ianporada commited on
Commit
c39beae
·
verified ·
1 Parent(s): 48072f9

Upload davis_pdp_raw.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. davis_pdp_raw.py +131 -0
davis_pdp_raw.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """The Winograd Schema Challenge Dataset"""
16
+
17
+ import xml.etree.ElementTree as ET
18
+
19
+ import datasets
20
+
21
+
22
+ _DESCRIPTION = """\
23
+ A Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is
24
+ resolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its
25
+ resolution. The schema takes its name from a well-known example by Terry Winograd:
26
+
27
+ > The city councilmen refused the demonstrators a permit because they [feared/advocated] violence.
28
+
29
+ If the word is ``feared'', then ``they'' presumably refers to the city council; if it is ``advocated'' then ``they''
30
+ presumably refers to the demonstrators.
31
+ """
32
+
33
+ _CITATION = """\
34
+ @inproceedings{levesque2012winograd,
35
+ title={The winograd schema challenge},
36
+ author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
37
+ booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
38
+ year={2012},
39
+ organization={Citeseer}
40
+ }
41
+ """
42
+
43
+ _HOMPAGE = "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html"
44
+ _DOWNLOAD_URL = "https://cs.nyu.edu/~davise/papers/WinogradSchemas/PDPChallenge2016.xml"
45
+
46
+
47
+ class WinogradWSCConfig(datasets.BuilderConfig):
48
+ """BuilderConfig for WinogradWSC."""
49
+
50
+ def __init__(self, *args, language=None, inds=None, **kwargs):
51
+ super().__init__(*args, **kwargs)
52
+ self.inds = set(inds) if inds is not None else None
53
+
54
+ def is_in_range(self, id):
55
+ """Takes an index and tells you if it belongs to the configuration's subset"""
56
+ return id in self.inds if self.inds is not None else True
57
+
58
+
59
+ class WinogradWSC(datasets.GeneratorBasedBuilder):
60
+ """The Winograd Schema Challenge Dataset"""
61
+
62
+ BUILDER_CONFIG_CLASS = WinogradWSCConfig
63
+ BUILDER_CONFIGS = [
64
+ WinogradWSCConfig(
65
+ name="davis_pdp",
66
+ description="Full set of winograd examples",
67
+ ),
68
+ ]
69
+
70
+ def _info(self):
71
+ return datasets.DatasetInfo(
72
+ description=_DESCRIPTION,
73
+ features=datasets.Features(
74
+ {
75
+ "text": datasets.Value("string"),
76
+ "pronoun": datasets.Value("string"),
77
+ "pronoun_loc": datasets.Value("int32"),
78
+ "quote": datasets.Value("string"),
79
+ "quote_loc": datasets.Value("int32"),
80
+ "options": datasets.Sequence(datasets.Value("string")),
81
+ "label": datasets.Value("int32"),
82
+ "humanSubjects": datasets.Value("string"),
83
+ "source": datasets.Value("string"),
84
+ }
85
+ ),
86
+ homepage=_HOMPAGE,
87
+ citation=_CITATION,
88
+ )
89
+
90
+ def _split_generators(self, dl_manager):
91
+ path = dl_manager.download_and_extract(_DOWNLOAD_URL)
92
+ return [
93
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": path}),
94
+ ]
95
+
96
+ def _cleanup_whitespace(self, text):
97
+ return " ".join(text.split())
98
+
99
+ def _generate_examples(self, filepath):
100
+ tree = ET.parse(filepath)
101
+ for id, schema in enumerate(tree.getroot()):
102
+ if not self.config.is_in_range(id):
103
+ continue
104
+
105
+ text_root = schema.find("text")
106
+ quote_root = schema.find("quote")
107
+
108
+ text_left = self._cleanup_whitespace(text_root.findtext("txt1", ""))
109
+ text_right = self._cleanup_whitespace(text_root.findtext("txt2", ""))
110
+ quote_left = self._cleanup_whitespace(quote_root.findtext("quote1", ""))
111
+ quote_right = self._cleanup_whitespace(quote_root.findtext("quote2", ""))
112
+ pronoun = self._cleanup_whitespace(text_root.findtext("pron"))
113
+
114
+ features = {}
115
+ features["text"] = " ".join([text_left, pronoun, text_right]).strip()
116
+ features["quote"] = " ".join([quote_left, pronoun, quote_right]).strip()
117
+
118
+ features["pronoun"] = pronoun
119
+ features["options"] = [
120
+ self._cleanup_whitespace(option.text) for option in schema.find("answers").findall("answer")
121
+ ]
122
+
123
+ answer_txt = self._cleanup_whitespace(schema.findtext("correctAnswer"))
124
+ features["label"] = 0 if "A" in answer_txt else (1 if "B" in answer_txt else (2 if "C" in answer_txt else 3)) # convert " A. " or " B " strings to a 0/1 index
125
+
126
+ features["pronoun_loc"] = len(text_left) + 1 if len(text_left) > 0 else 0
127
+ features["quote_loc"] = features["pronoun_loc"] - (len(quote_left) + 1 if len(quote_left) > 0 else 0)
128
+ features["humanSubjects"] = self._cleanup_whitespace(schema.findtext("humanSubjects"))
129
+ features["source"] = self._cleanup_whitespace(schema.findtext("source"))
130
+
131
+ yield id, features