File size: 8,312 Bytes
1ba389d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import os
import random
from collections import OrderedDict
from typing import List

import numpy as np
from PIL import Image
from diffusers import T2IAdapter
from torch.utils.data import DataLoader
from diffusers import StableDiffusionXLAdapterPipeline, StableDiffusionAdapterPipeline
from tqdm import tqdm

from toolkit.config_modules import ModelConfig, GenerateImageConfig, preprocess_dataset_raw_config, DatasetConfig
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
from toolkit.sampler import get_sampler
from toolkit.stable_diffusion_model import StableDiffusion
import gc
import torch
from jobs.process import BaseExtensionProcess
from toolkit.data_loader import get_dataloader_from_datasets
from toolkit.train_tools import get_torch_dtype
from controlnet_aux.midas import MidasDetector
from diffusers.utils import load_image


def flush():
    torch.cuda.empty_cache()
    gc.collect()


class GenerateConfig:

    def __init__(self, **kwargs):
        self.prompts: List[str]
        self.sampler = kwargs.get('sampler', 'ddpm')
        self.neg = kwargs.get('neg', '')
        self.seed = kwargs.get('seed', -1)
        self.walk_seed = kwargs.get('walk_seed', False)
        self.t2i_adapter_path = kwargs.get('t2i_adapter_path', None)
        self.guidance_scale = kwargs.get('guidance_scale', 7)
        self.sample_steps = kwargs.get('sample_steps', 20)
        self.prompt_2 = kwargs.get('prompt_2', None)
        self.neg_2 = kwargs.get('neg_2', None)
        self.prompts = kwargs.get('prompts', None)
        self.guidance_rescale = kwargs.get('guidance_rescale', 0.0)
        self.ext = kwargs.get('ext', 'png')
        self.adapter_conditioning_scale = kwargs.get('adapter_conditioning_scale', 1.0)
        if kwargs.get('shuffle', False):
            # shuffle the prompts
            random.shuffle(self.prompts)


class ReferenceGenerator(BaseExtensionProcess):

    def __init__(self, process_id: int, job, config: OrderedDict):
        super().__init__(process_id, job, config)
        self.output_folder = self.get_conf('output_folder', required=True)
        self.device = self.get_conf('device', 'cuda')
        self.model_config = ModelConfig(**self.get_conf('model', required=True))
        self.generate_config = GenerateConfig(**self.get_conf('generate', required=True))
        self.is_latents_cached = True
        raw_datasets = self.get_conf('datasets', None)
        if raw_datasets is not None and len(raw_datasets) > 0:
            raw_datasets = preprocess_dataset_raw_config(raw_datasets)
        self.datasets = None
        self.datasets_reg = None
        self.dtype = self.get_conf('dtype', 'float16')
        self.torch_dtype = get_torch_dtype(self.dtype)
        self.params = []
        if raw_datasets is not None and len(raw_datasets) > 0:
            for raw_dataset in raw_datasets:
                dataset = DatasetConfig(**raw_dataset)
                is_caching = dataset.cache_latents or dataset.cache_latents_to_disk
                if not is_caching:
                    self.is_latents_cached = False
                if dataset.is_reg:
                    if self.datasets_reg is None:
                        self.datasets_reg = []
                    self.datasets_reg.append(dataset)
                else:
                    if self.datasets is None:
                        self.datasets = []
                    self.datasets.append(dataset)

        self.progress_bar = None
        self.sd = StableDiffusion(
            device=self.device,
            model_config=self.model_config,
            dtype=self.dtype,
        )
        print(f"Using device {self.device}")
        self.data_loader: DataLoader = None
        self.adapter: T2IAdapter = None

    def run(self):
        super().run()
        print("Loading model...")
        self.sd.load_model()
        device = torch.device(self.device)

        if self.generate_config.t2i_adapter_path is not None:
            self.adapter = T2IAdapter.from_pretrained(
                self.generate_config.t2i_adapter_path,
                torch_dtype=self.torch_dtype,
                varient="fp16"
            ).to(device)

        midas_depth = MidasDetector.from_pretrained(
            "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large"
        ).to(device)

        if self.model_config.is_xl:
            pipe = StableDiffusionXLAdapterPipeline(
                vae=self.sd.vae,
                unet=self.sd.unet,
                text_encoder=self.sd.text_encoder[0],
                text_encoder_2=self.sd.text_encoder[1],
                tokenizer=self.sd.tokenizer[0],
                tokenizer_2=self.sd.tokenizer[1],
                scheduler=get_sampler(self.generate_config.sampler),
                adapter=self.adapter,
            ).to(device, dtype=self.torch_dtype)
        else:
            pipe = StableDiffusionAdapterPipeline(
                vae=self.sd.vae,
                unet=self.sd.unet,
                text_encoder=self.sd.text_encoder,
                tokenizer=self.sd.tokenizer,
                scheduler=get_sampler(self.generate_config.sampler),
                safety_checker=None,
                feature_extractor=None,
                requires_safety_checker=False,
                adapter=self.adapter,
            ).to(device, dtype=self.torch_dtype)
        pipe.set_progress_bar_config(disable=True)

        pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
        # midas_depth = torch.compile(midas_depth, mode="reduce-overhead", fullgraph=True)

        self.data_loader = get_dataloader_from_datasets(self.datasets, 1, self.sd)

        num_batches = len(self.data_loader)
        pbar = tqdm(total=num_batches, desc="Generating images")
        seed = self.generate_config.seed
        # load images from datasets, use tqdm
        for i, batch in enumerate(self.data_loader):
            batch: DataLoaderBatchDTO = batch

            file_item: FileItemDTO = batch.file_items[0]
            img_path = file_item.path
            img_filename = os.path.basename(img_path)
            img_filename_no_ext = os.path.splitext(img_filename)[0]
            output_path = os.path.join(self.output_folder, img_filename)
            output_caption_path = os.path.join(self.output_folder, img_filename_no_ext + '.txt')
            output_depth_path = os.path.join(self.output_folder, img_filename_no_ext + '.depth.png')

            caption = batch.get_caption_list()[0]

            img: torch.Tensor = batch.tensor.clone()
            # image comes in -1 to 1. convert to a PIL RGB image
            img = (img + 1) / 2
            img = img.clamp(0, 1)
            img = img[0].permute(1, 2, 0).cpu().numpy()
            img = (img * 255).astype(np.uint8)
            image = Image.fromarray(img)

            width, height = image.size
            min_res = min(width, height)

            if self.generate_config.walk_seed:
                seed = seed + 1

            if self.generate_config.seed == -1:
                # random
                seed = random.randint(0, 1000000)

            torch.manual_seed(seed)
            torch.cuda.manual_seed(seed)

            # generate depth map
            image = midas_depth(
                image,
                detect_resolution=min_res,  # do 512 ?
                image_resolution=min_res
            )

            # image.save(output_depth_path)

            gen_images = pipe(
                prompt=caption,
                negative_prompt=self.generate_config.neg,
                image=image,
                num_inference_steps=self.generate_config.sample_steps,
                adapter_conditioning_scale=self.generate_config.adapter_conditioning_scale,
                guidance_scale=self.generate_config.guidance_scale,
            ).images[0]
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            gen_images.save(output_path)

            # save caption
            with open(output_caption_path, 'w') as f:
                f.write(caption)

            pbar.update(1)
            batch.cleanup()

        pbar.close()
        print("Done generating images")
        # cleanup
        del self.sd
        gc.collect()
        torch.cuda.empty_cache()