Update medley-solos-db.py
Browse files- medley-solos-db.py +28 -43
medley-solos-db.py
CHANGED
@@ -4,25 +4,17 @@
|
|
4 |
|
5 |
|
6 |
import os
|
7 |
-
import json
|
8 |
import gzip
|
9 |
import shutil
|
10 |
import pathlib
|
11 |
-
import logging
|
12 |
-
import textwrap
|
13 |
import datasets
|
14 |
-
import itertools
|
15 |
import typing as tp
|
16 |
import pandas as pd
|
17 |
import urllib.request
|
18 |
from pathlib import Path
|
19 |
-
from
|
20 |
from tqdm.auto import tqdm
|
21 |
-
from rich.logging import RichHandler
|
22 |
|
23 |
-
logger = logging.getLogger(__name__)
|
24 |
-
logger.addHandler(RichHandler())
|
25 |
-
logger.setLevel(logging.INFO)
|
26 |
|
27 |
SAMPLE_RATE = 44_100
|
28 |
|
@@ -56,7 +48,6 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
|
|
56 |
MedleySolosDBConfig(
|
57 |
features=datasets.Features(
|
58 |
{
|
59 |
-
"file": datasets.Value("string"),
|
60 |
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
|
61 |
"instrument": datasets.Value("string"),
|
62 |
"label": datasets.features.ClassLabel(names=CLASSES),
|
@@ -87,23 +78,10 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
|
|
87 |
HF_DATASETS_CACHE, 'confit___medley-solos-db/v1.2', VERSION, _filename
|
88 |
)
|
89 |
download_file(zip_file_url, _save_path)
|
90 |
-
|
91 |
archive_path = dl_manager.extract(_save_path)
|
92 |
-
|
93 |
|
94 |
-
return [
|
95 |
-
datasets.SplitGenerator(
|
96 |
-
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": archive_path, "split": "train"}
|
97 |
-
),
|
98 |
-
datasets.SplitGenerator(
|
99 |
-
name=datasets.Split.VALIDATION, gen_kwargs={"archive_path": archive_path, "split": "validation"}
|
100 |
-
),
|
101 |
-
datasets.SplitGenerator(
|
102 |
-
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
|
103 |
-
),
|
104 |
-
]
|
105 |
-
|
106 |
-
def _generate_examples(self, archive_path, split=None):
|
107 |
metadata_df = pd.read_csv("https://zenodo.org/records/3464194/files/Medley-solos-DB_metadata.csv")
|
108 |
train_df = metadata_df[metadata_df["subset"] == "training"].reset_index(drop=True)
|
109 |
validation_df = metadata_df[metadata_df["subset"] == "validation"].reset_index(drop=True)
|
@@ -112,33 +90,40 @@ class MedleySolosDB(datasets.GeneratorBasedBuilder):
|
|
112 |
extensions = ['.wav']
|
113 |
_, _walker = fast_scandir(archive_path, extensions, recursive=True)
|
114 |
|
115 |
-
|
116 |
-
fileid2class = {}
|
117 |
-
for idx, row in train_df.iterrows():
|
118 |
-
fileid = row['uuid4']
|
119 |
-
class_ = row['instrument']
|
120 |
-
fileid2class[fileid] = class_
|
121 |
-
elif split == 'validation':
|
122 |
-
fileid2class = {}
|
123 |
-
for idx, row in validation_df.iterrows():
|
124 |
-
fileid = row['uuid4']
|
125 |
-
class_ = row['instrument']
|
126 |
-
fileid2class[fileid] = class_
|
127 |
-
elif split == 'test':
|
128 |
fileid2class = {}
|
129 |
-
for idx, row in
|
130 |
-
|
131 |
class_ = row['instrument']
|
|
|
|
|
132 |
fileid2class[fileid] = class_
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
fileid = Path(audio_path).stem
|
136 |
if fileid not in fileid2class:
|
137 |
continue
|
138 |
instrument = fileid2class.get(fileid)
|
139 |
yield guid, {
|
140 |
"id": str(guid),
|
141 |
-
"file": audio_path,
|
142 |
"audio": audio_path,
|
143 |
"instrument": instrument,
|
144 |
"label": instrument,
|
|
|
4 |
|
5 |
|
6 |
import os
|
|
|
7 |
import gzip
|
8 |
import shutil
|
9 |
import pathlib
|
|
|
|
|
10 |
import datasets
|
|
|
11 |
import typing as tp
|
12 |
import pandas as pd
|
13 |
import urllib.request
|
14 |
from pathlib import Path
|
15 |
+
from rich import print
|
16 |
from tqdm.auto import tqdm
|
|
|
17 |
|
|
|
|
|
|
|
18 |
|
19 |
SAMPLE_RATE = 44_100
|
20 |
|
|
|
48 |
MedleySolosDBConfig(
|
49 |
features=datasets.Features(
|
50 |
{
|
|
|
51 |
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
|
52 |
"instrument": datasets.Value("string"),
|
53 |
"label": datasets.features.ClassLabel(names=CLASSES),
|
|
|
78 |
HF_DATASETS_CACHE, 'confit___medley-solos-db/v1.2', VERSION, _filename
|
79 |
)
|
80 |
download_file(zip_file_url, _save_path)
|
81 |
+
print(f"`{_filename}` is downloaded to {_save_path}")
|
82 |
archive_path = dl_manager.extract(_save_path)
|
83 |
+
print(f"`{_filename}` is now extracted to {archive_path}")
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
metadata_df = pd.read_csv("https://zenodo.org/records/3464194/files/Medley-solos-DB_metadata.csv")
|
86 |
train_df = metadata_df[metadata_df["subset"] == "training"].reset_index(drop=True)
|
87 |
validation_df = metadata_df[metadata_df["subset"] == "validation"].reset_index(drop=True)
|
|
|
90 |
extensions = ['.wav']
|
91 |
_, _walker = fast_scandir(archive_path, extensions, recursive=True)
|
92 |
|
93 |
+
def get_fileid2class(df, split=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
fileid2class = {}
|
95 |
+
for idx, row in df.iterrows():
|
96 |
+
_fileid = row['uuid4']
|
97 |
class_ = row['instrument']
|
98 |
+
class_id = row['instrument_id']
|
99 |
+
fileid = f"Medley-solos-DB_{split}-{class_id}_{_fileid}"
|
100 |
fileid2class[fileid] = class_
|
101 |
+
return fileid2class
|
102 |
+
|
103 |
+
train_fileid2class = get_fileid2class(train_df, 'training')
|
104 |
+
validation_fileid2class = get_fileid2class(validation_df, 'validation')
|
105 |
+
test_fileid2class = get_fileid2class(test_df, 'test')
|
106 |
+
|
107 |
+
return [
|
108 |
+
datasets.SplitGenerator(
|
109 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": _walker, "split": "train", "fileid2class": train_fileid2class}
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": _walker, "split": "validation", "fileid2class": validation_fileid2class}
|
113 |
+
),
|
114 |
+
datasets.SplitGenerator(
|
115 |
+
name=datasets.Split.TEST, gen_kwargs={"filepaths": _walker, "split": "test", "fileid2class": test_fileid2class}
|
116 |
+
),
|
117 |
+
]
|
118 |
+
|
119 |
+
def _generate_examples(self, filepaths, split=None, fileid2class=None):
|
120 |
+
for guid, audio_path in enumerate(filepaths):
|
121 |
fileid = Path(audio_path).stem
|
122 |
if fileid not in fileid2class:
|
123 |
continue
|
124 |
instrument = fileid2class.get(fileid)
|
125 |
yield guid, {
|
126 |
"id": str(guid),
|
|
|
127 |
"audio": audio_path,
|
128 |
"instrument": instrument,
|
129 |
"label": instrument,
|