File size: 14,082 Bytes
caf4084 e18f7de 84c78dc e18f7de 046aa08 caf4084 e18f7de caf4084 e18f7de caf4084 2d848d0 e18f7de caf4084 da3bbd4 caf4084 89d1dd2 5057ea9 caf4084 2d848d0 caf4084 2d848d0 caf4084 e18f7de caf4084 ad8db59 5ec0662 caf4084 5562f2a e18f7de 5562f2a e18f7de 5562f2a caf4084 9ada73e caf4084 ce0ab16 e18f7de 5562f2a d336a83 e18f7de 5562f2a e18f7de 1aa88f2 e18f7de 84c78dc 1aa88f2 84c78dc 1aa88f2 84c78dc 1aa88f2 e18f7de 5562f2a 046aa08 d18a9a8 5562f2a 8a0688d caf4084 a6f4a82 5562f2a a6f4a82 caf4084 89d1dd2 caf4084 7ba4b9e caf4084 e1856e2 caf4084 e1856e2 6b43817 845fdeb caf4084 e18f7de 5562f2a e18f7de 5562f2a e18f7de 84c78dc 046aa08 e18f7de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# coding=utf-8
"""AudioSet sound event classification dataset."""
import os
import json
import gzip
import joblib
import shutil
import pathlib
import logging
import zipfile
import textwrap
import datasets
import itertools
import typing as tp
import pandas as pd
import urllib.request
from pathlib import Path
from copy import deepcopy
from tqdm.auto import tqdm
from rich.logging import RichHandler
from huggingface_hub import hf_hub_download
from ._audioset import ID2LABEL
logger = logging.getLogger(__name__)
logger.addHandler(RichHandler())
logger.setLevel(logging.INFO)
SAMPLE_RATE = 32_000
_HOMEPAGE = "https://huggingface.co/datasets/confit/audioset"
_BALANCED_TRAIN_FILENAME = 'balanced/balanced_train_segments.zip'
_EVAL_FILENAME = 'eval/eval_segments.zip'
# ID2LABEL = json.load(
# open(hf_hub_download("huggingface/label-files", "audioset-id2label.json", repo_type="dataset"), "r")
# )
LABEL2ID = {v:k for k, v in ID2LABEL.items()}
CLASSES = list(ID2LABEL.values())
# Cache location
VERSION = "0.0.1"
DEFAULT_XDG_CACHE_HOME = "~/.cache"
XDG_CACHE_HOME = os.getenv("XDG_CACHE_HOME", DEFAULT_XDG_CACHE_HOME)
DEFAULT_HF_CACHE_HOME = os.path.join(XDG_CACHE_HOME, "huggingface")
HF_CACHE_HOME = os.path.expanduser(os.getenv("HF_HOME", DEFAULT_HF_CACHE_HOME))
DEFAULT_HF_DATASETS_CACHE = os.path.join(HF_CACHE_HOME, "datasets")
HF_DATASETS_CACHE = Path(os.getenv("HF_DATASETS_CACHE", DEFAULT_HF_DATASETS_CACHE))
class AudioSetConfig(datasets.BuilderConfig):
"""BuilderConfig for AudioSet."""
def __init__(self, features, **kwargs):
super(AudioSetConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs)
self.features = features
class AudioSet(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
AudioSetConfig(
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
"sound": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="balanced",
description="",
),
] + [
AudioSetConfig(
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=SAMPLE_RATE),
"sound": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name=f"unbalanced-part{i:02d}",
description="",
) for i in range(40+1)
]
DEFAULT_CONFIG_NAME = "balanced"
def _info(self):
return datasets.DatasetInfo(
description="",
features=self.config.features,
supervised_keys=None,
homepage="",
citation="",
task_templates=None,
)
def _preprocess_metadata_csv(self, csv_file):
df = pd.read_csv(csv_file, skiprows=2, sep=', ', engine='python')
df.rename(columns={'positive_labels': 'ids'}, inplace=True)
df['ids'] = [label.strip('\"').split(',') for label in df['ids']]
df['filename'] = (
'Y' + df['# YTID'] + '.wav'
)
return df[['filename', 'ids']]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == 'balanced':
train_archive_path = dl_manager.download_and_extract(
f'https://huggingface.co/datasets/confit/audioset/resolve/main/{_BALANCED_TRAIN_FILENAME}'
)
logger.info(f"`{_BALANCED_TRAIN_FILENAME}` is downloaded to {train_archive_path}")
elif str(self.config.name).startswith('unbalanced-part'):
partxx = str(self.config.name).split('-')[-1]
main_zip_filename = f'unbalanced_train_segments_{partxx}_partial.zip'
concat_zip_filename = f'unbalanced_train_segments_{partxx}_full.zip'
_input_file = os.path.join(HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, main_zip_filename)
_output_file = os.path.join(HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, concat_zip_filename)
if not os.path.exists(_output_file):
def _download(zip_type):
_UNBALANCED_TRAIN_FILENAME = f'unbalanced_train_segments_{partxx}_partial.{zip_type}'
zip_file_url = f'https://huggingface.co/datasets/confit/audioset/resolve/main/unbalanced/{_UNBALANCED_TRAIN_FILENAME}'
_save_path = os.path.join(
HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION
)
download_file(
source=zip_file_url,
dest=os.path.join(_save_path, _UNBALANCED_TRAIN_FILENAME)
)
logger.info(f"`{_UNBALANCED_TRAIN_FILENAME}` is downloaded to {_save_path}")
joblib.Parallel(n_jobs=4, verbose=10)(
joblib.delayed(_download)(
zip_type=zip_type
) for zip_type in ['zip', 'z01', 'z02']
)
logger.info(f"Reassembling {_output_file}")
os.system(f"zip -q -F {_input_file} --out {_output_file}")
part_zip_files = os.path.join(
HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, f'unbalanced_train_segments_{partxx}_partial.*'
)
os.system(f"rm -rf {part_zip_files}")
train_archive_path = os.path.join(
HF_DATASETS_CACHE, 'confit___audioset/unbalanced', VERSION, 'extracted'
)
unzip_file(zip_path=_output_file, extract_to=train_archive_path)
logger.info(f"`{concat_zip_filename}` is extracted to {train_archive_path}")
zip_file_url = f'https://huggingface.co/datasets/confit/audioset/resolve/main/{_EVAL_FILENAME}'
_eval_save_path = os.path.join(
HF_DATASETS_CACHE, 'confit___audioset/eval', VERSION
)
download_file(
source=zip_file_url,
dest=os.path.join(_eval_save_path, _EVAL_FILENAME),
unpack=True,
dest_unpack=os.path.join(_eval_save_path, 'extracted', 'eval'),
)
test_archive_path = os.path.join(_eval_save_path, 'extracted', 'eval')
logger.info(f"`eval_segments.zip` is extracted to {test_archive_path}")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN, gen_kwargs={"archive_path": train_archive_path, "split": "train"}
),
datasets.SplitGenerator(
name=datasets.Split.TEST, gen_kwargs={"archive_path": test_archive_path, "split": "test"}
),
]
def _generate_examples(self, archive_path, split=None):
extensions = ['.wav']
if split == 'train':
if self.config.name == 'balanced':
train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/balanced_train_segments.csv"
elif str(self.config.name).startswith('unbalanced-part'):
train_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/unbalanced_train_segments.csv"
metadata_df = self._preprocess_metadata_csv(train_metadata_csv) # ['filename', 'ids']
elif split == 'test':
test_metadata_csv = f"{_HOMEPAGE}/resolve/main/metadata/eval_segments.csv"
metadata_df = self._preprocess_metadata_csv(test_metadata_csv) # ['filename', 'ids']
class_labels_indices_df = pd.read_csv(
f"{_HOMEPAGE}/resolve/main/metadata/class_labels_indices.csv"
) # ['index', 'mid', 'display_name']
mid2label = {
row['mid']:row['display_name'] for idx, row in class_labels_indices_df.iterrows()
}
def default_find_classes(audio_path):
fileid = Path(audio_path).name
ids = metadata_df.query(f'filename=="{fileid}"')['ids'].values.tolist()
ids = [
mid2label.get(mid, None) for mid in flatten(ids)
]
return ids
_, _walker = fast_scandir(archive_path, extensions, recursive=True)
bad_zip_files = [
'YZu5HOzXcX7k.wav', 'YmW3S0u8bj58.wav'
]
for guid, audio_path in enumerate(_walker):
if Path(audio_path).name in bad_zip_files:
continue
try:
yield guid, {
"id": str(guid),
"file": audio_path,
"audio": audio_path,
"sound": default_find_classes(audio_path),
"label": default_find_classes(audio_path),
}
except:
continue
def flatten(list2d):
return list(itertools.chain.from_iterable(list2d))
def fast_scandir(path: str, exts: tp.List[str], recursive: bool = False):
# Scan files recursively faster than glob
# From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py
subfolders, files = [], []
try: # hope to avoid 'permission denied' by this try
for f in os.scandir(path):
try: # 'hope to avoid too many levels of symbolic links' error
if f.is_dir():
subfolders.append(f.path)
elif f.is_file():
if os.path.splitext(f.name)[1].lower() in exts:
files.append(f.path)
except Exception:
pass
except Exception:
pass
if recursive:
for path in list(subfolders):
sf, f = fast_scandir(path, exts, recursive=recursive)
subfolders.extend(sf)
files.extend(f) # type: ignore
return subfolders, files
def download_file(
source,
dest,
unpack=False,
dest_unpack=None,
replace_existing=False,
write_permissions=False,
):
"""Downloads the file from the given source and saves it in the given
destination path.
Arguments
---------
source : path or url
Path of the source file. If the source is an URL, it downloads it from
the web.
dest : path
Destination path.
unpack : bool
If True, it unpacks the data in the dest folder.
dest_unpack: path
Path where to store the unpacked dataset
replace_existing : bool
If True, replaces the existing files.
write_permissions: bool
When set to True, all the files in the dest_unpack directory will be granted write permissions.
This option is active only when unpack=True.
"""
class DownloadProgressBar(tqdm):
"""DownloadProgressBar class."""
def update_to(self, b=1, bsize=1, tsize=None):
"""Needed to support multigpu training."""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
# Create the destination directory if it doesn't exist
dest_dir = pathlib.Path(dest).resolve().parent
dest_dir.mkdir(parents=True, exist_ok=True)
if "http" not in source:
shutil.copyfile(source, dest)
elif not os.path.isfile(dest) or (
os.path.isfile(dest) and replace_existing
):
logger.info(f"Downloading {source} to {dest}")
with DownloadProgressBar(
unit="B",
unit_scale=True,
miniters=1,
desc=source.split("/")[-1],
) as t:
urllib.request.urlretrieve(
source, filename=dest, reporthook=t.update_to
)
else:
logger.info(f"{dest} exists. Skipping download")
# Unpack if necessary
if unpack:
if dest_unpack is None:
dest_unpack = os.path.dirname(dest)
if os.path.exists(dest_unpack):
logger.info(f"{dest_unpack} already exists. Skipping extraction")
else:
logger.info(f"Extracting {dest} to {dest_unpack}")
# shutil unpack_archive does not work with tar.gz files
if (
source.endswith(".tar.gz")
or source.endswith(".tgz")
or source.endswith(".gz")
):
out = dest.replace(".gz", "")
with gzip.open(dest, "rb") as f_in:
with open(out, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
else:
shutil.unpack_archive(dest, dest_unpack)
if write_permissions:
set_writing_permissions(dest_unpack)
def unzip_file(zip_path, extract_to):
"""
Unzips a given zip file to a specified directory.
Parameters:
zip_path (str): The path to the zip file.
extract_to (str): The directory to extract the files to.
"""
if os.path.exists(extract_to):
logger.info(f"{extract_to} already exists. Skipping extraction")
if not os.path.exists(zip_path):
raise FileNotFoundError(f"The file {zip_path} does not exist.")
if not os.path.exists(extract_to):
os.makedirs(extract_to)
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_to)
logger.info(f"Extracted {zip_path} to {extract_to}")
def set_writing_permissions(folder_path):
"""
This function sets user writing permissions to all the files in the given folder.
Arguments
---------
folder_path : folder
Folder whose files will be granted write permissions.
"""
for root, dirs, files in os.walk(folder_path):
for file_name in files:
file_path = os.path.join(root, file_name)
# Set writing permissions (mode 0o666) to the file
os.chmod(file_path, 0o666) |