type: AdapterTypes = kwargs.get('type', 't2i')  # t2i, ip, clip, control_net
        self.in_channels: int = kwargs.get('in_channels', 3)
        self.channels: List[int] = kwargs.get('channels', [320, 640, 1280, 1280])
        self.num_res_blocks: int = kwargs.get('num_res_blocks', 2)
        self.downscale_factor: int = kwargs.get('downscale_factor', 8)
        self.adapter_type: str = kwargs.get('adapter_type', 'full_adapter')
        self.image_dir: str = kwargs.get('image_dir', None)
        self.test_img_path: str = kwargs.get('test_img_path', None)
        self.train: str = kwargs.get('train', False)
        self.image_encoder_path: str = kwargs.get('image_encoder_path', None)
        self.name_or_path = kwargs.get('name_or_path', None)

        num_tokens = kwargs.get('num_tokens', None)
        if num_tokens is None and self.type.startswith('ip'):
            if self.type == 'ip+':
                num_tokens = 16
                num_tokens = 16
            elif self.type == 'ip':
                num_tokens = 4

        self.num_tokens: int = num_tokens
        self.train_image_encoder: bool = kwargs.get('train_image_encoder', False)
        self.train_only_image_encoder: bool = kwargs.get('train_only_image_encoder', False)
        if self.train_only_image_encoder:
            self.train_image_encoder = True
        self.train_only_image_encoder_positional_embedding: bool = kwargs.get(
            'train_only_image_encoder_positional_embedding', False)
        self.image_encoder_arch: str = kwargs.get('image_encoder_arch', 'clip')  # clip vit vit_hybrid, safe
        self.safe_reducer_channels: int = kwargs.get('safe_reducer_channels', 512)
        self.safe_channels: int = kwargs.get('safe_channels', 2048)
        self.safe_tokens: int = kwargs.get('safe_tokens', 8)
        self.quad_image: bool = kwargs.get('quad_image', False)

        # clip vision
        self.trigger = kwargs.get('trigger', 'tri993r')
        self.trigger_class_name = kwargs.get('trigger_class_name', None)

        self.class_names = kwargs.get('class_names', [])

        self.clip_layer: CLIPLayer = kwargs.get('clip_layer', None)
        if self.clip_layer is None:
            if self.type.startswith('ip+'):
                self.clip_layer = 'penultimate_hidden_states'
            else:
                self.clip_layer = 'last_hidden_state'

        # text encoder
        self.text_encoder_path: str = kwargs.get('text_encoder_path', None)
        self.text_encoder_arch: str = kwargs.get('text_encoder_arch', 'clip')  # clip t5

        self.train_scaler: bool = kwargs.get('train_scaler', False)
        self.scaler_lr: Optional[float] = kwargs.get('scaler_lr', None)

        # trains with a scaler to easy channel bias but merges it in on save
        self.merge_scaler: bool = kwargs.get('merge_scaler', False)

        # for ilora
        self.head_dim: int = kwargs.get('head_dim', 1024)
        self.num_heads: int = kwargs.get('num_heads', 1)
        self.ilora_down: bool = kwargs.get('ilora_down', True)
        self.ilora_mid: bool = kwargs.get('ilora_mid', True)
        self.ilora_up: bool = kwargs.get('ilora_up', True)

        self.flux_only_double: bool = kwargs.get('flux_only_double', False)


class EmbeddingConfig:
    def __init__(self, **kwargs):
        self.trigger = kwargs.get('trigger', 'custom_embedding')
        self.tokens = kwargs.get('tokens', 4)
        self.init_words = kwargs.get('init_words', '*')
        self.save_format = kwargs.get('save_format', 'safetensors')
        self.trigger_class_name = kwargs.get('trigger_class_name', None)  # used for inverted masked prior


ContentOrStyleType = Literal['balanced', 'style', 'content']
LossTarget = Literal['noise', 'source', 'unaugmented', 'differential_noise']


class TrainConfig:
    def __init__(self, **kwargs):
        self.noise_scheduler = kwargs.get('noise_scheduler', 'ddpm')
        self.content_or_style: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
        self.content_or_style_reg: ContentOrStyleType = kwargs.get('content_or_style', 'balanced')
        self.steps: int = kwargs.get('steps', 1000)
        self.lr = kwargs.get('lr', 1e-6)
        self.unet_lr = kwargs.get('unet_lr', self.lr)
        self.text_encoder_lr = kwargs.get('text_encoder_lr', self.lr)
        self.refiner_lr = kwargs.get('refiner_lr', self.lr)
        self.embedding_lr = kwargs.get('embedding_lr', self.lr)
        self.adapter_lr = kwargs.get('adapter_lr', self.lr)
        self.optimizer = kwargs.get('optimizer', 'adamw')
        self.optimizer_params = kwargs.get('optimizer_params', {})
        self.lr_scheduler = kwargs.get('lr_scheduler', 'constant')
        self.lr_scheduler_params = kwargs.get('lr_scheduler_params', {})
        self.min_denoising_steps: int = kwargs.get('min_denoising_steps', 0)
        self.max_denoising_steps: int = kwargs.get('max_denoising_steps', 1000)
        self.batch_size: int = kwargs.get('batch_size', 1)
        self.orig_batch_size: int = self.batch_size
        self.dtype: str = kwargs.get('dtype', 'fp32')
        self.xformers = kwargs.get('xformers', False)
        self.sdp = kwargs.get('sdp', False)
        self.train_unet = kwargs.get('train_unet', True)
        self.train_text_encoder = kwargs.get('train_text_encoder', False)
        self.train_refiner = kwargs.get('train_refiner', True)
        self.train_turbo = kwargs.get('train_turbo', False)
        self.show_turbo_outputs = kwargs.get('show_turbo_outputs', False)
        self.min_snr_gamma = kwargs.get('min_snr_gamma', None)
        self.snr_gamma = kwargs.get('snr_gamma', None)
        # trains a gamma, offset, and scale to adjust loss to adapt to timestep differentials
        # this should balance the learning rate across all timesteps over time
        self.learnable_snr_gos = kwargs.get('learnable_snr_gos', False)
        self.noise_offset = kwargs.get('noise_offset', 0.0)
        self.skip_first_sample = kwargs.get('skip_first_sample', False)
        self.force_first_sample = kwargs.get('force_first_sample', False)
        self.gradient_checkpointing = kwargs.get('gradient_checkpointing', True)
        self.weight_jitter = kwargs.get('weight_jitter', 0.0)
        self.merge_network_on_save = kwargs.get('merge_network_on_save', False)
        self.max_grad_norm = kwargs.get('max_grad_norm', 1.0)
        self.start_step = kwargs.get('start_step', None)
        self.free_u = kwargs.get('free_u', False)
        self.adapter_assist_name_or_path: Optional[str] = kwargs.get('adapter_assist_name_or_path', None)
        self.adapter_assist_type: Optional[str] = kwargs.get('adapter_assist_type', 't2i')  # t2i, control_net
        self.noise_multiplier = kwargs.get('noise_multiplier', 1.0)
        self.target_noise_multiplier = kwargs.get('target_noise_multiplier', 1.0)
        self.img_multiplier = kwargs.get('img_multiplier', 1.0)
        self.noisy_latent_multiplier = kwargs.get('noisy_latent_multiplier', 1.0)
        self.latent_multiplier = kwargs.get('latent_multiplier', 1.0)
        self.negative_prompt = kwargs.get('negative_prompt', None)
        self.max_negative_prompts = kwargs.get('max_negative_prompts', 1)
        # multiplier applied to loos on regularization images
        self.reg_weight = kwargs.get('reg_weight', 1.0)
        self.num_train_timesteps = kwargs.get('num_train_timesteps', 1000)
        self.random_noise_shift = kwargs.get('random_noise_shift', 0.0)
        # automatically adapte the vae scaling based on the image norm
        self.adaptive_scaling_factor = kwargs.get('adaptive_scaling_factor', False)

        # dropout that happens before encoding. It functions independently per text encoder
        self.prompt_dropout_prob = kwargs.get('prompt_dropout_prob', 0.0)

        # match the norm of the noise before computing loss. This will help the model maintain its
        # current understandin of the brightness of images.

        self.match_noise_norm = kwargs.get('match_noise_norm', False)

        # set to -1 to accumulate gradients for entire epoch
        # warning, only do this with a small dataset or you will run out of memory
        # This is legacy but left in for backwards compatibility
        self.gradient_accumulation_steps = kwargs.get('gradient_accumulation_steps', 1)

        # this will do proper gradient accumulation where you will not see a step until the end of the accumulation
        # the method above will show a step every accumulation
        self.gradient_accumulation = kwargs.get('gradient_accumulation', 1)
        if self.gradient_accumulation > 1:
            if self.gradient_accumulation_steps != 1:
                raise ValueError("gradient_accumulation and gradient_accumulation_steps are mutually exclusive")

        # short long captions will double your batch size. This only works when a dataset is
        # prepared with a json caption file that has both short and long captions in it. It will
        # Double up every image and run it through with both short and long captions. The idea
        # is that the network will learn how to generate good images with both short and long captions
        self.short_and_long_captions = kwargs.get('short_and_long_captions', False)
        # if above is NOT true, this will make it so the long caption foes to te2 and the short caption goes to te1 for sdxl only
        self.short_and_long_captions_encoder_split = kwargs.get('short_and_long_captions_encoder_split', False)

        # basically gradient accumulation but we run just 1 item through the network
        # and accumulate gradients. This can be used as basic gradient accumulation but is very helpful
        # for training tricks that increase batch size but need a single gradient step
        self.single_item_batching = kwargs.get('single_item_batching', False)

        match_adapter_assist = kwargs.get('match_adapter_assist', False)
        self.match_adapter_chance = kwargs.get('match_adapter_chance', 0.0)
        self.loss_target: LossTarget = kwargs.get('loss_target',
                                                  'noise')  # noise, source, unaugmented, differential_noise

        # When a mask is passed in a dataset, and this is true,
        # we will predict noise without a the LoRa network and use the prediction as a target for
        # unmasked reign. It is unmasked regularization basically
        self.inverted_mask_prior = kwargs.get('inverted_mask_prior', False)
        self.inverted_mask_prior_multiplier = kwargs.get('inverted_mask_prior_multiplier', 0.5)

        # legacy
        if match_adapter_assist and self.match_adapter_chance == 0.0:
            self.match_adapter_chance = 1.0

        # standardize inputs to the meand std of the model knowledge
        self.standardize_images = kwargs.get('standardize_images', False)
        self.standardize_latents = kwargs.get('standardize_latents', False)

        if self.train_turbo and not self.noise_scheduler.startswith("euler"):
            raise ValueError(f"train_turbo is only supported with euler and wuler_a noise schedulers")

        self.dynamic_noise_offset = kwargs.get('dynamic_noise_offset', False)
        self.do_cfg = kwargs.get('do_cfg', False)
        self.do_random_cfg = kwargs.get('do_random_cfg', False)
        self.cfg_scale = kwargs.get('cfg_scale', 1.0)
        self.max_cfg_scale = kwargs.get('max_cfg_scale', self.cfg_scale)
        self.cfg_rescale = kwargs.get('cfg_rescale', None)
        if self.cfg_rescale is None:
            self.cfg_rescale = self.cfg_scale

        # applies the inverse of the prediction mean and std to the target to correct
        # for norm drift
        self.correct_pred_norm = kwargs.get('correct_pred_norm', False)
        self.correct_pred_norm_multiplier = kwargs.get('correct_pred_norm_multiplier', 1.0)

        self.loss_type = kwargs.get('loss_type', 'mse')

        # scale the prediction by this. Increase for more detail, decrease for less
        self.pred_scaler = kwargs.get('pred_scaler', 1.0)

        # repeats the prompt a few times to saturate the encoder
        self.prompt_saturation_chance = kwargs.get('prompt_saturation_chance', 0.0)

        # applies negative loss on the prior to encourage network to diverge from it
        self.do_prior_divergence = kwargs.get('do_prior_divergence', False)

        ema_config: Union[Dict, None] = kwargs.get('ema_config', None)
        if ema_config is not None:
            ema_config['use_ema'] = True
            print(f"Using EMA")
        else:
            ema_config = {'use_ema': False}

        self.ema_config: EMAConfig = EMAConfig(**ema_config)

        # adds an additional loss to the network to encourage it output a normalized standard deviation
        self.target_norm_std = kwargs.get('target_norm_std', None)
        self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0)
        self.linear_timesteps = kwargs.get('linear_timesteps', False)
        self.linear_timesteps2 = kwargs.get('linear_timesteps2', False)
        self.disable_sampling = kwargs.get('disable_sampling', False)


class ModelConfig:
    def __init__(self, **kwargs):
        self.name_or_path: str = kwargs.get('name_or_path', None)
        self.is_v2: bool = kwargs.get('is_v2', False)
        self.is_xl: bool = kwargs.get('is_xl', False)
        self.is_pixart: bool = kwargs.get('is_pixart', False)
        self.is_pixart_sigma: bool = kwargs.get('is_pixart_sigma', False)
        self.is_auraflow: bool = kwargs.get('is_auraflow', False)
        self.is_v3: bool = kwargs.get('is_v3', False)
        self.is_flux: bool = kwargs.get('is_flux', False)
        if self.is_pixart_sigma:
            self.is_pixart = True
        self.use_flux_cfg = kwargs.get('use_flux_cfg', False)
        self.is_ssd: bool = kwargs.get('is_ssd', False)
        self.is_vega: bool = kwargs.get('is_vega', False)
        self.is_v_pred: bool = kwargs.get('is_v_pred', False)
        self.dtype: str = kwargs.get('dtype', 'float16')
        self.vae_path = kwargs.get('vae_path', None)
        self.refiner_name_or_path = kwargs.get('refiner_name_or_path', None)
        self._original_refiner_name_or_path = self.refiner_name_or_path
        self.refiner_start_at = kwargs.get('refiner_start_at', 0.5)
        self.lora_path = kwargs.get('lora_path', None)
        # mainly for decompression loras for distilled models
        self.assistant_lora_path = kwargs.get('assistant_lora_path', None)
        self.latent_space_version = kwargs.get('latent_space_version', None)

        # only for SDXL models for now
        self.use_text_encoder_1: bool = kwargs.get('use_text_encoder_1', True)
        self.use_text_encoder_2: bool = kwargs.get('use_text_encoder_2', True)

        self.experimental_xl: bool = kwargs.get('experimental_xl', False)

        if self.name_or_path is None:
            raise ValueError('name_or_path must be specified')

        if self.is_ssd:
            # sed sdxl as true since it is mostly the same architecture
            self.is_xl = True

        if self.is_vega:
            self.is_xl = True

        # for text encoder quant. Only works with pixart currently
        self.text_encoder_bits = kwargs.get('text_encoder_bits', 16)  # 16, 8, 4
        self.unet_path = kwargs.get("unet_path", None)
        self.unet_sample_size = kwargs.get("unet_sample_size", None)
        self.vae_device = kwargs.get("vae_device", None)
        self.vae_dtype = kwargs.get("vae_dtype", self.dtype)
        self.te_device = kwargs.get("te_device", None)
        self.te_dtype = kwargs.get("te_dtype", self.dtype)

        # only for flux for now
        self.quantize = kwargs.get("quantize", False)
        self.low_vram = kwargs.get("low_vram", False)
        self.attn_masking = kwargs.get("attn_masking", False)
        if self.attn_masking and not self.is_flux:
            raise ValueError("attn_masking is only supported with flux models currently")
        pass


class EMAConfig:
    def __init__(self, **kwargs):
        self.use_ema: bool = kwargs.get('use_ema', False)
        self.ema_decay: float = kwargs.get('ema_decay', 0.999)
        # feeds back the decay difference into the parameter
        self.use_feedback: bool = kwargs.get('use_feedback', False)


class ReferenceDatasetConfig:
    def __init__(self, **kwargs):
        # can pass with a side by side pait or a folder with pos and neg folder
        self.pair_folder: str = kwargs.get('pair_folder', None)
        self.pos_folder: str = kwargs.get('pos_folder', None)
        self.neg_folder: str = kwargs.get('neg_folder', None)

        self.network_weight: float = float(kwargs.get('network_weight', 1.0))
        self.pos_weight: float = float(kwargs.get('pos_weight', self.network_weight))
        self.neg_weight: float = float(kwargs.get('neg_weight', self.network_weight))
        # make sure they are all absolute values no negatives
        self.pos_weight = abs(self.pos_weight)
        self.neg_weight = abs(self.neg_weight)

        self.target_class: str = kwargs.get('target_class', '')
        self.size: int = kwargs.get('size', 512)


class SliderTargetConfig:
    def __init__(self, **kwargs):
        self.target_class: str = kwargs.get('target_class', '')
        self.positive: str = kwargs.get('positive', '')
        self.negative: str = kwargs.get('negative', '')
        self.multiplier: float = kwargs.get('multiplier', 1.0)
        self.weight: float = kwargs.get('weight', 1.0)
        self.shuffle: bool = kwargs.get('shuffle', False)


class GuidanceConfig:
    def __init__(self, **kwargs):
        self.target_class: str = kwargs.get('target_class', '')
        self.guidance_scale: float = kwargs.get('guidance_scale', 1.0)
        self.positive_prompt: str = kwargs.get('positive_prompt', '')
        self.negative_prompt: str = kwargs.get('negative_prompt', '')


class SliderConfigAnchors:
    def __init__(self, **kwargs):
        self.prompt = kwargs.get('prompt', '')
        self.neg_prompt = kwargs.get('neg_prompt', '')
        self.multiplier = kwargs.get('multiplier', 1.0)


class SliderConfig:
    def __init__(self, **kwargs):
        targets = kwargs.get('targets', [])
        anchors = kwargs.get('anchors', [])
        anchors = [SliderConfigAnchors(**anchor) for anchor in anchors]
        self.anchors: List[SliderConfigAnchors] = anchors
        self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
        self.prompt_file: str = kwargs.get('prompt_file', None)
        self.prompt_tensors: str = kwargs.get('prompt_tensors', None)
        self.batch_full_slide: bool = kwargs.get('batch_full_slide', True)
        self.use_adapter: bool = kwargs.get('use_adapter', None)  # depth
        self.adapter_img_dir = kwargs.get('adapter_img_dir', None)
        self.low_ram = kwargs.get('low_ram', False)

        # expand targets if shuffling
        from toolkit.prompt_utils import get_slider_target_permutations
        self.targets: List[SliderTargetConfig] = []
        targets = [SliderTargetConfig(**target) for target in targets]
        # do permutations if shuffle is true
        print(f"Building slider targets")
        for target in targets:
            if target.shuffle:
                target_permutations = get_slider_target_permutations(target, max_permutations=8)
                self.targets = self.targets + target_permutations
            else:
                self.targets.append(target)
        print(f"Built {len(self.targets)} slider targets (with permutations)")


class DatasetConfig:
    """
    Dataset config for sd-datasets

    """

    def __init__(self, **kwargs):
        self.type = kwargs.get('type', 'image')  # sd, slider, reference
        # will be legacy
        self.folder_path: str = kwargs.get('folder_path', None)
        # can be json or folder path
        self.dataset_path: str = kwargs.get('dataset_path', None)

        self.default_caption: str = kwargs.get('default_caption', None)
        random_triggers = kwargs.get('random_triggers', [])
        # if they are a string, load them from a file
        if isinstance(random_triggers, str) and os.path.exists(random_triggers):
            with open(random_triggers, 'r') as f:
                random_triggers = f.read().splitlines()
                # remove empty lines
                random_triggers = [line for line in random_triggers if line.strip() != '']
        self.random_triggers: List[str] = random_triggers
        self.random_triggers_max: int = kwargs.get('random_triggers_max', 1)
        self.caption_ext: str = kwargs.get('caption_ext', None)
        self.random_scale: bool = kwargs.get('random_scale', False)
        self.random_crop: bool = kwargs.get('random_crop', False)
        self.resolution: int = kwargs.get('resolution', 512)
        self.scale: float = kwargs.get('scale', 1.0)
        self.buckets: bool = kwargs.get('buckets', True)
        self.bucket_tolerance: int = kwargs.get('bucket_tolerance', 64)
        self.is_reg: bool = kwargs.get('is_reg', False)
        self.network_weight: float = float(kwargs.get('network_weight', 1.0))
        self.token_dropout_rate: float = float(kwargs.get('token_dropout_rate', 0.0))
        self.shuffle_tokens: bool = kwargs.get('shuffle_tokens', False)
        self.caption_dropout_rate: float = float(kwargs.get('caption_dropout_rate', 0.0))
        self.keep_tokens: int = kwargs.get('keep_tokens', 0)  # #of first tokens to always keep unless caption dropped
        self.flip_x: bool = kwargs.get('flip_x', False)
        self.flip_y: bool = kwargs.get('flip_y', False)
        self.augments: List[str] = kwargs.get('augments', [])
        self.control_path: str = kwargs.get('control_path', None)  # depth maps, etc
        # instead of cropping ot match image, it will serve the full size control image (clip images ie for ip adapters)
        self.full_size_control_images: bool = kwargs.get('full_size_control_images', False)
        self.alpha_mask: bool = kwargs.get('alpha_mask', False)  # if true, will use alpha channel as mask
        self.mask_path: str = kwargs.get('mask_path',
                                         None)  # focus mask (black and white. White has higher loss than black)
        self.unconditional_path: str = kwargs.get('unconditional_path',
                                                  None)  # path where matching unconditional images are located
        self.invert_mask: bool = kwargs.get('invert_mask', False)  # invert mask
        self.mask_min_value: float = kwargs.get('mask_min_value', 0.0)  # min value for . 0 - 1
        self.poi: Union[str, None] = kwargs.get('poi',
                                                None)  # if one is set and in json data, will be used as auto crop scale point of interes
        self.num_repeats: int = kwargs.get('num_repeats', 1)  # number of times to repeat dataset
        # cache latents will store them in memory
        self.cache_latents: bool = kwargs.get('cache_latents', False)
        # cache latents to disk will store them on disk. If both are true, it will save to disk, but keep in memory
        self.cache_latents_to_disk: bool = kwargs.get('cache_latents_to_disk', False)
        self.cache_clip_vision_to_disk: bool = kwargs.get('cache_clip_vision_to_disk', False)

        self.standardize_images: bool = kwargs.get('standardize_images', False)

        # https://albumentations.ai/docs/api_reference/augmentations/transforms
        # augmentations are returned as a separate image and cannot currently be cached
        self.augmentations: List[dict] = kwargs.get('augmentations', None)
        self.shuffle_augmentations: bool = kwargs.get('shuffle_augmentations', False)

        has_augmentations = self.augmentations is not None and len(self.augmentations) > 0

        if (len(self.augments) > 0 or has_augmentations) and (self.cache_latents or self.cache_latents_to_disk):
            print(f"WARNING: Augments are not supported with caching latents. Setting cache_latents to False")
            self.cache_latents = False
            self.cache_latents_to_disk = False

        # legacy compatability
        legacy_caption_type = kwargs.get('caption_type', None)
        if legacy_caption_type:
            self.caption_ext = legacy_caption_type
        self.caption_type = self.caption_ext
        self.guidance_type: GuidanceType = kwargs.get('guidance_type', 'targeted')

        # ip adapter / reference dataset
        self.clip_image_path: str = kwargs.get('clip_image_path', None)  # depth maps, etc
        self.clip_image_augmentations: List[dict] = kwargs.get('clip_image_augmentations', None)
        self.clip_image_shuffle_augmentations: bool = kwargs.get('clip_image_shuffle_augmentations', False)
        self.replacements: List[str] = kwargs.get('replacements', [])
        self.loss_multiplier: float = kwargs.get('loss_multiplier', 1.0)

        self.num_workers: int = kwargs.get('num_workers', 2)
        self.prefetch_factor: int = kwargs.get('prefetch_factor', 2)
        self.extra_values: List[float] = kwargs.get('extra_values', [])
        self.square_crop: bool = kwargs.get('square_crop', False)
        # apply same augmentations to control images. Usually want this true unless special case
        self.replay_transforms: bool = kwargs.get('replay_transforms', True)


def preprocess_dataset_raw_config(raw_config: List[dict]) -> List[dict]:
    """
    This just splits up the datasets by resolutions so you dont have to do it manually
    :param raw_config:
    :return:
    """
    # split up datasets by resolutions
    new_config = []
    for dataset in raw_config:
        resolution = dataset.get('resolution', 512)
        if isinstance(resolution, list):
            resolution_list = resolution
        else:
            resolution_list = [resolution]
        for res in resolution_list:
            dataset_copy = dataset.copy()
            dataset_copy['resolution'] = res
            new_config.append(dataset_copy)
    return new_config


class GenerateImageConfig:
    def __init__(
            self,
            prompt: str = '',
            prompt_2: Optional[str] = None,
            width: int = 512,
            height: int = 512,
            num_inference_steps: int = 50,
            guidance_scale: float = 7.5,
            negative_prompt: str = '',
            negative_prompt_2: Optional[str] = None,
            seed: int = -1,
            network_multiplier: float = 1.0,
            guidance_rescale: float = 0.0,
            # the tag [time] will be replaced with milliseconds since epoch
            output_path: str = None,  # full image path
            output_folder: str = None,  # folder to save image in if output_path is not specified
            output_ext: str = ImgExt,  # extension to save image as if output_path is not specified
            output_tail: str = '',  # tail to add to output filename
            add_prompt_file: bool = False,  # add a prompt file with generated image
            adapter_image_path: str = None,  # path to adapter image
            adapter_conditioning_scale: float = 1.0,  # scale for adapter conditioning
            latents: Union[torch.Tensor | None] = None,  # input latent to start with,
            extra_kwargs: dict = None,  # extra data to save with prompt file
            refiner_start_at: float = 0.5,  # start at this percentage of a step. 0.0 to 1.0 . 1.0 is the end
            extra_values: List[float] = None,  # extra values to save with prompt file
    ):
        self.width: int = width
        self.height: int = height
        self.num_inference_steps: int = num_inference_steps
        self.guidance_scale: float = guidance_scale
        self.guidance_rescale: float = guidance_rescale
        self.prompt: str = prompt
        self.prompt_2: str = prompt_2
        self.negative_prompt: str = negative_prompt
        self.negative_prompt_2: str = negative_prompt_2
        self.latents: Union[torch.Tensor | None] = latents

        self.output_path: str = output_path
        self.seed: int = seed
        if self.seed == -1:
            # generate random one
            self.seed = random.randint(0, 2 ** 32 - 1)
        self.network_multiplier: float = network_multiplier
        self.output_folder: str = output_folder
        self.output_ext: str = output_ext
        self.add_prompt_file: bool = add_prompt_file
        self.output_tail: str = output_tail
        self.gen_time: int = int(time.time() * 1000)
        self.adapter_image_path: str = adapter_image_path
        self.adapter_conditioning_scale: float = adapter_conditioning_scale
        self.extra_kwargs = extra_kwargs if extra_kwargs is not None else {}
        self.refiner_start_at = refiner_start_at
        self.extra_values = extra_values if extra_values is not None else []

        # prompt string will override any settings above
        self._process_prompt_string()

        # handle dual text encoder prompts if nothing passed
        if negative_prompt_2 is None:
            self.negative_prompt_2 = negative_prompt

        if prompt_2 is None:
            self.prompt_2 = self.prompt

        # parse prompt paths
        if self.output_path is None and self.output_folder is None:
            raise ValueError('output_path or output_folder must be specified')
        elif self.output_path is not None:
            self.output_folder = os.path.dirname(self.output_path)
            self.output_ext = os.path.splitext(self.output_path)[1][1:]
            self.output_filename_no_ext = os.path.splitext(os.path.basename(self.output_path))[0]

        else:
            self.output_filename_no_ext = '[time]_[count]'
            if len(self.output_tail) > 0:
                self.output_filename_no_ext += '_' + self.output_tail
            self.output_path = os.path.join(self.output_folder, self.output_filename_no_ext + '.' + self.output_ext)

        # adjust height
        self.height = max(64, self.height - self.height % 8)  # round to divisible by 8
        self.width = max(64, self.width - self.width % 8)  # round to divisible by 8

    def set_gen_time(self, gen_time: int = None):
        if gen_time is not None:
            self.gen_time = gen_time
        else:
            self.gen_time = int(time.time() * 1000)

    def _get_path_no_ext(self, count: int = 0, max_count=0):
        # zero pad count
        count_str = str(count).zfill(len(str(max_count)))
        # replace [time] with gen time
        filename = self.output_filename_no_ext.replace('[time]', str(self.gen_time))
        # replace [count] with count
        filename = filename.replace('[count]', count_str)
        return filename

    def get_image_path(self, count: int = 0, max_count=0):
        filename = self._get_path_no_ext(count, max_count)
        ext = self.output_ext
        # if it does not start with a dot add one
        if ext[0] != '.':
            ext = '.' + ext
        filename += ext
        # join with folder
        return os.path.join(self.output_folder, filename)

    def get_prompt_path(self, count: int = 0, max_count=0):
        filename = self._get_path_no_ext(count, max_count)
        filename += '.txt'
        # join with folder
        return os.path.join(self.output_folder, filename)

    def save_image(self, image, count: int = 0, max_count=0):
        # make parent dirs
        os.makedirs(self.output_folder, exist_ok=True)
        self.set_gen_time()
        # TODO save image gen header info for A1111 and us, our seeds probably wont match
        image.save(self.get_image_path(count, max_count))
        # do prompt file
        if self.add_prompt_file:
            self.save_prompt_file(count, max_count)

    def save_prompt_file(self, count: int = 0, max_count=0):
        # save prompt file
        with open(self.get_prompt_path(count, max_count), 'w') as f:
            prompt = self.prompt
            if self.prompt_2 is not None:
                prompt += ' --p2 ' + self.prompt_2
            if self.negative_prompt is not None:
                prompt += ' --n ' + self.negative_prompt
            if self.negative_prompt_2 is not None:
                prompt += ' --n2 ' + self.negative_prompt_2
            prompt += ' --w ' + str(self.width)
            prompt += ' --h ' + str(self.height)
            prompt += ' --seed ' + str(self.seed)
            prompt += ' --cfg ' + str(self.guidance_scale)
            prompt += ' --steps ' + str(self.num_inference_steps)
            prompt += ' --m ' + str(self.network_multiplier)
            prompt += ' --gr ' + str(self.guidance_rescale)

            # get gen info
            f.write(self.prompt)

    def _process_prompt_string(self):
        # we will try to support all sd-scripts where we can

        # FROM SD-SCRIPTS
        # --n Treat everything until the next option as a negative prompt.
        # --w Specify the width of the generated image.
        # --h Specify the height of the generated image.
        # --d Specify the seed for the generated image.
        # --l Specify the CFG scale for the generated image.
        # --s Specify the number of steps during generation.

        # OURS and some QOL additions
        # --m Specify the network multiplier for the generated image.
        # --p2 Prompt for the second text encoder (SDXL only)
        # --n2 Negative prompt for the second text encoder (SDXL only)
        # --gr Specify the guidance rescale for the generated image (SDXL only)

        # --seed Specify the seed for the generated image same as --d
        # --cfg Specify the CFG scale for the generated image same as --l
        # --steps Specify the number of steps during generation same as --s
        # --network_multiplier Specify the network multiplier for the generated image same as --m

        # process prompt string and update values if it has some
        if self.prompt is not None and len(self.prompt) > 0:
            # process prompt string
            prompt = self.prompt
            prompt = prompt.strip()
            p_split = prompt.split('--')
            self.prompt = p_split[0].strip()

            if len(p_split) > 1:
                for split in p_split[1:]:
                    # allows multi char flags
                    flag = split.split(' ')[0].strip()
                    content = split[len(flag):].strip()
                    if flag == 'p2':
                        self.prompt_2 = content
                    elif flag == 'n':
                        self.negative_prompt = content
                    elif flag == 'n2':
                        self.negative_prompt_2 = content
                    elif flag == 'w':
                        self.width = int(content)
                    elif flag == 'h':
                        self.height = int(content)
                    elif flag == 'd':
                        self.seed = int(content)
                    elif flag == 'seed':
                        self.seed = int(content)
                    elif flag == 'l':
                        self.guidance_scale = float(content)
                    elif flag == 'cfg':
                        self.guidance_scale = float(content)
                    elif flag == 's':
                        self.num_inference_steps = int(content)
                    elif flag == 'steps':
                        self.num_inference_steps = int(content)
                    elif flag == 'm':
                        self.network_multiplier = float(content)
                    elif flag == 'network_multiplier':
                        self.network_multiplier = float(content)
                    elif flag == 'gr':
                        self.guidance_rescale = float(content)
                    elif flag == 'a':
                        self.adapter_conditioning_scale = float(content)
                    elif flag == 'ref':
                        self.refiner_start_at = float(content)
                    elif flag == 'ev':
                        # split by comma
                        self.extra_values = [float(val) for val in content.split(',')]
                    elif flag == 'extra_values':
                        # split by comma
                        self.extra_values = [float(val) for val in content.split(',')]

    def post_process_embeddings(
            self,
            conditional_prompt_embeds: PromptEmbeds,
            unconditional_prompt_embeds: Optional[PromptEmbeds] = None,
    ):
        # this is called after prompt embeds are encoded. We can override them in the future here
        pass