File size: 7,869 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
from toolkit.paths import MODELS_PATH
import requests
import os
import json
import tqdm
class ModelCache:
def __init__(self):
self.raw_cache = {}
self.cache_path = os.path.join(MODELS_PATH, '.ai_toolkit_cache.json')
if os.path.exists(self.cache_path):
with open(self.cache_path, 'r') as f:
all_cache = json.load(f)
if 'models' in all_cache:
self.raw_cache = all_cache['models']
else:
self.raw_cache = all_cache
def get_model_path(self, model_id: int, model_version_id: int = None):
if str(model_id) not in self.raw_cache:
return None
if model_version_id is None:
# get latest version
model_version_id = max([int(x) for x in self.raw_cache[str(model_id)].keys()])
if model_version_id is None:
return None
model_path = self.raw_cache[str(model_id)][str(model_version_id)]['model_path']
# check if model path exists
if not os.path.exists(model_path):
# remove version from cache
del self.raw_cache[str(model_id)][str(model_version_id)]
self.save()
return None
return model_path
else:
if str(model_version_id) not in self.raw_cache[str(model_id)]:
return None
model_path = self.raw_cache[str(model_id)][str(model_version_id)]['model_path']
# check if model path exists
if not os.path.exists(model_path):
# remove version from cache
del self.raw_cache[str(model_id)][str(model_version_id)]
self.save()
return None
return model_path
def update_cache(self, model_id: int, model_version_id: int, model_path: str):
if str(model_id) not in self.raw_cache:
self.raw_cache[str(model_id)] = {}
if str(model_version_id) not in self.raw_cache[str(model_id)]:
self.raw_cache[str(model_id)][str(model_version_id)] = {}
self.raw_cache[str(model_id)][str(model_version_id)] = {
'model_path': model_path
}
self.save()
def save(self):
if not os.path.exists(os.path.dirname(self.cache_path)):
os.makedirs(os.path.dirname(self.cache_path), exist_ok=True)
all_cache = {'models': {}}
if os.path.exists(self.cache_path):
# load it first
with open(self.cache_path, 'r') as f:
all_cache = json.load(f)
all_cache['models'] = self.raw_cache
with open(self.cache_path, 'w') as f:
json.dump(all_cache, f, indent=2)
def get_model_download_info(model_id: int, model_version_id: int = None):
# curl https://civitai.com/api/v1/models?limit=3&types=TextualInversion \
# -H "Content-Type: application/json" \
# -X GET
print(
f"Getting model info for model id: {model_id}{f' and version id: {model_version_id}' if model_version_id is not None else ''}")
endpoint = f"https://civitai.com/api/v1/models/{model_id}"
# get the json
response = requests.get(endpoint)
response.raise_for_status()
model_data = response.json()
model_version = None
# go through versions and get the top one if one is not set
for version in model_data['modelVersions']:
if model_version_id is not None:
if str(version['id']) == str(model_version_id):
model_version = version
break
else:
# get first version
model_version = version
break
if model_version is None:
raise ValueError(
f"Could not find a model version for model id: {model_id}{f' and version id: {model_version_id}' if model_version_id is not None else ''}")
model_file = None
# go through files and prefer fp16 safetensors
# "metadata": {
# "fp": "fp16",
# "size": "pruned",
# "format": "SafeTensor"
# },
# todo check pickle scans and skip if not good
# try to get fp16 safetensor
for file in model_version['files']:
if file['metadata']['fp'] == 'fp16' and file['metadata']['format'] == 'SafeTensor':
model_file = file
break
if model_file is None:
# try to get primary
for file in model_version['files']:
if file['primary']:
model_file = file
break
if model_file is None:
# try to get any safetensor
for file in model_version['files']:
if file['metadata']['format'] == 'SafeTensor':
model_file = file
break
if model_file is None:
# try to get any fp16
for file in model_version['files']:
if file['metadata']['fp'] == 'fp16':
model_file = file
break
if model_file is None:
# try to get any
for file in model_version['files']:
model_file = file
break
if model_file is None:
raise ValueError(f"Could not find a model file to download for model id: {model_id}")
return model_file, model_version['id']
def get_model_path_from_url(url: str):
# get query params form url if they are set
# https: // civitai.com / models / 25694?modelVersionId = 127742
query_params = {}
if '?' in url:
query_string = url.split('?')[1]
query_params = dict(qc.split("=") for qc in query_string.split("&"))
# get model id from url
model_id = url.split('/')[-1]
# remove query params from model id
if '?' in model_id:
model_id = model_id.split('?')[0]
if model_id.isdigit():
model_id = int(model_id)
else:
raise ValueError(f"Invalid model id: {model_id}")
model_cache = ModelCache()
model_path = model_cache.get_model_path(model_id, query_params.get('modelVersionId', None))
if model_path is not None:
return model_path
else:
# download model
file_info, model_version_id = get_model_download_info(model_id, query_params.get('modelVersionId', None))
download_url = file_info['downloadUrl'] # url does not work directly
size_kb = file_info['sizeKB']
filename = file_info['name']
model_path = os.path.join(MODELS_PATH, filename)
# download model
print(f"Did not find model locally, downloading from model from: {download_url}")
# use tqdm to show status of downlod
response = requests.get(download_url, stream=True)
response.raise_for_status()
total_size_in_bytes = int(response.headers.get('content-length', 0))
block_size = 1024 # 1 Kibibyte
progress_bar = tqdm.tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
tmp_path = os.path.join(MODELS_PATH, f".download_tmp_{filename}")
os.makedirs(os.path.dirname(model_path), exist_ok=True)
# remove tmp file if it exists
if os.path.exists(tmp_path):
os.remove(tmp_path)
try:
with open(tmp_path, 'wb') as f:
for data in response.iter_content(block_size):
progress_bar.update(len(data))
f.write(data)
progress_bar.close()
# move to final path
os.rename(tmp_path, model_path)
model_cache.update_cache(model_id, model_version_id, model_path)
return model_path
except Exception as e:
# remove tmp file
os.remove(tmp_path)
raise e
# if is main
if __name__ == '__main__':
model_path = get_model_path_from_url("https://civitai.com/models/25694?modelVersionId=127742")
print(model_path)
|