yangwang825 commited on
Commit
ff4920e
·
verified ·
1 Parent(s): 2e266e1

Update medley-solos-db.py

Browse files
Files changed (1) hide show
  1. medley-solos-db.py +28 -43
medley-solos-db.py CHANGED
@@ -4,25 +4,17 @@
4
 
5
 
6
  import os
7
- import json
8
  import gzip
9
  import shutil
10
  import pathlib
11
- import logging
12
- import textwrap
13
  import datasets
14
- import itertools
15
  import typing as tp
16
  import pandas as pd
17
  import urllib.request
18
  from pathlib import Path
19
- from copy import deepcopy
20
  from tqdm.auto import tqdm
21
- from rich.logging import RichHandler
22
 
23
- logger = logging.getLogger(__name__)
24
- logger.addHandler(RichHandler())
25
- logger.setLevel(logging.INFO)
26
 
27
  SAMPLE_RATE = 44_100
28
 
@@ -56,7 +48,6 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
56
  MedleySolosDBConfig(
57
  features=datasets.Features(
58
  {
59
- "file": datasets.Value("string"),
60
  "audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
61
  "instrument": datasets.Value("string"),
62
  "label": datasets.features.ClassLabel(names=CLASSES),
@@ -87,23 +78,10 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
87
  HF_DATASETS_CACHE, 'confit___medley-solos-db/v1.2', VERSION, _filename
88
  )
89
  download_file(zip_file_url, _save_path)
90
- logger.info(f"`{_filename}` is downloaded to {_save_path}")
91
  archive_path = dl_manager.extract(_save_path)
92
- logger.info(f"`{_filename}` is now extracted to {archive_path}")
93
 
94
- return [
95
- datasets.SplitGenerator(
96
- name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, "split": "train"}
97
- ),
98
- datasets.SplitGenerator(
99
- name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path, "split": "validation"}
100
- ),
101
- datasets.SplitGenerator(
102
- name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
103
- ),
104
- ]
105
-
106
- def _generate_examples(self, archive_path, split=None):
107
  metadata_df = pd.read_csv("https://zenodo.org/records/3464194/files/Medley-solos-DB_metadata.csv")
108
  train_df = metadata_df[metadata_df["subset"] == "training"].reset_index(drop=True)
109
  validation_df = metadata_df[metadata_df["subset"] == "validation"].reset_index(drop=True)
@@ -112,33 +90,40 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
112
  extensions = ['.wav']
113
  _, _walker = fast_scandir(archive_path, extensions, recursive=True)
114
 
115
- if split == 'train':
116
- fileid2class = {}
117
- for idx, row in train_df.iterrows():
118
- fileid = row['uuid4']
119
- class_ = row['instrument']
120
- fileid2class[fileid] = class_
121
- elif split == 'validation':
122
- fileid2class = {}
123
- for idx, row in validation_df.iterrows():
124
- fileid = row['uuid4']
125
- class_ = row['instrument']
126
- fileid2class[fileid] = class_
127
- elif split == 'test':
128
  fileid2class = {}
129
- for idx, row in test_df.iterrows():
130
- fileid = row['uuid4']
131
  class_ = row['instrument']
 
 
132
  fileid2class[fileid] = class_
133
-
134
- for guid, audio_path in enumerate(_walker):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
135
  fileid = Path(audio_path).stem
136
  if fileid not in fileid2class:
137
  continue
138
  instrument = fileid2class.get(fileid)
139
  yield guid, {
140
  "id": str(guid),
141
- "file": audio_path,
142
  "audio": audio_path,
143
  "instrument": instrument,
144
  "label": instrument,
 
4
 
5
 
6
  import os
 
7
  import gzip
8
  import shutil
9
  import pathlib
 
 
10
  import datasets
 
11
  import typing as tp
12
  import pandas as pd
13
  import urllib.request
14
  from pathlib import Path
15
+ from rich import print
16
  from tqdm.auto import tqdm
 
17
 
 
 
 
18
 
19
  SAMPLE_RATE = 44_100
20
 
 
48
  MedleySolosDBConfig(
49
  features=datasets.Features(
50
  {
 
51
  "audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
52
  "instrument": datasets.Value("string"),
53
  "label": datasets.features.ClassLabel(names=CLASSES),
 
78
  HF_DATASETS_CACHE, 'confit___medley-solos-db/v1.2', VERSION, _filename
79
  )
80
  download_file(zip_file_url, _save_path)
81
+ print(f"`{_filename}` is downloaded to {_save_path}")
82
  archive_path = dl_manager.extract(_save_path)
83
+ print(f"`{_filename}` is now extracted to {archive_path}")
84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85
  metadata_df = pd.read_csv("https://zenodo.org/records/3464194/files/Medley-solos-DB_metadata.csv")
86
  train_df = metadata_df[metadata_df["subset"] == "training"].reset_index(drop=True)
87
  validation_df = metadata_df[metadata_df["subset"] == "validation"].reset_index(drop=True)
 
90
  extensions = ['.wav']
91
  _, _walker = fast_scandir(archive_path, extensions, recursive=True)
92
 
93
+ def get_fileid2class(df, split=None):
 
 
 
 
 
 
 
 
 
 
 
 
94
  fileid2class = {}
95
+ for idx, row in df.iterrows():
96
+ _fileid = row['uuid4']
97
  class_ = row['instrument']
98
+ class_id = row['instrument_id']
99
+ fileid = f"Medley-solos-DB_{split}-{class_id}_{_fileid}"
100
  fileid2class[fileid] = class_
101
+ return fileid2class
102
+
103
+ train_fileid2class = get_fileid2class(train_df, 'training')
104
+ validation_fileid2class = get_fileid2class(validation_df, 'validation')
105
+ test_fileid2class = get_fileid2class(test_df, 'test')
106
+
107
+ return [
108
+ datasets.SplitGenerator(
109
+ name=datasets.Split.TRAIN, gen_kwargs={"filepaths": _walker, "split": "train", "fileid2class": train_fileid2class}
110
+ ),
111
+ datasets.SplitGenerator(
112
+ name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": _walker, "split": "validation", "fileid2class": validation_fileid2class}
113
+ ),
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.TEST, gen_kwargs={"filepaths": _walker, "split": "test", "fileid2class": test_fileid2class}
116
+ ),
117
+ ]
118
+
119
+ def _generate_examples(self, filepaths, split=None, fileid2class=None):
120
+ for guid, audio_path in enumerate(filepaths):
121
  fileid = Path(audio_path).stem
122
  if fileid not in fileid2class:
123
  continue
124
  instrument = fileid2class.get(fileid)
125
  yield guid, {
126
  "id": str(guid),
 
127
  "audio": audio_path,
128
  "instrument": instrument,
129
  "label": instrument,