|
|
|
|
|
"""VoxCeleb dataset.""" |
|
|
|
|
|
import os |
|
from typing import List |
|
from pathlib import Path |
|
|
|
import librosa |
|
import datasets |
|
from rich import print |
|
|
|
|
|
DATA_DIR_STRUCTURE = """ |
|
test/ |
|
βββ wav |
|
βββ id10270 |
|
... |
|
βββ id10309 |
|
βββ A3ZvNuG8_oM |
|
... |
|
βββ UbApEUoPvzY |
|
βββ 00001.wav |
|
... |
|
βββ 00005.wav |
|
""" |
|
|
|
SAMPLING_RATE = 16_000 |
|
|
|
|
|
class VoxCelebConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for VoxCeleb.""" |
|
|
|
def __init__(self, features, **kwargs): |
|
super(VoxCelebConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs) |
|
self.features = features |
|
|
|
|
|
class VoxCeleb(datasets.GeneratorBasedBuilder): |
|
|
|
BUILDER_CONFIGS = [ |
|
VoxCelebConfig( |
|
features=datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=SAMPLING_RATE), |
|
"speaker": datasets.Value("string"), |
|
|
|
} |
|
), |
|
name="verification", |
|
description="", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "verification" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="VoxCeleb for verification", |
|
features=self.config.features, |
|
) |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use VoxCeleb you have to download it manually. " |
|
"The tree structure of the downloaded data looks like: \n" |
|
f"{DATA_DIR_STRUCTURE}" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. " |
|
f"Manual download instructions: \n{self.manual_download_instructions}" |
|
) |
|
|
|
dev_archive_path = os.path.join(data_dir, 'dev', 'wav') |
|
test_archive_path = os.path.join(data_dir, 'test', 'wav') |
|
|
|
for path in [dev_archive_path, test_archive_path]: |
|
if not os.path.isdir(path): |
|
raise FileExistsError(f"{path} does not exist. Make sure you have converted m4a to wav format.") |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "archive_path": dev_archive_path}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "archive_path": test_archive_path}), |
|
] |
|
|
|
def _generate_examples(self, split, archive_path): |
|
"""Generate examples from VoxCeleb""" |
|
|
|
extensions = ['.wav'] |
|
|
|
_, wav_paths = fast_scandir(archive_path, extensions, recursive=True) |
|
|
|
for guid, wav_path in enumerate(wav_paths): |
|
fileid = Path(wav_path).name |
|
speaker = Path(wav_path).parent.parent.name |
|
|
|
|
|
|
|
try: |
|
yield guid, { |
|
"id": str(guid), |
|
"audio": wav_path, |
|
"speaker": speaker, |
|
|
|
} |
|
except: |
|
continue |
|
|
|
|
|
def fast_scandir(path: str, extensions: List[str], recursive: bool = False): |
|
|
|
|
|
subfolders, files = [], [] |
|
|
|
try: |
|
for f in os.scandir(path): |
|
try: |
|
if f.is_dir(): |
|
subfolders.append(f.path) |
|
elif f.is_file(): |
|
if os.path.splitext(f.name)[1].lower() in extensions: |
|
files.append(f.path) |
|
except Exception: |
|
pass |
|
except Exception: |
|
pass |
|
|
|
if recursive: |
|
for path in list(subfolders): |
|
sf, f = fast_scandir(path, extensions, recursive=recursive) |
|
subfolders.extend(sf) |
|
files.extend(f) |
|
|
|
return subfolders, files |