File size: 14,082 Bytes
caf4084
 
 
 
 
 
 
e18f7de
84c78dc
e18f7de
 
 
046aa08
caf4084
 
 
 
 
e18f7de
caf4084
e18f7de
 
 
caf4084
 
2d848d0
 
e18f7de
 
 
caf4084
da3bbd4
caf4084
89d1dd2
 
5057ea9
 
caf4084
2d848d0
 
 
caf4084
2d848d0
caf4084
e18f7de
 
 
 
 
 
 
 
 
caf4084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad8db59
5ec0662
caf4084
 
 
 
 
5562f2a
e18f7de
 
 
 
 
 
 
 
 
5562f2a
e18f7de
5562f2a
caf4084
 
9ada73e
 
caf4084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce0ab16
 
 
 
e18f7de
5562f2a
d336a83
e18f7de
5562f2a
 
e18f7de
 
1aa88f2
e18f7de
84c78dc
 
1aa88f2
 
 
84c78dc
 
 
 
 
1aa88f2
 
84c78dc
 
 
 
 
 
 
1aa88f2
e18f7de
5562f2a
 
 
 
046aa08
 
 
 
 
d18a9a8
5562f2a
8a0688d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caf4084
 
 
a6f4a82
 
 
 
5562f2a
a6f4a82
 
 
 
 
caf4084
 
89d1dd2
caf4084
 
 
 
 
 
 
 
 
 
 
 
 
7ba4b9e
caf4084
e1856e2
 
 
caf4084
e1856e2
6b43817
845fdeb
 
 
 
 
 
 
 
 
 
caf4084
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18f7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5562f2a
e18f7de
 
 
 
 
 
 
 
 
 
5562f2a
e18f7de
 
 
 
 
84c78dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
046aa08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e18f7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
# coding=utf-8

"""AudioSet sound event classification dataset."""


import os
import json
import gzip
import joblib
import shutil
import pathlib
import logging
import zipfile
import textwrap
import datasets
import itertools
import typing as tp
import pandas as pd
import urllib.request
from pathlib import Path
from copy import deepcopy
from tqdm.auto import tqdm
from rich.logging import RichHandler
from huggingface_hub import hf_hub_download

from ._audioset import ID2LABEL

logger = logging.getLogger(__name__)
logger.addHandler(RichHandler())
logger.setLevel(logging.INFO)

SAMPLE_RATE = 32_000

_HOMEPAGE = "https://huggingface.co/datasets/confit/audioset"

_BALANCED_TRAIN_FILENAME = 'balanced/balanced_train_segments.zip'
_EVAL_FILENAME = 'eval/eval_segments.zip'

# ID2LABEL = json.load(
#     open(hf_hub_download("huggingface/label-files", "audioset-id2label.json", repo_type="dataset"), "r")
# )
LABEL2ID = {v:k for k, v in ID2LABEL.items()}
CLASSES = list(ID2LABEL.values())

# Cache location
VERSION = "0.0.1"
DEFAULT_XDG_CACHE_HOME = "~/.cache"
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets")
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE))


class AudioSetConfig(datasets.BuilderConfig):
    """BuilderConfig for AudioSet."""
    
    def __init__(self, features, **kwargs):
        super(AudioSetConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs)
        self.features = features


class AudioSet(datasets.GeneratorBasedBuilder):

    BUILDER_CONFIGS = [
        AudioSetConfig(
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
                    "sound": datasets.Sequence(datasets.Value("string")), 
                    "label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)), 
                }
            ),
            name="balanced", 
            description="",
        ), 
    ] + [
        AudioSetConfig(
            features=datasets.Features(
                {
                    "file": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
                    "sound": datasets.Sequence(datasets.Value("string")), 
                    "label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)), 
                }
            ),
            name=f"unbalanced-part{i:02d}", 
            description="",
        ) for i in range(40+1)
    ]

    DEFAULT_CONFIG_NAME = "balanced"

    def _info(self):
        return datasets.DatasetInfo(
            description="",
            features=self.config.features,
            supervised_keys=None,
            homepage="",
            citation="",
            task_templates=None,
        )

    def _preprocess_metadata_csv(self, csv_file):
        df = pd.read_csv(csv_file, skiprows=2, sep=', ', engine='python')
        df.rename(columns={'positive_labels': 'ids'}, inplace=True)
        df['ids'] = [label.strip('\"').split(',') for label in df['ids']]
        df['filename'] = (
            'Y' + df['# YTID'] + '.wav'
        )
        return df[['filename', 'ids']]

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        if self.config.name == 'balanced':
            train_archive_path = dl_manager.download_and_extract(
                f'https://huggingface.co/datasets/confit/audioset/resolve/main/{_BALANCED_TRAIN_FILENAME}'
            )
            logger.info(f"`{_BALANCED_TRAIN_FILENAME}` is downloaded to {train_archive_path}")
            
        elif str(self.config.name).startswith('unbalanced-part'):
            partxx = str(self.config.name).split('-')[-1]

            main_zip_filename = f'unbalanced_train_segments_{partxx}_partial.zip'
            concat_zip_filename = f'unbalanced_train_segments_{partxx}_full.zip'
            _input_file = os.path.join(HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, main_zip_filename)
            _output_file = os.path.join(HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, concat_zip_filename)

            if not os.path.exists(_output_file):

                def _download(zip_type):
                    _UNBALANCED_TRAIN_FILENAME = f'unbalanced_train_segments_{partxx}_partial.{zip_type}'
                    zip_file_url = f'https://huggingface.co/datasets/confit/audioset/resolve/main/unbalanced/{_UNBALANCED_TRAIN_FILENAME}'
                    _save_path = os.path.join(
                        HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION
                    )
                    download_file(
                        source=zip_file_url, 
                        dest=os.path.join(_save_path, _UNBALANCED_TRAIN_FILENAME)
                    )
                    logger.info(f"`{_UNBALANCED_TRAIN_FILENAME}` is downloaded to {_save_path}")

                joblib.Parallel(n_jobs=4, verbose=10)(
                    joblib.delayed(_download)(
                        zip_type=zip_type
                    ) for zip_type in ['zip', 'z01', 'z02']
                )
                    
                logger.info(f"Reassembling {_output_file}")
                os.system(f"zip -q -F {_input_file} --out {_output_file}")
                part_zip_files = os.path.join(
                    HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, f'unbalanced_train_segments_{partxx}_partial.*'
                )
                os.system(f"rm -rf {part_zip_files}")

            train_archive_path = os.path.join(
                HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, 'extracted'
            )
            unzip_file(zip_path=_output_file, extract_to=train_archive_path)
            logger.info(f"`{concat_zip_filename}` is extracted to {train_archive_path}")
            
        zip_file_url = f'https://huggingface.co/datasets/confit/audioset/resolve/main/{_EVAL_FILENAME}'
        _eval_save_path = os.path.join(
            HF_DATASETS_CACHE, 'confit___audioset/eval', VERSION
        )
        download_file(
            source=zip_file_url, 
            dest=os.path.join(_eval_save_path, _EVAL_FILENAME), 
            unpack=True, 
            dest_unpack=os.path.join(_eval_save_path, 'extracted', 'eval'), 
        )
        test_archive_path = os.path.join(_eval_save_path, 'extracted', 'eval')
        logger.info(f"`eval_segments.zip` is extracted to {test_archive_path}")

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"archive_path": train_archive_path, "split": "train"}
            ), 
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"archive_path": test_archive_path, "split": "test"}
            ), 
        ]

    def _generate_examples(self, archive_path, split=None):
        extensions = ['.wav']

        if split == 'train':
            if self.config.name == 'balanced':
                train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/balanced_train_segments.csv"
            elif str(self.config.name).startswith('unbalanced-part'):
                train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/unbalanced_train_segments.csv"
            metadata_df = self._preprocess_metadata_csv(train_metadata_csv) # ['filename', 'ids']
        elif split == 'test':
            test_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/eval_segments.csv"
            metadata_df = self._preprocess_metadata_csv(test_metadata_csv) # ['filename', 'ids']
        
        class_labels_indices_df = pd.read_csv(
            f"{_HOMEPAGE}/resolve/main/metadata/class_labels_indices.csv"
        ) # ['index', 'mid', 'display_name']
        mid2label = {
            row['mid']:row['display_name'] for idx, row in class_labels_indices_df.iterrows()
        }

        def default_find_classes(audio_path):
            fileid = Path(audio_path).name
            ids = metadata_df.query(f'filename=="{fileid}"')['ids'].values.tolist()
            ids = [
                mid2label.get(mid, None) for mid in flatten(ids)
            ]
            return ids

        _, _walker = fast_scandir(archive_path, extensions, recursive=True)

        bad_zip_files = [
            'YZu5HOzXcX7k.wav', 'YmW3S0u8bj58.wav'
        ]
        for guid, audio_path in enumerate(_walker):
            if Path(audio_path).name in bad_zip_files:
                continue
            try:
                yield guid, {
                    "id": str(guid),
                    "file": audio_path, 
                    "audio": audio_path, 
                    "sound": default_find_classes(audio_path), 
                    "label": default_find_classes(audio_path), 
                }
            except:
                continue


def flatten(list2d):
    return list(itertools.chain.from_iterable(list2d))


def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False):
    # Scan files recursively faster than glob
    # From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py
    subfolders, files = [], []

    try:  # hope to avoid 'permission denied' by this try
        for f in os.scandir(path):
            try:  # 'hope to avoid too many levels of symbolic links' error
                if f.is_dir():
                    subfolders.append(f.path)
                elif f.is_file():
                    if os.path.splitext(f.name)[1].lower() in exts:
                        files.append(f.path)
            except Exception:
                pass
    except Exception:
        pass

    if recursive:
        for path in list(subfolders):
            sf, f = fast_scandir(path, exts, recursive=recursive)
            subfolders.extend(sf)
            files.extend(f)  # type: ignore

    return subfolders, files


def download_file(
    source,
    dest,
    unpack=False,
    dest_unpack=None,
    replace_existing=False,
    write_permissions=False,
):
    """Downloads the file from the given source and saves it in the given
    destination path.
     Arguments
    ---------
    source : path or url
        Path of the source file. If the source is an URL, it downloads it from
        the web.
    dest : path
        Destination path.
    unpack : bool
        If True, it unpacks the data in the dest folder.
    dest_unpack: path
        Path where to store the unpacked dataset
    replace_existing : bool
        If True, replaces the existing files.
    write_permissions: bool
        When set to True, all the files in the dest_unpack directory will be granted write permissions.
        This option is active only when unpack=True.
    """
    class DownloadProgressBar(tqdm):
        """DownloadProgressBar class."""

        def update_to(self, b=1, bsize=1, tsize=None):
            """Needed to support multigpu training."""
            if tsize is not None:
                self.total = tsize
            self.update(b * bsize - self.n)

    # Create the destination directory if it doesn't exist
    dest_dir = pathlib.Path(dest).resolve().parent
    dest_dir.mkdir(parents=True, exist_ok=True)
    if "http" not in source:
        shutil.copyfile(source, dest)

    elif not os.path.isfile(dest) or (
        os.path.isfile(dest) and replace_existing
    ):
        logger.info(f"Downloading {source} to {dest}")
        with DownloadProgressBar(
            unit="B",
            unit_scale=True,
            miniters=1,
            desc=source.split("/")[-1],
        ) as t:
            urllib.request.urlretrieve(
                source, filename=dest, reporthook=t.update_to
            )
    else:
        logger.info(f"{dest} exists. Skipping download")

    # Unpack if necessary
    if unpack:
        if dest_unpack is None:
            dest_unpack = os.path.dirname(dest)
        if os.path.exists(dest_unpack):
            logger.info(f"{dest_unpack} already exists. Skipping extraction")
        else:
            logger.info(f"Extracting {dest} to {dest_unpack}")
            # shutil unpack_archive does not work with tar.gz files
            if (
                source.endswith(".tar.gz")
                or source.endswith(".tgz")
                or source.endswith(".gz")
            ):
                out = dest.replace(".gz", "")
                with gzip.open(dest, "rb") as f_in:
                    with open(out, "wb") as f_out:
                        shutil.copyfileobj(f_in, f_out)
            else:
                shutil.unpack_archive(dest, dest_unpack)
            if write_permissions:
                set_writing_permissions(dest_unpack)


def unzip_file(zip_path, extract_to):
    """
    Unzips a given zip file to a specified directory.

    Parameters:
    zip_path (str): The path to the zip file.
    extract_to (str): The directory to extract the files to.
    """
    if os.path.exists(extract_to):
        logger.info(f"{extract_to} already exists. Skipping extraction")
        
    if not os.path.exists(zip_path):
        raise FileNotFoundError(f"The file {zip_path} does not exist.")
    
    if not os.path.exists(extract_to):
        os.makedirs(extract_to)
    
    with zipfile.ZipFile(zip_path, 'r') as zip_ref:
        zip_ref.extractall(extract_to)
    logger.info(f"Extracted {zip_path} to {extract_to}")


def set_writing_permissions(folder_path):
    """
    This function sets user writing permissions to all the files in the given folder.
    Arguments
    ---------
    folder_path : folder
        Folder whose files will be granted write permissions.
    """
    for root, dirs, files in os.walk(folder_path):
        for file_name in files:
            file_path = os.path.join(root, file_name)
            # Set writing permissions (mode 0o666) to the file
            os.chmod(file_path, 0o666)