File size: 12,409 Bytes
1ba389d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false,
"id": "zl-S0m3pkQC5"
},
"source": [
"# AI Toolkit by Ostris\n",
"## FLUX.1-dev Training\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BvAG0GKAh59G"
},
"outputs": [],
"source": [
"!git clone https://github.com/ostris/ai-toolkit\n",
"!mkdir -p /content/dataset"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UFUW4ZMmnp1V"
},
"source": [
"Put your image dataset in the `/content/dataset` folder"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "XGZqVER_aQJW"
},
"outputs": [],
"source": [
"!cd ai-toolkit && git submodule update --init --recursive && pip install -r requirements.txt\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OV0HnOI6o8V6"
},
"source": [
"## Model License\n",
"Training currently only works with FLUX.1-dev. Which means anything you train will inherit the non-commercial license. It is also a gated model, so you need to accept the license on HF before using it. Otherwise, this will fail. Here are the required steps to setup a license.\n",
"\n",
"Sign into HF and accept the model access here [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev)\n",
"\n",
"[Get a READ key from huggingface](https://huggingface.co/settings/tokens/new?) and place it in the next cell after running it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3yZZdhFRoj2m"
},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"# Prompt for the token\n",
"hf_token = getpass.getpass('Enter your HF access token and press enter: ')\n",
"\n",
"# Set the environment variable\n",
"os.environ['HF_TOKEN'] = hf_token\n",
"\n",
"print(\"HF_TOKEN environment variable has been set.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9gO2EzQ1kQC8"
},
"outputs": [],
"source": [
"import os\n",
"import sys\n",
"sys.path.append('/content/ai-toolkit')\n",
"from toolkit.job import run_job\n",
"from collections import OrderedDict\n",
"from PIL import Image\n",
"import os\n",
"os.environ[\"HF_HUB_ENABLE_HF_TRANSFER\"] = \"1\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N8UUFzVRigbC"
},
"source": [
"## Setup\n",
"\n",
"This is your config. It is documented pretty well. Normally you would do this as a yaml file, but for colab, this will work. This will run as is without modification, but feel free to edit as you want."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "_t28QURYjRQO"
},
"outputs": [],
"source": [
"from collections import OrderedDict\n",
"\n",
"job_to_run = OrderedDict([\n",
" ('job', 'extension'),\n",
" ('config', OrderedDict([\n",
" # this name will be the folder and filename name\n",
" ('name', 'my_first_flux_lora_v1'),\n",
" ('process', [\n",
" OrderedDict([\n",
" ('type', 'sd_trainer'),\n",
" # root folder to save training sessions/samples/weights\n",
" ('training_folder', '/content/output'),\n",
" # uncomment to see performance stats in the terminal every N steps\n",
" #('performance_log_every', 1000),\n",
" ('device', 'cuda:0'),\n",
" # if a trigger word is specified, it will be added to captions of training data if it does not already exist\n",
" # alternatively, in your captions you can add [trigger] and it will be replaced with the trigger word\n",
" # ('trigger_word', 'image'),\n",
" ('network', OrderedDict([\n",
" ('type', 'lora'),\n",
" ('linear', 16),\n",
" ('linear_alpha', 16)\n",
" ])),\n",
" ('save', OrderedDict([\n",
" ('dtype', 'float16'), # precision to save\n",
" ('save_every', 250), # save every this many steps\n",
" ('max_step_saves_to_keep', 4) # how many intermittent saves to keep\n",
" ])),\n",
" ('datasets', [\n",
" # datasets are a folder of images. captions need to be txt files with the same name as the image\n",
" # for instance image2.jpg and image2.txt. Only jpg, jpeg, and png are supported currently\n",
" # images will automatically be resized and bucketed into the resolution specified\n",
" OrderedDict([\n",
" ('folder_path', '/content/dataset'),\n",
" ('caption_ext', 'txt'),\n",
" ('caption_dropout_rate', 0.05), # will drop out the caption 5% of time\n",
" ('shuffle_tokens', False), # shuffle caption order, split by commas\n",
" ('cache_latents_to_disk', True), # leave this true unless you know what you're doing\n",
" ('resolution', [512, 768, 1024]) # flux enjoys multiple resolutions\n",
" ])\n",
" ]),\n",
" ('train', OrderedDict([\n",
" ('batch_size', 1),\n",
" ('steps', 2000), # total number of steps to train 500 - 4000 is a good range\n",
" ('gradient_accumulation_steps', 1),\n",
" ('train_unet', True),\n",
" ('train_text_encoder', False), # probably won't work with flux\n",
" ('content_or_style', 'balanced'), # content, style, balanced\n",
" ('gradient_checkpointing', True), # need the on unless you have a ton of vram\n",
" ('noise_scheduler', 'flowmatch'), # for training only\n",
" ('optimizer', 'adamw8bit'),\n",
" ('lr', 1e-4),\n",
"\n",
" # uncomment this to skip the pre training sample\n",
" # ('skip_first_sample', True),\n",
"\n",
" # uncomment to completely disable sampling\n",
" # ('disable_sampling', True),\n",
"\n",
" # uncomment to use new vell curved weighting. Experimental but may produce better results\n",
" # ('linear_timesteps', True),\n",
"\n",
" # ema will smooth out learning, but could slow it down. Recommended to leave on.\n",
" ('ema_config', OrderedDict([\n",
" ('use_ema', True),\n",
" ('ema_decay', 0.99)\n",
" ])),\n",
"\n",
" # will probably need this if gpu supports it for flux, other dtypes may not work correctly\n",
" ('dtype', 'bf16')\n",
" ])),\n",
" ('model', OrderedDict([\n",
" # huggingface model name or path\n",
" ('name_or_path', 'black-forest-labs/FLUX.1-dev'),\n",
" ('is_flux', True),\n",
" ('quantize', True), # run 8bit mixed precision\n",
" #('low_vram', True), # uncomment this if the GPU is connected to your monitors. It will use less vram to quantize, but is slower.\n",
" ])),\n",
" ('sample', OrderedDict([\n",
" ('sampler', 'flowmatch'), # must match train.noise_scheduler\n",
" ('sample_every', 250), # sample every this many steps\n",
" ('width', 1024),\n",
" ('height', 1024),\n",
" ('prompts', [\n",
" # you can add [trigger] to the prompts here and it will be replaced with the trigger word\n",
" #'[trigger] holding a sign that says \\'I LOVE PROMPTS!\\'',\n",
" 'woman with red hair, playing chess at the park, bomb going off in the background',\n",
" 'a woman holding a coffee cup, in a beanie, sitting at a cafe',\n",
" 'a horse is a DJ at a night club, fish eye lens, smoke machine, lazer lights, holding a martini',\n",
" 'a man showing off his cool new t shirt at the beach, a shark is jumping out of the water in the background',\n",
" 'a bear building a log cabin in the snow covered mountains',\n",
" 'woman playing the guitar, on stage, singing a song, laser lights, punk rocker',\n",
" 'hipster man with a beard, building a chair, in a wood shop',\n",
" 'photo of a man, white background, medium shot, modeling clothing, studio lighting, white backdrop',\n",
" 'a man holding a sign that says, \\'this is a sign\\'',\n",
" 'a bulldog, in a post apocalyptic world, with a shotgun, in a leather jacket, in a desert, with a motorcycle'\n",
" ]),\n",
" ('neg', ''), # not used on flux\n",
" ('seed', 42),\n",
" ('walk_seed', True),\n",
" ('guidance_scale', 4),\n",
" ('sample_steps', 20)\n",
" ]))\n",
" ])\n",
" ])\n",
" ])),\n",
" # you can add any additional meta info here. [name] is replaced with config name at top\n",
" ('meta', OrderedDict([\n",
" ('name', '[name]'),\n",
" ('version', '1.0')\n",
" ]))\n",
"])\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "h6F1FlM2Wb3l"
},
"source": [
"## Run it\n",
"\n",
"Below does all the magic. Check your folders to the left. Items will be in output/LoRA/your_name_v1 In the samples folder, there are preiodic sampled. This doesnt work great with colab. They will be in /content/output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "HkajwI8gteOh"
},
"outputs": [],
"source": [
"run_job(job_to_run)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Hblgb5uwW5SD"
},
"source": [
"## Done\n",
"\n",
"Check your ourput dir and get your slider\n"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "A100",
"machine_shape": "hm",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|