File size: 4,887 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import os
# add project root to sys path
import sys

from tqdm import tqdm

sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

import torch
from diffusers.loaders import LoraLoaderMixin
from safetensors.torch import load_file
from collections import OrderedDict
import json

from toolkit.config_modules import ModelConfig
from toolkit.paths import KEYMAPS_ROOT
from toolkit.saving import convert_state_dict_to_ldm_with_mapping, get_ldm_state_dict_from_diffusers
from toolkit.stable_diffusion_model import StableDiffusion

# this was just used to match the vae keys to the diffusers keys
# you probably wont need this. Unless they change them.... again... again
# on second thought, you probably will

project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))

device = torch.device('cpu')
dtype = torch.float32

parser = argparse.ArgumentParser()

# require at lease one config file
parser.add_argument(
    'file_1',
    nargs='+',
    type=str,
    help='Path an LDM model'
)

parser.add_argument(
    '--is_xl',
    action='store_true',
    help='Is the model an XL model'
)

parser.add_argument(
    '--is_v2',
    action='store_true',
    help='Is the model a v2 model'
)

args = parser.parse_args()

find_matches = False

print("Loading model")
state_dict_file_1 = load_file(args.file_1[0])
state_dict_1_keys = list(state_dict_file_1.keys())

print("Loading model into diffusers format")
model_config = ModelConfig(
    name_or_path=args.file_1[0],
    is_xl=args.is_xl
)
sd = StableDiffusion(
    model_config=model_config,
    device=device,
)
sd.load_model()

# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json')

print("Converting model back to LDM")
version_string = '1'
if args.is_v2:
    version_string = '2'
if args.is_xl:
    version_string = 'sdxl'
# convert the state dict
state_dict_file_2 = get_ldm_state_dict_from_diffusers(
    sd.state_dict(),
    version_string,
    device='cpu',
    dtype=dtype
)

# state_dict_file_2 = load_file(args.file_2[0])

state_dict_2_keys = list(state_dict_file_2.keys())
keys_in_both = []

keys_not_in_state_dict_2 = []
for key in state_dict_1_keys:
    if key not in state_dict_2_keys:
        keys_not_in_state_dict_2.append(key)

keys_not_in_state_dict_1 = []
for key in state_dict_2_keys:
    if key not in state_dict_1_keys:
        keys_not_in_state_dict_1.append(key)

keys_in_both = []
for key in state_dict_1_keys:
    if key in state_dict_2_keys:
        keys_in_both.append(key)

# sort them
keys_not_in_state_dict_2.sort()
keys_not_in_state_dict_1.sort()
keys_in_both.sort()

if len(keys_not_in_state_dict_2) == 0 and len(keys_not_in_state_dict_1) == 0:
    print("All keys match!")
    print("Checking values...")
    mismatch_keys = []
    loss = torch.nn.MSELoss()
    tolerance = 1e-6
    for key in tqdm(keys_in_both):
        if loss(state_dict_file_1[key], state_dict_file_2[key]) > tolerance:
            print(f"Values for key {key} don't match!")
            print(f"Loss: {loss(state_dict_file_1[key], state_dict_file_2[key])}")
            mismatch_keys.append(key)

    if len(mismatch_keys) == 0:
        print("All values match!")
    else:
        print("Some valued font match!")
        print(mismatch_keys)
        mismatched_path = os.path.join(project_root, 'config', 'mismatch.json')
        with open(mismatched_path, 'w') as f:
            f.write(json.dumps(mismatch_keys, indent=4))
        exit(0)

else:
    print("Keys don't match!, generating info...")

json_data = {
    "both": keys_in_both,
    "not_in_state_dict_2": keys_not_in_state_dict_2,
    "not_in_state_dict_1": keys_not_in_state_dict_1
}
json_data = json.dumps(json_data, indent=4)

remaining_diffusers_values = OrderedDict()
for key in keys_not_in_state_dict_1:
    remaining_diffusers_values[key] = state_dict_file_2[key]

# print(remaining_diffusers_values.keys())

remaining_ldm_values = OrderedDict()
for key in keys_not_in_state_dict_2:
    remaining_ldm_values[key] = state_dict_file_1[key]

# print(json_data)


json_save_path = os.path.join(project_root, 'config', 'keys.json')
json_matched_save_path = os.path.join(project_root, 'config', 'matched.json')
json_duped_save_path = os.path.join(project_root, 'config', 'duped.json')
state_dict_1_filename = os.path.basename(args.file_1[0])
# state_dict_2_filename = os.path.basename(args.file_2[0])
# save key names for each in own file
with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}.json'), 'w') as f:
    f.write(json.dumps(state_dict_1_keys, indent=4))

with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}_loop.json'), 'w') as f:
    f.write(json.dumps(state_dict_2_keys, indent=4))

with open(json_save_path, 'w') as f:
    f.write(json_data)