File size: 6,117 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import os
import torch
from transformers import T5EncoderModel, T5Tokenizer
from diffusers import StableDiffusionPipeline, UNet2DConditionModel, PixArtSigmaPipeline, Transformer2DModel, PixArtTransformer2DModel
from safetensors.torch import load_file, save_file
from collections import OrderedDict
import json
# model_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_v01_000527000"
# te_path = "google/flan-t5-xl"
# te_aug_path = "/mnt/Train/out/ip_adapter/t5xx_sd15_v1/t5xx_sd15_v1_000032000.safetensors"
# output_path = "/home/jaret/Dev/models/hf/kl-f16-d42_sd15_t5xl_raw"
model_path = "/home/jaret/Dev/models/hf/objective-reality-16ch"
te_path = "google/flan-t5-xl"
te_aug_path = "/mnt/Train2/out/ip_adapter/t5xl-sd15-16ch_v1/t5xl-sd15-16ch_v1_000115000.safetensors"
output_path = "/home/jaret/Dev/models/hf/t5xl-sd15-16ch_sd15_v1"
print("Loading te adapter")
te_aug_sd = load_file(te_aug_path)
print("Loading model")
is_diffusers = (not os.path.exists(model_path)) or os.path.isdir(model_path)
# if "pixart" in model_path.lower():
is_pixart = "pixart" in model_path.lower()
pipeline_class = StableDiffusionPipeline
# transformer = PixArtTransformer2DModel.from_pretrained('PixArt-alpha/PixArt-Sigma-XL-2-512-MS', subfolder='transformer', torch_dtype=torch.float16)
if is_pixart:
pipeline_class = PixArtSigmaPipeline
if is_diffusers:
sd = pipeline_class.from_pretrained(model_path, torch_dtype=torch.float16)
else:
sd = pipeline_class.from_single_file(model_path, torch_dtype=torch.float16)
print("Loading Text Encoder")
# Load the text encoder
te = T5EncoderModel.from_pretrained(te_path, torch_dtype=torch.float16)
# patch it
sd.text_encoder = te
sd.tokenizer = T5Tokenizer.from_pretrained(te_path)
if is_pixart:
unet = sd.transformer
unet_sd = sd.transformer.state_dict()
else:
unet = sd.unet
unet_sd = sd.unet.state_dict()
if is_pixart:
weight_idx = 0
else:
weight_idx = 1
new_cross_attn_dim = None
# count the num of params in state dict
start_params = sum([v.numel() for v in unet_sd.values()])
print("Building")
attn_processor_keys = []
if is_pixart:
transformer: Transformer2DModel = unet
for i, module in transformer.transformer_blocks.named_children():
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
# cross attention
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
else:
attn_processor_keys = list(unet.attn_processors.keys())
for name in attn_processor_keys:
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") or name.endswith(
"attn1") else \
unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config['block_out_channels'][block_id]
elif name.startswith("transformer"):
hidden_size = unet.config['cross_attention_dim']
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
pass
else:
layer_name = name.split(".processor")[0]
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
te_aug_name = None
while True:
if is_pixart:
te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter"
else:
te_aug_name = f"te_adapter.adapter_modules.{weight_idx}.to_k_adapter"
if f"{te_aug_name}.weight" in te_aug_sd:
# increment so we dont redo it next time
weight_idx += 1
break
else:
weight_idx += 1
if weight_idx > 1000:
raise ValueError("Could not find the next weight")
orig_weight_shape_k = list(unet_sd[layer_name + ".to_k.weight"].shape)
new_weight_shape_k = list(te_aug_sd[te_aug_name + ".weight"].shape)
orig_weight_shape_v = list(unet_sd[layer_name + ".to_v.weight"].shape)
new_weight_shape_v = list(te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"].shape)
unet_sd[layer_name + ".to_k.weight"] = te_aug_sd[te_aug_name + ".weight"]
unet_sd[layer_name + ".to_v.weight"] = te_aug_sd[te_aug_name.replace('to_k', 'to_v') + ".weight"]
if new_cross_attn_dim is None:
new_cross_attn_dim = unet_sd[layer_name + ".to_k.weight"].shape[1]
if is_pixart:
# copy the caption_projection weight
del unet_sd['caption_projection.linear_1.bias']
del unet_sd['caption_projection.linear_1.weight']
del unet_sd['caption_projection.linear_2.bias']
del unet_sd['caption_projection.linear_2.weight']
print("Saving unmodified model")
sd = sd.to("cpu", torch.float16)
sd.save_pretrained(
output_path,
safe_serialization=True,
)
# overwrite the unet
if is_pixart:
unet_folder = os.path.join(output_path, "transformer")
else:
unet_folder = os.path.join(output_path, "unet")
# move state_dict to cpu
unet_sd = {k: v.clone().cpu().to(torch.float16) for k, v in unet_sd.items()}
meta = OrderedDict()
meta["format"] = "pt"
print("Patching")
save_file(unet_sd, os.path.join(unet_folder, "diffusion_pytorch_model.safetensors"), meta)
# load the json file
with open(os.path.join(unet_folder, "config.json"), 'r') as f:
config = json.load(f)
config['cross_attention_dim'] = new_cross_attn_dim
if is_pixart:
config['caption_channels'] = None
# save it
with open(os.path.join(unet_folder, "config.json"), 'w') as f:
json.dump(config, f, indent=2)
print("Done")
new_params = sum([v.numel() for v in unet_sd.values()])
# print new and old params with , formatted
print(f"Old params: {start_params:,}")
print(f"New params: {new_params:,}")
|