File size: 2,903 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
job: extension
config:
  name: test_v1
  process:
    - type: 'textual_inversion_trainer'
      training_folder: "out/TI"
      device: cuda:0
      # for tensorboard logging
      log_dir: "out/.tensorboard"
      embedding:
        trigger: "your_trigger_here"
        tokens: 12
        init_words: "man with short brown hair"
        save_format: "safetensors"  # 'safetensors' or 'pt'
      save:
        dtype: float16 # precision to save
        save_every: 100 # save every this many steps
        max_step_saves_to_keep: 5 # only affects step counts
      datasets:
        - folder_path: "/path/to/dataset"
          caption_ext: "txt"
          default_caption: "[trigger]"
          buckets: true
          resolution: 512
      train:
        noise_scheduler: "ddpm" # or "ddpm", "lms", "euler_a"
        steps: 3000
        weight_jitter: 0.0
        lr: 5e-5
        train_unet: false
        gradient_checkpointing: true
        train_text_encoder: false
        optimizer: "adamw"
#        optimizer: "prodigy"
        optimizer_params:
          weight_decay: 1e-2
        lr_scheduler: "constant"
        max_denoising_steps: 1000
        batch_size: 4
        dtype: bf16
        xformers: true
        min_snr_gamma: 5.0
#        skip_first_sample: true
        noise_offset: 0.0 # not needed for this
      model:
        # objective reality v2
        name_or_path: "https://civitai.com/models/128453?modelVersionId=142465"
        is_v2: false  # for v2 models
        is_xl: false  # for SDXL models
        is_v_pred: false # for v-prediction models (most v2 models)
      sample:
        sampler: "ddpm" # must match train.noise_scheduler
        sample_every: 100 # sample every this many steps
        width: 512
        height: 512
        prompts:
          - "photo of [trigger] laughing"
          - "photo of [trigger] smiling"
          - "[trigger] close up"
          - "dark scene [trigger] frozen"
          - "[trigger] nighttime"
          - "a painting of [trigger]"
          - "a drawing of [trigger]"
          - "a cartoon of [trigger]"
          - "[trigger] pixar style"
          - "[trigger] costume"
        neg: ""
        seed: 42
        walk_seed: false
        guidance_scale: 7
        sample_steps: 20
        network_multiplier: 1.0

      logging:
        log_every: 10 # log every this many steps
        use_wandb: false # not supported yet
        verbose: false

# You can put any information you want here, and it will be saved in the model.
# The below is an example, but you can put your grocery list in it if you want.
# It is saved in the model so be aware of that. The software will include this
# plus some other information for you automatically
meta:
  # [name] gets replaced with the name above
  name: "[name]"
#  version: '1.0'
#  creator:
#    name: Your Name
#    email: [email protected]
#    website: https://your.website