File size: 3,509 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import time
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
import sys
import os
import cv2
import random
from transformers import CLIPImageProcessor
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from toolkit.paths import SD_SCRIPTS_ROOT
import torchvision.transforms.functional
from toolkit.image_utils import show_img, show_tensors
sys.path.append(SD_SCRIPTS_ROOT)
from library.model_util import load_vae
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.data_loader import AiToolkitDataset, get_dataloader_from_datasets, \
trigger_dataloader_setup_epoch
from toolkit.config_modules import DatasetConfig
import argparse
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('dataset_folder', type=str, default='input')
parser.add_argument('--epochs', type=int, default=1)
args = parser.parse_args()
dataset_folder = args.dataset_folder
resolution = 1024
bucket_tolerance = 64
batch_size = 1
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16")
class FakeAdapter:
def __init__(self):
self.clip_image_processor = clip_processor
## make fake sd
class FakeSD:
def __init__(self):
self.adapter = FakeAdapter()
dataset_config = DatasetConfig(
dataset_path=dataset_folder,
# clip_image_path=dataset_folder,
# square_crop=True,
resolution=resolution,
# caption_ext='json',
default_caption='default',
# clip_image_path='/mnt/Datasets2/regs/yetibear_xl_v14/random_aspect/',
buckets=True,
bucket_tolerance=bucket_tolerance,
# poi='person',
# shuffle_augmentations=True,
# augmentations=[
# {
# 'method': 'Posterize',
# 'num_bits': [(0, 4), (0, 4), (0, 4)],
# 'p': 1.0
# },
#
# ]
)
dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size, sd=FakeSD())
# run through an epoch ang check sizes
dataloader_iterator = iter(dataloader)
for epoch in range(args.epochs):
for batch in tqdm(dataloader):
batch: 'DataLoaderBatchDTO'
img_batch = batch.tensor
batch_size, channels, height, width = img_batch.shape
# img_batch = color_block_imgs(img_batch, neg1_1=True)
# chunks = torch.chunk(img_batch, batch_size, dim=0)
# # put them so they are size by side
# big_img = torch.cat(chunks, dim=3)
# big_img = big_img.squeeze(0)
#
# control_chunks = torch.chunk(batch.clip_image_tensor, batch_size, dim=0)
# big_control_img = torch.cat(control_chunks, dim=3)
# big_control_img = big_control_img.squeeze(0) * 2 - 1
#
#
# # resize control image
# big_control_img = torchvision.transforms.Resize((width, height))(big_control_img)
#
# big_img = torch.cat([big_img, big_control_img], dim=2)
#
# min_val = big_img.min()
# max_val = big_img.max()
#
# big_img = (big_img / 2 + 0.5).clamp(0, 1)
big_img = img_batch
# big_img = big_img.clamp(-1, 1)
show_tensors(big_img)
# convert to image
# img = transforms.ToPILImage()(big_img)
#
# show_img(img)
time.sleep(0.2)
# if not last epoch
if epoch < args.epochs - 1:
trigger_dataloader_setup_epoch(dataloader)
cv2.destroyAllWindows()
print('done')
|