repo_name
stringlengths
5
100
path
stringlengths
4
299
copies
stringclasses
990 values
size
stringlengths
4
7
content
stringlengths
666
1.03M
license
stringclasses
15 values
hash
int64
-9,223,351,895,964,839,000
9,223,297,778B
line_mean
float64
3.17
100
line_max
int64
7
1k
alpha_frac
float64
0.25
0.98
autogenerated
bool
1 class
v-iam/azure-sdk-for-python
azure-mgmt-keyvault/azure/mgmt/keyvault/models/__init__.py
4
1576
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .sku import Sku from .permissions import Permissions from .access_policy_entry import AccessPolicyEntry from .vault_properties import VaultProperties from .deleted_vault_properties import DeletedVaultProperties from .vault_create_or_update_parameters import VaultCreateOrUpdateParameters from .vault import Vault from .deleted_vault import DeletedVault from .resource import Resource from .vault_paged import VaultPaged from .deleted_vault_paged import DeletedVaultPaged from .resource_paged import ResourcePaged from .key_vault_management_client_enums import ( SkuName, KeyPermissions, SecretPermissions, CertificatePermissions, StoragePermissions, CreateMode, ) __all__ = [ 'Sku', 'Permissions', 'AccessPolicyEntry', 'VaultProperties', 'DeletedVaultProperties', 'VaultCreateOrUpdateParameters', 'Vault', 'DeletedVault', 'Resource', 'VaultPaged', 'DeletedVaultPaged', 'ResourcePaged', 'SkuName', 'KeyPermissions', 'SecretPermissions', 'CertificatePermissions', 'StoragePermissions', 'CreateMode', ]
mit
-1,740,209,341,972,420,900
29.307692
76
0.678934
false
fnp/wolnelektury
src/sponsors/widgets.py
1
1450
# This file is part of Wolnelektury, licensed under GNU Affero GPLv3 or later. # Copyright © Fundacja Nowoczesna Polska. See NOTICE for more information. # from django.conf import settings from django import forms from django.utils.safestring import mark_safe from sponsors import models class SponsorPageWidget(forms.Textarea): class Media: js = ( '//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js', '//code.jquery.com/ui/1.12.1/jquery-ui.min.js', settings.STATIC_URL + 'sponsors/js/jquery.json.min.js', settings.STATIC_URL + 'sponsors/js/footer_admin.js', ) css = { 'all': (settings.STATIC_URL + 'sponsors/css/footer_admin.css',), } def render(self, name, value, attrs=None, renderer=None): output = [super(SponsorPageWidget, self).render(name, value, attrs, renderer)] sponsors = [(str(obj), obj.pk, obj.logo.url) for obj in models.Sponsor.objects.all().iterator()] sponsors_js = ', '.join('{name: "%s", id: %d, image: "%s"}' % sponsor for sponsor in sponsors) output.append('<script type="text/javascript">$(function(e) {') # TODO: "id_" is hard-coded here. This should instead use the correct # API to determine the ID dynamically. output.append('$("#id_%s").sponsorsFooter({sponsors: [%s]}); });</script>\n' % (name, sponsors_js)) return mark_safe(''.join(output))
agpl-3.0
-4,562,136,078,529,503,700
45.741935
107
0.636991
false
timpalpant/calibre
src/calibre/ebooks/pdb/ereader/inspector.py
24
5889
# -*- coding: utf-8 -*- ''' Inspect the header of ereader files. This is primarily used for debugging. ''' __license__ = 'GPL v3' __copyright__ = '2009, John Schember <[email protected]>' __docformat__ = 'restructuredtext en' import struct import sys from calibre.ebooks.pdb.ereader import EreaderError from calibre.ebooks.pdb.header import PdbHeaderReader def ereader_header_info(header): h0 = header.section_data(0) print 'Header Size: %s' % len(h0) if len(h0) == 132: print 'Header Type: Dropbook compatible' print '' ereader_header_info132(h0) elif len(h0) == 202: print 'Header Type: Makebook compatible' print '' ereader_header_info202(h0) else: raise EreaderError('Size mismatch. eReader header record size %i KB is not supported.' % len(h0)) def pdb_header_info(header): print 'PDB Header Info:' print '' print 'Identity: %s' % header.ident print 'Total Sectons: %s' % header.num_sections print 'Title: %s' % header.title print '' def ereader_header_info132(h0): print 'Ereader Record 0 (Header) Info:' print '' print '0-2 Version: %i' % struct.unpack('>H', h0[0:2])[0] print '2-4: %i' % struct.unpack('>H', h0[2:4])[0] print '4-6: %i' % struct.unpack('>H', h0[4:6])[0] print '6-8 Codepage: %i' % struct.unpack('>H', h0[6:8])[0] print '8-10: %i' % struct.unpack('>H', h0[8:10])[0] print '10-12: %i' % struct.unpack('>H', h0[10:12])[0] print '12-14 Non-Text offset: %i' % struct.unpack('>H', h0[12:14])[0] print '14-16: %i' % struct.unpack('>H', h0[14:16])[0] print '16-18: %i' % struct.unpack('>H', h0[16:18])[0] print '18-20: %i' % struct.unpack('>H', h0[18:20])[0] print '20-22 Image Count: %i' % struct.unpack('>H', h0[20:22])[0] print '22-24: %i' % struct.unpack('>H', h0[22:24])[0] print '24-26 Has Metadata?: %i' % struct.unpack('>H', h0[24:26])[0] print '26-28: %i' % struct.unpack('>H', h0[26:28])[0] print '28-30 Footnote Count: %i' % struct.unpack('>H', h0[28:30])[0] print '30-32 Sidebar Count: %i' % struct.unpack('>H', h0[30:32])[0] print '32-34 Bookmark Offset: %i' % struct.unpack('>H', h0[32:34])[0] print '34-36 MAGIC: %i' % struct.unpack('>H', h0[34:36])[0] print '36-38: %i' % struct.unpack('>H', h0[36:38])[0] print '38-40: %i' % struct.unpack('>H', h0[38:40])[0] print '40-42 Image Data Offset: %i' % struct.unpack('>H', h0[40:42])[0] print '42-44: %i' % struct.unpack('>H', h0[42:44])[0] print '44-46 Metadata Offset: %i' % struct.unpack('>H', h0[44:46])[0] print '46-48: %i' % struct.unpack('>H', h0[46:48])[0] print '48-50 Footnote Offset: %i' % struct.unpack('>H', h0[48:50])[0] print '50-52 Sidebar Offset: %i' % struct.unpack('>H', h0[50:52])[0] print '52-54 Last Data Offset: %i' % struct.unpack('>H', h0[52:54])[0] for i in range(54, 131, 2): print '%i-%i: %i' % (i, i+2, struct.unpack('>H', h0[i:i+2])[0]) print '' def ereader_header_info202(h0): print 'Ereader Record 0 (Header) Info:' print '' print '0-2 Version: %i' % struct.unpack('>H', h0[0:2])[0] print '2-4 Garbage: %i' % struct.unpack('>H', h0[2:4])[0] print '4-6 Garbage: %i' % struct.unpack('>H', h0[4:6])[0] print '6-8 Garbage: %i' % struct.unpack('>H', h0[6:8])[0] print '8-10 Non-Text Offset: %i' % struct.unpack('>H', h0[8:10])[0] print '10-12: %i' % struct.unpack('>H', h0[10:12])[0] print '12-14: %i' % struct.unpack('>H', h0[12:14])[0] print '14-16 Garbage: %i' % struct.unpack('>H', h0[14:16])[0] print '16-18 Garbage: %i' % struct.unpack('>H', h0[16:18])[0] print '18-20 Garbage: %i' % struct.unpack('>H', h0[18:20])[0] print '20-22 Garbage: %i' % struct.unpack('>H', h0[20:22])[0] print '22-24 Garbage: %i' % struct.unpack('>H', h0[22:24])[0] print '24-26: %i' % struct.unpack('>H', h0[24:26])[0] print '26-28: %i' % struct.unpack('>H', h0[26:28])[0] for i in range(28, 98, 2): print '%i-%i Garbage: %i' % (i, i+2, struct.unpack('>H', h0[i:i+2])[0]) print '98-100: %i' % struct.unpack('>H', h0[98:100])[0] for i in range(100, 110, 2): print '%i-%i Garbage: %i' % (i, i+2, struct.unpack('>H', h0[i:i+2])[0]) print '110-112: %i' % struct.unpack('>H', h0[110:112])[0] print '112-114: %i' % struct.unpack('>H', h0[112:114])[0] print '114-116 Garbage: %i' % struct.unpack('>H', h0[114:116])[0] for i in range(116, 202, 2): print '%i-%i: %i' % (i, i+2, struct.unpack('>H', h0[i:i+2])[0]) print '' print '* Garbage: Random values.' print '' def section_lengths(header): print 'Section Sizes' print '' for i in range(0, header.section_count()): size = len(header.section_data(i)) if size > 65505: message = '<--- Over!' else: message = '' print 'Section %i: %i %s' % (i, size, message) def main(args=sys.argv): if len(args) < 2: print 'Error: requires input file.' return 1 f = open(sys.argv[1], 'rb') pheader = PdbHeaderReader(f) pdb_header_info(pheader) ereader_header_info(pheader) section_lengths(pheader) return 0 if __name__ == '__main__': sys.exit(main())
gpl-3.0
-1,731,668,282,084,926,700
41.673913
105
0.50467
false
ofek/pypinfo
tests/test_db.py
1
1127
from pypinfo import db CREDS_FILE = '/path/to/creds_file.json' def test_get_credentials(tmp_path): # Arrange db.DB_FILE = str(tmp_path / 'db.json') # Mock # Assert assert db.get_credentials() is None def test_set_credentials(tmp_path): # Arrange db.DB_FILE = str(tmp_path / 'db.json') # Mock # Act db.set_credentials(CREDS_FILE) def test_set_credentials_twice(tmp_path): # Arrange db.DB_FILE = str(tmp_path / 'db.json') # Mock # Act db.set_credentials(CREDS_FILE) db.set_credentials(CREDS_FILE) def test_round_trip(tmp_path): # Arrange db.DB_FILE = str(tmp_path / 'db.json') # Mock # Act db.set_credentials(CREDS_FILE) # Assert assert db.get_credentials() == CREDS_FILE def test_get_credentials_table(tmp_path): db.DB_FILE = str(tmp_path / 'db.json') with db.get_credentials_table() as table: assert not table._storage._handle.closed with db.get_credentials_table(table) as table2: assert table2 is table assert not table._storage._handle.closed assert table._storage._handle.closed
mit
-4,920,324,141,681,849,000
22
55
0.639752
false
dgjustice/ansible
lib/ansible/modules/storage/netapp/sf_account_manager.py
16
9063
#!/usr/bin/python # (c) 2017, NetApp, Inc # # This file is part of Ansible # # Ansible is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Ansible. If not, see <http://www.gnu.org/licenses/>. # ANSIBLE_METADATA = {'status': ['preview'], 'supported_by': 'community', 'version': '1.0'} DOCUMENTATION = ''' module: sf_account_manager short_description: Manage SolidFire accounts extends_documentation_fragment: - netapp.solidfire version_added: '2.3' author: Sumit Kumar ([email protected]) description: - Create, destroy, or update accounts on SolidFire options: state: description: - Whether the specified account should exist or not. required: true choices: ['present', 'absent'] name: description: - Unique username for this account. (May be 1 to 64 characters in length). required: true new_name: description: - New name for the user account. required: false default: None initiator_secret: description: - CHAP secret to use for the initiator. Should be 12-16 characters long and impenetrable. - The CHAP initiator secrets must be unique and cannot be the same as the target CHAP secret. - If not specified, a random secret is created. required: false target_secret: description: - CHAP secret to use for the target (mutual CHAP authentication). - Should be 12-16 characters long and impenetrable. - The CHAP target secrets must be unique and cannot be the same as the initiator CHAP secret. - If not specified, a random secret is created. required: false attributes: description: List of Name/Value pairs in JSON object format. required: false account_id: description: - The ID of the account to manage or update. required: false default: None status: description: - Status of the account. required: false ''' EXAMPLES = """ - name: Create Account sf_account_manager: hostname: "{{ solidfire_hostname }}" username: "{{ solidfire_username }}" password: "{{ solidfire_password }}" state: present name: TenantA - name: Modify Account sf_account_manager: hostname: "{{ solidfire_hostname }}" username: "{{ solidfire_username }}" password: "{{ solidfire_password }}" state: present name: TenantA new_name: TenantA-Renamed - name: Delete Account sf_account_manager: hostname: "{{ solidfire_hostname }}" username: "{{ solidfire_username }}" password: "{{ solidfire_password }}" state: absent name: TenantA-Renamed """ RETURN = """ """ from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.pycompat24 import get_exception import ansible.module_utils.netapp as netapp_utils HAS_SF_SDK = netapp_utils.has_sf_sdk() class SolidFireAccount(object): def __init__(self): self.argument_spec = netapp_utils.ontap_sf_host_argument_spec() self.argument_spec.update(dict( state=dict(required=True, choices=['present', 'absent']), name=dict(required=True, type='str'), account_id=dict(required=False, type='int', default=None), new_name=dict(required=False, type='str', default=None), initiator_secret=dict(required=False, type='str'), target_secret=dict(required=False, type='str'), attributes=dict(required=False, type='dict'), status=dict(required=False, type='str'), )) self.module = AnsibleModule( argument_spec=self.argument_spec, supports_check_mode=True ) p = self.module.params # set up state variables self.state = p['state'] self.name = p['name'] self.account_id = p['account_id'] self.new_name = p['new_name'] self.initiator_secret = p['initiator_secret'] self.target_secret = p['target_secret'] self.attributes = p['attributes'] self.status = p['status'] if HAS_SF_SDK is False: self.module.fail_json(msg="Unable to import the SolidFire Python SDK") else: self.sfe = netapp_utils.create_sf_connection(module=self.module) def get_account(self): """ Return account object if found :return: Details about the account. None if not found. :rtype: dict """ account_list = self.sfe.list_accounts() for account in account_list.accounts: if account.username == self.name: # Update self.account_id: if self.account_id is not None: if account.account_id == self.account_id: return account else: self.account_id = account.account_id return account return None def create_account(self): try: self.sfe.add_account(username=self.name, initiator_secret=self.initiator_secret, target_secret=self.target_secret, attributes=self.attributes) except: err = get_exception() self.module.fail_json(msg='Error creating account %s' % self.name, exception=str(err)) def delete_account(self): try: self.sfe.remove_account(account_id=self.account_id) except: err = get_exception() self.module.fail_json(msg='Error deleting account %s' % self.account_id, exception=str(err)) def update_account(self): try: self.sfe.modify_account(account_id=self.account_id, username=self.new_name, status=self.status, initiator_secret=self.initiator_secret, target_secret=self.target_secret, attributes=self.attributes) except: err = get_exception() self.module.fail_json(msg='Error updating account %s' % self.account_id, exception=str(err)) def apply(self): changed = False account_exists = False update_account = False account_detail = self.get_account() if account_detail: account_exists = True if self.state == 'absent': changed = True elif self.state == 'present': # Check if we need to update the account if account_detail.username is not None and self.new_name is not None and \ account_detail.username != self.new_name: update_account = True changed = True elif account_detail.status is not None and self.status is not None \ and account_detail.status != self.status: update_account = True changed = True elif account_detail.initiator_secret is not None and self.initiator_secret is not None \ and account_detail.initiator_secret != self.initiator_secret: update_account = True changed = True elif account_detail.target_secret is not None and self.target_secret is not None \ and account_detail.target_secret != self.target_secret: update_account = True changed = True elif account_detail.attributes is not None and self.attributes is not None \ and account_detail.attributes != self.attributes: update_account = True changed = True else: if self.state == 'present': changed = True if changed: if self.module.check_mode: pass else: if self.state == 'present': if not account_exists: self.create_account() elif update_account: self.update_account() elif self.state == 'absent': self.delete_account() self.module.exit_json(changed=changed) def main(): v = SolidFireAccount() v.apply() if __name__ == '__main__': main()
gpl-3.0
-6,697,773,245,260,161,000
31.367857
104
0.575637
false
great-expectations/great_expectations
great_expectations/expectations/metrics/column_map_metrics/column_values_json_parseable.py
1
1101
import json from great_expectations.execution_engine import ( PandasExecutionEngine, SparkDFExecutionEngine, ) from great_expectations.expectations.metrics.import_manager import F, sparktypes from great_expectations.expectations.metrics.map_metric import ( ColumnMapMetricProvider, column_condition_partial, ) class ColumnValuesJsonParseable(ColumnMapMetricProvider): condition_metric_name = "column_values.json_parseable" @column_condition_partial(engine=PandasExecutionEngine) def _pandas(cls, column, **kwargs): def is_json(val): try: json.loads(val) return True except: return False return column.map(is_json) @column_condition_partial(engine=SparkDFExecutionEngine) def _spark(cls, column, json_schema, **kwargs): def is_json(val): try: json.loads(val) return True except: return False is_json_udf = F.udf(is_json, sparktypes.BooleanType()) return is_json_udf(column)
apache-2.0
6,666,463,513,467,871,000
27.230769
80
0.643052
false
swalladge/ranger
ranger/gui/widgets/view_miller.py
2
9616
# This file is part of ranger, the console file manager. # License: GNU GPL version 3, see the file "AUTHORS" for details. """ViewMiller arranges the view in miller columns""" from __future__ import (absolute_import, division, print_function) import curses from ranger.container import settings from ranger.gui.widgets.view_base import ViewBase from .browsercolumn import BrowserColumn from .pager import Pager from ..displayable import DisplayableContainer class ViewMiller(ViewBase): # pylint: disable=too-many-ancestors,too-many-instance-attributes ratios = None preview = True is_collapsed = False stretch_ratios = None old_collapse = False def __init__(self, win): ViewBase.__init__(self, win) self.preview = True self.columns = [] self.pager = Pager(self.win, embedded=True) self.pager.visible = False self.add_child(self.pager) self.rebuild() for option in ('preview_directories', 'preview_files'): self.settings.signal_bind('setopt.' + option, self._request_clear_if_has_borders, weak=True) self.settings.signal_bind('setopt.column_ratios', self.request_clear) self.settings.signal_bind('setopt.column_ratios', self.rebuild, priority=settings.SIGNAL_PRIORITY_AFTER_SYNC) self.old_draw_borders = self.settings.draw_borders def rebuild(self): for child in self.container: if isinstance(child, BrowserColumn): self.remove_child(child) child.destroy() ratios = self.settings.column_ratios for column in self.columns: column.destroy() self.remove_child(column) self.columns = [] ratios_sum = sum(ratios) self.ratios = tuple((x / ratios_sum) for x in ratios) last = 0.1 if self.settings.padding_right else 0 if len(self.ratios) >= 2: self.stretch_ratios = self.ratios[:-2] + \ ((self.ratios[-2] + self.ratios[-1] * 1.0 - last), (self.ratios[-1] * last)) offset = 1 - len(ratios) if self.preview: offset += 1 for level in range(len(ratios)): column = BrowserColumn(self.win, level + offset) self.add_child(column) self.columns.append(column) try: self.main_column = self.columns[self.preview and -2 or -1] except IndexError: self.main_column = None else: self.main_column.display_infostring = True self.main_column.main_column = True self.resize(self.y, self.x, self.hei, self.wid) def _request_clear_if_has_borders(self): if self.settings.draw_borders: self.request_clear() def draw(self): if self.need_clear: self.win.erase() self.need_redraw = True self.need_clear = False for tab in self.fm.tabs.values(): directory = tab.thisdir if directory: directory.load_content_if_outdated() directory.use() DisplayableContainer.draw(self) if self.settings.draw_borders: self._draw_borders() if self.draw_bookmarks: self._draw_bookmarks() elif self.draw_hints: self._draw_hints() elif self.draw_info: self._draw_info(self.draw_info) def _draw_borders(self): win = self.win self.color('in_browser', 'border') left_start = 0 right_end = self.wid - 1 for child in self.columns: if not child.has_preview(): left_start = child.x + child.wid else: break # Shift the rightmost vertical line to the left to create a padding, # but only when padding_right is on, the preview column is collapsed # and we did not open the pager to "zoom" in to the file. if self.settings.padding_right and not self.pager.visible and self.is_collapsed: right_end = self.columns[-1].x - 1 if right_end < left_start: right_end = self.wid - 1 # Draw horizontal lines and the leftmost vertical line try: # pylint: disable=no-member win.hline(0, left_start, curses.ACS_HLINE, right_end - left_start) win.hline(self.hei - 1, left_start, curses.ACS_HLINE, right_end - left_start) win.vline(1, left_start, curses.ACS_VLINE, self.hei - 2) # pylint: enable=no-member except curses.error: pass # Draw the vertical lines in the middle for child in self.columns[:-1]: if not child.has_preview(): continue if child.main_column and self.pager.visible: # If we "zoom in" with the pager, we have to # skip the between main_column and pager. break x = child.x + child.wid y = self.hei - 1 try: # pylint: disable=no-member win.vline(1, x, curses.ACS_VLINE, y - 1) self.addch(0, x, curses.ACS_TTEE, 0) self.addch(y, x, curses.ACS_BTEE, 0) # pylint: enable=no-member except curses.error: # in case it's off the boundaries pass # Draw the last vertical line try: # pylint: disable=no-member win.vline(1, right_end, curses.ACS_VLINE, self.hei - 2) # pylint: enable=no-member except curses.error: pass # pylint: disable=no-member self.addch(0, left_start, curses.ACS_ULCORNER) self.addch(self.hei - 1, left_start, curses.ACS_LLCORNER) self.addch(0, right_end, curses.ACS_URCORNER) self.addch(self.hei - 1, right_end, curses.ACS_LRCORNER) # pylint: enable=no-member def _collapse(self): # Should the last column be cut off? (Because there is no preview) if not self.settings.collapse_preview or not self.preview \ or not self.stretch_ratios: return False result = not self.columns[-1].has_preview() target = self.columns[-1].target if not result and target and target.is_file: if self.fm.settings.preview_script and \ self.fm.settings.use_preview_script: try: result = not self.fm.previews[target.realpath]['foundpreview'] except KeyError: return self.old_collapse self.old_collapse = result return result def resize(self, y, x, hei=None, wid=None): """Resize all the columns according to the given ratio""" ViewBase.resize(self, y, x, hei, wid) borders = self.settings.draw_borders pad = 1 if borders else 0 left = pad self.is_collapsed = self._collapse() if self.is_collapsed: generator = enumerate(self.stretch_ratios) else: generator = enumerate(self.ratios) last_i = len(self.ratios) - 1 for i, ratio in generator: wid = int(ratio * self.wid) cut_off = self.is_collapsed and not self.settings.padding_right if i == last_i: if not cut_off: wid = int(self.wid - left + 1 - pad) else: self.columns[i].resize(pad, max(0, left - 1), hei - pad * 2, 1) self.columns[i].visible = False continue if i == last_i - 1: self.pager.resize(pad, left, hei - pad * 2, max(1, self.wid - left - pad)) if cut_off: self.columns[i].resize(pad, left, hei - pad * 2, max(1, self.wid - left - pad)) continue try: self.columns[i].resize(pad, left, hei - pad * 2, max(1, wid - 1)) except KeyError: pass left += wid def open_pager(self): self.pager.visible = True self.pager.focused = True self.need_clear = True self.pager.open() try: self.columns[-1].visible = False self.columns[-2].visible = False except IndexError: pass def close_pager(self): self.pager.visible = False self.pager.focused = False self.need_clear = True self.pager.close() try: self.columns[-1].visible = True self.columns[-2].visible = True except IndexError: pass def poke(self): ViewBase.poke(self) # Show the preview column when it has a preview but has # been hidden (e.g. because of padding_right = False) if not self.columns[-1].visible and self.columns[-1].has_preview() \ and not self.pager.visible: self.columns[-1].visible = True if self.preview and self.is_collapsed != self._collapse(): if self.fm.settings.preview_files: # force clearing the image when resizing preview column self.columns[-1].clear_image(force=True) self.resize(self.y, self.x, self.hei, self.wid) if self.old_draw_borders != self.settings.draw_borders: self.resize(self.y, self.x, self.hei, self.wid) self.old_draw_borders = self.settings.draw_borders
gpl-3.0
334,391,832,981,958,200
33.967273
99
0.556676
false
ForkedReposBak/mxnet
python/mxnet/numpy/multiarray.py
2
394970
#!/usr/bin/env python # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # pylint: disable=too-many-lines, unused-argument """numpy ndarray and util functions.""" try: from __builtin__ import all as py_all from __builtin__ import slice as py_slice except ImportError: from builtins import all as py_all from builtins import slice as py_slice from array import array as native_array import functools import ctypes import warnings import numpy as _np from .. import _deferred_compute as dc from ..autograd import is_recording from ..ndarray import NDArray, _DTYPE_NP_TO_MX, _GRAD_REQ_MAP from ..ndarray import indexing_key_expand_implicit_axes, get_indexing_dispatch_code,\ get_oshape_of_gather_nd_op from ..ndarray._internal import _set_np_ndarray_class from . import _op as _mx_np_op from ..base import check_call, _LIB, NDArrayHandle, c_array from ..base import mx_real_t, c_array_buf, mx_uint, numeric_types, integer_types from ..context import Context from ..util import set_module, wrap_np_unary_func, wrap_np_binary_func,\ is_np_default_dtype from ..context import current_context from ..ndarray import numpy as _mx_nd_np from ..ndarray.numpy import _internal as _npi from ..ndarray.ndarray import _storage_type, from_numpy from .utils import _get_np_op from .fallback import * # pylint: disable=wildcard-import,unused-wildcard-import from . import fallback __all__ = ['ndarray', 'empty', 'empty_like', 'array', 'shape', 'median', 'zeros', 'zeros_like', 'ones', 'ones_like', 'full', 'full_like', 'all', 'any', 'broadcast_to', 'add', 'subtract', 'multiply', 'divide', 'mod', 'remainder', 'fmod', 'power', 'bitwise_not', 'delete', 'trace', 'transpose', 'arctan2', 'sin', 'cos', 'tan', 'sinh', 'cosh', 'tanh', 'log10', 'invert', 'sqrt', 'cbrt', 'abs', 'absolute', 'fabs', 'exp', 'expm1', 'arcsin', 'arccos', 'arctan', 'sign', 'log', 'degrees', 'log2', 'log1p', 'rint', 'radians', 'reciprocal', 'square', 'negative', 'histogram', 'fix', 'ceil', 'floor', 'trunc', 'logical_not', 'arcsinh', 'arccosh', 'arctanh', 'append', 'argsort', 'sort', 'tensordot', 'eye', 'linspace', 'logspace', 'expand_dims', 'tile', 'arange', 'array_split', 'split', 'hsplit', 'vsplit', 'dsplit', 'flatnonzero', 'tril_indices', 'concatenate', 'stack', 'vstack', 'row_stack', 'column_stack', 'hstack', 'dstack', 'average', 'mean', 'maximum', 'fmax', 'minimum', 'fmin', 'amax', 'amin', 'max', 'min', 'swapaxes', 'clip', 'argmax', 'argmin', 'std', 'var', 'insert', 'indices', 'copysign', 'ravel', 'unravel_index', 'diag_indices_from', 'hanning', 'hamming', 'blackman', 'logical_and', 'logical_or', 'logical_xor', 'flip', 'flipud', 'fliplr', 'around', 'round', 'round_', 'arctan2', 'hypot', 'triu_indices_from', 'triu_indices', 'tri', 'bitwise_and', 'bitwise_xor', 'bitwise_or', 'rad2deg', 'deg2rad', 'unique', 'lcm', 'tril', 'triu', 'identity', 'take', 'ldexp', 'vdot', 'inner', 'outer', 'cross', 'kron', 'equal', 'not_equal', 'interp', 'greater', 'less', 'greater_equal', 'less_equal', 'roll', 'rot90', 'einsum', 'true_divide', 'nonzero', 'quantile', 'percentile', 'shares_memory', 'may_share_memory', 'diff', 'ediff1d', 'resize', 'matmul', 'nan_to_num', 'isnan', 'isinf', 'isposinf', 'isneginf', 'isfinite', 'polyval', 'where', 'bincount', 'atleast_1d', 'atleast_2d', 'atleast_3d', 'fill_diagonal', 'squeeze', 'diagflat', 'repeat', 'prod', 'pad', 'cumsum', 'sum', 'rollaxis', 'diag', 'diagonal'] __all__ += fallback.__all__ # Return code for dispatching indexing function call _NDARRAY_UNSUPPORTED_INDEXING = -1 _NDARRAY_BASIC_INDEXING = 0 _NDARRAY_ADVANCED_INDEXING = 1 _NDARRAY_EMPTY_TUPLE_INDEXING = 2 # Return code for 0-d boolean array handler _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY = -1 _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE = 0 _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE = 1 # This function is copied from ndarray.py since pylint # keeps giving false alarm error of undefined-all-variable def _new_alloc_handle(shape, ctx, delay_alloc, dtype=mx_real_t): # pylint: disable=redefined-outer-name """Return a new handle with specified shape and context. Empty handle is only used to hold results. Returns ------- handle A new empty `ndarray` handle. """ hdl = NDArrayHandle() check_call(_LIB.MXNDArrayCreateEx( c_array_buf(mx_uint, native_array('I', shape)), mx_uint(len(shape)), ctypes.c_int(ctx.device_typeid), ctypes.c_int(ctx.device_id), ctypes.c_int(int(delay_alloc)), ctypes.c_int(int(_DTYPE_NP_TO_MX[_np.dtype(dtype).type])), ctypes.byref(hdl))) return hdl def _reshape_view(a, *shape): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Parameters ---------- shape : tuple of int, or n ints The new shape should not change the array size, namely ``np.prod(new_shape)`` should be equal to ``np.prod(a.shape)``. Some dimensions of the shape can take special value -1, which infers the dimension of the output shape by using the remainder of the input dimensions keeping the size of the new array same as that of the input array. At most one dimension of shape can be -1. Returns ------- ndarray An array with desired shape that shares data with this array. """ if len(shape) == 1 and isinstance(shape[0], (list, tuple)): shape = shape[0] handle = NDArrayHandle() check_call(_LIB.MXNDArrayReshape64(a.handle, len(shape), c_array(ctypes.c_int64, shape), False, ctypes.byref(handle))) return ndarray(handle=handle, writable=a.writable) def _as_mx_np_array(object, ctx=None): """Convert object to mxnet.numpy.ndarray.""" if isinstance(object, _np.ndarray): if not object.flags['C_CONTIGUOUS']: object = _np.ascontiguousarray(object, dtype=object.dtype) ret = from_numpy(object, array_cls=ndarray) return ret if ctx is None else ret.as_in_ctx(ctx=ctx) elif isinstance(object, (integer_types, numeric_types)): return object elif isinstance(object, (list, tuple)): tmp = [_as_mx_np_array(arr) for arr in object] return object.__class__(tmp) elif isinstance(object, (_np.bool_, _np.bool)): return array(object, dtype=_np.bool_, ctx=ctx) else: raise TypeError('Does not support converting {} to mx.np.ndarray.'.format(str(type(object)))) def _as_onp_array(object): """Convert object to mxnet.numpy.ndarray.""" cur_ctx = None if isinstance(object, ndarray): return object.asnumpy(), object.ctx elif isinstance(object, (list, tuple)): tmp = [] for arr in object: arr, tmp_ctx = _as_onp_array(arr) # if isinstance(arr, (list, tuple)): # raise TypeError('type {} not supported'.format(str(type(arr)))) tmp.append(arr) if cur_ctx is None: cur_ctx = tmp_ctx elif tmp_ctx is not None and cur_ctx != tmp_ctx: raise ValueError('Ambiguous to set the context for the output ndarray since' # pylint: disable=too-few-format-args ' input ndarrays are allocated on different devices: {} and {}' .format(str(cur_ctx, tmp_ctx))) return object.__class__(tmp), cur_ctx else: return object, cur_ctx # Have to use 0 as default value for stype since pylint does not allow # importing _STORAGE_TYPE_DEFAULT from ndarray.py. def _np_ndarray_cls(handle, writable=True, stype=0): if stype == -1: stype = _storage_type(handle) if stype != 0: raise ValueError('_np_ndarray_cls currently only supports default storage ' 'type, while received stype = {}'.format(stype)) return ndarray(handle, writable=writable) _set_np_ndarray_class(_np_ndarray_cls) _NUMPY_ARRAY_FUNCTION_DICT = {} _NUMPY_ARRAY_UFUNC_DICT = {} _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD = {} _FALLBACK_ARRAY_UFUNC_WARNED_RECORD = {} def wrap_mxnp_np_ufunc(func): """ A convenience decorator for wrapping for python overload-able ops to provide type casting for mixed use of mx_np and onp inputs. Parameters ---------- func : a python overload-able binary function to be wrapped for type casting. Returns ------- Function A function wrapped with type casted. """ @functools.wraps(func) def _wrap_mxnp_np_ufunc(x1, x2): if isinstance(x2, _np.ndarray): x2 = _as_mx_np_array(x2, ctx=x1.ctx) return func(x1, x2) return _wrap_mxnp_np_ufunc @set_module('mxnet.numpy') # pylint: disable=invalid-name class ndarray(NDArray): """ ndarray(handle, writable=True): An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else, etc.). Arrays should be constructed using `array`, `zeros` or `empty`. Currently, only c-contiguous arrays are supported. Arrays should be constructed using `array`, `zeros` or `empty` (refer to the See Also section below). The parameters given here refer to a low-level method (`ndarray(...)`) for instantiating an array. For more information, refer to the `mxnet.numpy` module and examine the methods and attributes of an array. Parameters ---------- handle: int The ndarray handle in backend (C++). writable: bool Indicates whether inplace-assignment is allowed for the array. Attributes ---------- T : ndarray Transpose of the array. dtype : dtype object Describes the format of the elements in the array. size : int Number of elements in the array. ndim : int The array's number of dimensions. shape : tuple of ints Shape of the array. See Also -------- array : Construct an array. zeros : Create an array, each element of which is zero. empty : Create an array, but leave its allocated memory unchanged (i.e., it contains "garbage"). """ @staticmethod def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy unary/binary operator calls on mxnet.numpy.ndarray to this function. The operators must comply with the ufunc definition in NumPy. The following code is adapted from CuPy. Casting rules for operator with mx_np and onp (inplace op will keep its type) | Expression | a type | b type | out type| | --- | --- | --- | --- | | `a += b` | onp | mx_np | onp | | `a += b` | mx_np | onp | mx_np | | `c = a + b` | onp | mx_np | mx_np | | `c = a + b` | mx_np | onp | mx_np | """ ufunc_list = ["add", "subtract", "multiply", "divide", "true_divide", "floor_divide", "power", "remainder", "bitwise_and", "bitwise_or", "bitwise_xor", "left_shift", "right_shift", "greater", "greater_equal", "less", "less_equal", "not_equal", "equal", "matmul"] if 'out' in kwargs: # need to unfold tuple argument in kwargs out = kwargs['out'] if len(out) != 1: raise ValueError('The `out` parameter must have exactly one ndarray') kwargs['out'] = out[0] if method == '__call__': name = ufunc.__name__ mx_ufunc = _NUMPY_ARRAY_UFUNC_DICT.get(name, None) onp_op = _get_np_op(name) if mx_ufunc is None: # try to fallback to official NumPy op if is_recording(): raise ValueError("Falling back to NumPy operator {} with autograd active is not supported." "Please consider moving the operator to the outside of the autograd scope.")\ .format(name) new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs] if onp_op not in _FALLBACK_ARRAY_UFUNC_WARNED_RECORD: import logging logging.warning("np.%s is a fallback operator, " "which is actually using official numpy's implementation", name) _FALLBACK_ARRAY_UFUNC_WARNED_RECORD[onp_op] = True out = onp_op(*new_inputs, **kwargs) return _as_mx_np_array(out, ctx=inputs[0].ctx) # ops with np mx_np elif name in ufunc_list and isinstance(inputs[0], _np.ndarray): # inplace if 'out' in kwargs: new_inputs = [arg.asnumpy() if isinstance(arg, ndarray) else arg for arg in inputs] return onp_op(*new_inputs, **kwargs) else: new_inputs = [_as_mx_np_array(arg, ctx=inputs[1].ctx) if isinstance(arg, _np.ndarray) else arg for arg in inputs] return mx_ufunc(*new_inputs, **kwargs) else: return mx_ufunc(*inputs, **kwargs) else: return NotImplemented @staticmethod def __array_function__(self, func, types, args, kwargs): # pylint: disable=bad-staticmethod-argument """ Dispatch official NumPy operators that comply with the array function protocol to this function. """ mx_np_func = _NUMPY_ARRAY_FUNCTION_DICT.get(func, None) func_name = func.__name__ if mx_np_func is None: # try to fallback to official NumPy op if is_recording(): raise ValueError("Falling back to NumPy operator {} with autograd active is not supported." "Please consider moving the operator to the outside of the autograd scope.")\ .format(func) new_args, cur_ctx = _as_onp_array(args) if cur_ctx is None: raise ValueError('Unknown context for the input ndarrays. It is probably a bug. Please' ' create an issue on GitHub.') new_kwargs = {} for k, v in kwargs.items(): new_kwargs[k] = v.asnumpy() if isinstance(v, ndarray) else v if func not in _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD: import logging logging.warning("np.%s is a fallback operator, " "which is actually using official numpy's implementation.", func_name) _FALLBACK_ARRAY_FUNCTION_WARNED_RECORD[func] = True out = func(*new_args, **new_kwargs) return _as_mx_np_array(out, ctx=cur_ctx) else: # Note: this allows subclasses that don't override # __array_function__ to handle mxnet.numpy.ndarray objects if not py_all(issubclass(t, ndarray) for t in types): return NotImplemented return mx_np_func(*args, **kwargs) def _get_np_basic_indexing(self, key): """ This function indexes ``self`` with a tuple of `slice` objects only. """ key_nd = tuple(idx for idx in key if idx is not None) if len(key_nd) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(key_nd)) ) if len(key_nd) > self.ndim: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(key_nd), self.ndim) ) none_axes = [ax for ax in range(len(key)) if key[ax] is None] # pylint: disable=invalid-name slc_key, int_axes = self._basic_indexing_key_int_to_slice(key_nd) new_axes = self._new_axes_after_basic_indexing(none_axes, key) # Check bounds for integer axes for ax in int_axes: # pylint: disable=invalid-name if not -self.shape[ax] <= key_nd[ax] < self.shape[ax]: raise IndexError( 'index {} is out of bounds for axis {} with size {}' ''.format(key_nd[ax], ax, self.shape[ax])) if self._basic_indexing_slice_is_contiguous(slc_key, self.shape): # Create a shared-memory view by using low-level flat slicing flat_begin, flat_end = self._basic_indexing_contiguous_flat_begin_end( slc_key, self.shape ) handle = NDArrayHandle() flat_self = self.reshape_view(-1) check_call( _LIB.MXNDArraySlice( flat_self.handle, mx_uint(flat_begin), mx_uint(flat_end), ctypes.byref(handle), ) ) sliced_shape = self._basic_indexing_sliced_shape(slc_key, self.shape) sliced = self.__class__(handle=handle, writable=self.writable) if 0 in sliced_shape: sliced = sliced.reshape(sliced_shape) else: sliced = sliced.reshape_view(sliced_shape) else: begin, end, step = self._basic_indexing_key_to_begin_end_step( slc_key, self.shape, keep_none=True ) sliced = _npi.slice(self, begin, end, step) # Reshape to final shape due to integer and `None` entries in `key`. final_shape = [sliced.shape[i] for i in range(sliced.ndim) if i not in int_axes] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) if sliced.size == 0: return sliced.reshape(tuple(final_shape)) else: return sliced.reshape_view(tuple(final_shape)) def _get_np_empty_tuple_indexing(self, key): new_shape = [] num_none = 0 for i, idx in enumerate(key): if idx is None: new_shape.append(1) # expand dimension num_none += 1 elif idx == (): new_shape.append(0) # 0 shape elif idx == slice(None, None, None): new_shape.append(self.shape[i - num_none]) return empty(new_shape, dtype=self.dtype) def _get_np_advanced_indexing(self, key): idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) sliced = _npi.gather_nd(self, idcs) # Reshape due to `None` entries in `key`. if new_axes: final_shape = [sliced.shape[i] for i in range(sliced.ndim)] for ax in new_axes: # pylint: disable=invalid-name final_shape.insert(ax, 1) return sliced.reshape(tuple(final_shape)) else: return sliced def _set_np_advanced_indexing(self, key, value): """This function is called by __setitem__ when key is an advanced index.""" idcs, new_axes = self._get_index_nd(key) if type(idcs) == NDArray: # pylint: disable=unidiomatic-typecheck idcs = idcs.as_np_ndarray() else: idcs = _npi.stack(*[i if isinstance(i, self.__class__) else i.as_np_ndarray() for i in idcs]) vshape = get_oshape_of_gather_nd_op(self.shape, idcs.shape) value_nd = self._prepare_value_nd(value, bcast_shape=vshape, squeeze_axes=new_axes) self._scatter_set_nd(value_nd, idcs) # pylint: disable=redefined-outer-name def _get_np_boolean_indexing(self, key, ndim, shape): """ There are two types of boolean indices (which are equivalent, for the most part though). This function will handle single boolean indexing for higher speed. If this is not the case, it is instead expanded into (multiple) integer array indices and will be handled by advanced indexing. """ key_shape = key.shape key_ndim = len(key_shape) if ndim < key_ndim: raise IndexError('too many indices, whose ndim = {}, for array with ndim = {}' .format(key_ndim, ndim)) for i in range(key_ndim): if key_shape[i] != shape[i]: raise IndexError('boolean index did not match indexed array along dimension {};' ' dimension is {} but corresponding boolean dimension is {}' .format(i, shape[i], key_shape[i])) remaining_dims = shape[key_ndim:] data = _reshape_view(self, -1, *remaining_dims) key = _reshape_view(key, -1) return _reshape_view(_npi.boolean_mask(data, key), -1, *remaining_dims) def _set_np_boolean_indexing(self, key, value): """ There are two types of boolean indices (which are equivalent, for the most part though). This function will handle single boolean assign for higher speed. If this is not the case, it is instead expanded into (multiple) integer array indices and will be handled by advanced assign. """ if isinstance(value, numeric_types): _npi.boolean_mask_assign_scalar(data=self, mask=key, value=int(value) if isinstance(value, bool) else value, start_axis=0, out=self) elif isinstance(value, ndarray): _npi.boolean_mask_assign_tensor(data=self, mask=key, value=value, start_axis=0, out=self) else: raise NotImplementedError('type %s is not supported.'%(type(value))) # pylint: disable=too-many-return-statements def __getitem__(self, key): """Return self[key]. Returns a sliced view of this array if the elements fetched are contiguous in memory; otherwise, returns a newly created NDArray. This functions supports advanced indexing defined in the following reference with some restrictions. Boolean indexing is supported only for a single boolean ndarray as a key. Mixing boolean ndarray with other index types is not supported in ``advanced`` indexing. For basic indexing, i.e., if ``key`` consists only of integers, ``slice``, ``Ellipsis`` (``...``) and ``None``, a mutable view is returned that shares memory with this array if the accessed portion is contiguous in memory. Otherwise, a newly created ``ndarray`` is returned. This functions supports advanced indexing as defined in `the NumPy advanced indexing documentation <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_. Parameters ---------- key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types Indexing key. Examples -------- The default is to give explicit indices for all axes: >>> x = np.arange(6).reshape(2, 3) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> x[0, :2] array([0., 1.]) >>> x[:, :-1] array([[0., 1.], [3., 4.]]) If fewer indices are given, they are automatically supplemented by an appropriate number of ``slice(None)`` ("``:``") to the right. For instance, a single integer indexes along the first axis: >>> x[0] array([0., 1., 2.]) >>> x[1:] array([[3., 4., 5.]]) To omit a range of axes that should be kept as-is, an `Ellipsis` ("``...``") can be used: >>> x = np.arange(16).reshape(2, 2, 2, 2) >>> x[0, ..., 1] array([[1., 3.], [5., 7.]]) >>> x[0, :, :, 1] # equivalent array([[1., 3.], [5., 7.]]) New axes of length 1 can be created by inserting ``None`` (`numpy.newaxis`) in the index: >>> x = np.arange(6).reshape(2, 3) >>> x[None, :, :] array([[[0., 1., 2.], [3., 4., 5.]]]) >>> x[None, :, :].shape (1, 2, 3) If the indexed portion of the array is contiguous in memory, no data is copied. Instead, a shared-memory view of the original array is returned, and changes to that view affect the original array: >>> x = np.arange(8).reshape(2, 2, 2) >>> y = x[0] # contiguous >>> y array([[0., 1.], [2., 3.]]) >>> y[:] = -1 >>> x array([[[-1., -1.], [-1., -1.]], [[ 4., 5.], [ 6., 7.]]]) >>> x = np.arange(8).reshape(2, 2, 2) >>> y = x[1, :1, :] # contiguous >>> y array([[4., 5.]]) >>> y[:] = -1 >>> x array([[[ 0., 1.], [ 2., 3.]], [[-1., -1.], [ 6., 7.]]]) >>> x = np.arange(0, 8).reshape(2, 2, 2) >>> y = x[:, :, 1] # not contiguous >>> y array([[1., 3.], [5., 7.]]) >>> y[:] = -1 >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) If the indexing key contains `list`, `numpy.ndarray` or `NDArray` objects, advanced indexing is triggered, which always returns a copy: >>> x = np.arange(8).reshape(2, 2, 2) >>> x[[0, 1]] array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> x[[0, 1], :] # equivalent array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> y = np.array([0, 1], dtype='int32') >>> x[1:, y] array([[[4., 5.], [6., 7.]]]) >>> y = np.array([0, 1], dtype='int32') >>> x[1:, y] array([[[4., 5.], [6., 7.]]]) Get negative elements in an ndarray through boolean array indexing >>> x = np.array([1., -1., -2., 3]) >>> x[x < 0] array([-1., -2.]) For more imformation related to boolean indexing, please refer to https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html. """ ndim = self.ndim # pylint: disable=redefined-outer-name shape = self.shape # pylint: disable=redefined-outer-name if isinstance(key, bool): # otherwise will be treated as 0 and 1 key = array(key, dtype=_np.bool, ctx=self.ctx) if isinstance(key, list): try: new_key = _np.array(key) if new_key.dtype == _np.bool_: key = new_key except Exception as err: raise TypeError('{}'.format(str(err))) if isinstance(key, _np.ndarray): if dc.is_deferred_compute(): raise TypeError('Indexing with a numpy array is not supported in HybridBlock.') if key.dtype == _np.bool_: key = array(key, dtype='bool', ctx=self.ctx) # Handle single boolean index of matching dimensionality and size first for higher speed # If the boolean array is mixed with other idices, it is instead expanded into (multiple) # integer array indices and will be handled by advanced indexing. # Come before the check self.dim == 0 as it also handle the 0-dim case. if isinstance(key, ndarray) and key.dtype == _np.bool_: return self._get_np_boolean_indexing(key, ndim, shape) if ndim == 0 and key != (): raise IndexError('scalar tensor can only accept `()` as index') # Handle simple cases for higher speed if isinstance(key, tuple) and len(key) == 0: return self if isinstance(key, tuple) and len(key) == ndim\ and py_all(isinstance(idx, integer_types) for idx in key): out = self for idx in key: out = out[idx] return out if isinstance(key, integer_types): if key > shape[0] - 1: raise IndexError( 'index {} is out of bounds for axis 0 with size {}'.format( key, shape[0])) return self._at(key) elif isinstance(key, py_slice): if key.step is None or key.step == 1: if key.start is not None or key.stop is not None: return self._slice(key.start, key.stop) else: return self elif key.step == 0: raise ValueError("slice step cannot be zero") # For 0-d boolean indices: A new axis is added, # but at the same time no axis is "used". So if we have True, # we add a new axis (a bit like with np.newaxis). If it is # False, we add a new axis, but this axis has 0 entries. # prepend is defined to handle this case. # prepend = _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar # prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE/0 means an zero dim must be expanded # prepend = _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE/1 means a new axis must be prepended key, prepend = indexing_key_expand_implicit_axes(key, self.shape) indexing_dispatch_code = get_indexing_dispatch_code(key) if indexing_dispatch_code == _NDARRAY_EMPTY_TUPLE_INDEXING: # won't be affected by zero-dim boolean indices return self._get_np_empty_tuple_indexing(key) elif indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return empty((0,) + self._get_np_basic_indexing(key).shape, dtype=self.dtype, ctx=self.ctx) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE: key = (_np.newaxis,) + key return self._get_np_basic_indexing(key) elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: if dc.is_deferred_compute(): raise TypeError('Advanced indexing is not supported in HybridBlock.') if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return empty((0,) + self._get_np_adanced_indexing(key).shape, dtype=self.dtype, ctx=self.ctx) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE: key = (_np.newaxis,) + key return self._get_np_advanced_indexing(key) else: raise RuntimeError # pylint: disable=inconsistent-return-statements def __setitem__(self, key, value): """Sets ``self[key]`` to ``value``. This functions supports advanced indexing as defined in `the NumPy advanced indexing documentation <https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html#advanced-indexing>`_, with the restriction that boolean array indexing is not supported. Parameters ---------- key : int, slice, list, np.ndarray, mx.np.ndarray, or tuple of all previous types The indexing key. value : scalar or array-like object that can be broadcast to the shape of self[key] The value to set. Examples -------- >>> x = np.zeros((2, 3)) >>> x[:] = 1 >>> x array([[ 1., 1., 1.], [ 1., 1., 1.]]) >>> x[:, 1:2] = 2 >>> x array([[ 1., 2., 1.], [ 1., 2., 1.]]) >>> x[1:2, 1:] = 3 >>> x array([[ 1., 2., 1.], [ 1., 3., 3.]]) >>> x[1:, 0:2] = np.zeros((1, 2)) >>> x array([[ 1., 2., 1.], [ 0., 0., 3.]]) >>> x[1, 2] = 4 >>> x array([[ 1., 2., 1.], [ 0., 0., 4.]]) >>> x[[0], [1, 2]] = 5 >>> x array([[ 1., 5., 5.], [ 0., 0., 4.]]) >>> x[::-1, 0:2:2] = [6] >>> x array([[ 6., 5., 5.], [ 6., 0., 4.]]) For imformation related to boolean indexing, please refer to https://docs.scipy.org/doc/numpy-1.17.0/reference/arrays.indexing.html. """ if isinstance(value, NDArray) and not isinstance(value, ndarray): raise TypeError('Cannot assign mx.nd.NDArray to mxnet.numpy.ndarray') if isinstance(key, bool): # otherwise will be treated as 0 and 1 key = array(key, dtype=_np.bool) # Handle single boolean assign of matching dimensionality and size first for higher speed # If the boolean array is mixed with other idices, it is instead expanded into (multiple) # integer array indices and will be handled by advanced assign. # Come before the check self.dim == 0 as it also handle the 0-dim case. if isinstance(key, ndarray) and key.dtype == _np.bool: return self._set_np_boolean_indexing(key, value) # handle basic and advanced indexing if self.ndim == 0: if not isinstance(key, tuple) or len(key) != 0: raise IndexError('scalar tensor can only accept `()` as index') if isinstance(value, numeric_types): self._full(value) elif isinstance(value, ndarray) and value.size == 1: if value.shape != self.shape: value = value.reshape(self.shape) value.copyto(self) elif isinstance(value, (_np.ndarray, _np.generic)) and value.size == 1: if isinstance(value, _np.generic) or value.shape != self.shape: value = value.reshape(self.shape) self._sync_copyfrom(value) else: raise ValueError('setting an array element with a sequence.') else: # For 0-d boolean indices: A new axis is added, # but at the same time no axis is "used". So if we have True, # we add a new axis (a bit like with np.newaxis). If it is # False, we add a new axis, but this axis has 0 entries. # prepend is defined to handle this case. # prepend == _NDARRAY_NO_ZERO_DIM_BOOL_ARRAY/-1 means there is no 0-d boolean scalar # prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE/0 means an zero dim must be expanded # prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_TRUE/1 means a new axis must be expanded # prepend actually has no influence on __setitem__ key, prepend = indexing_key_expand_implicit_axes(key, self.shape) if prepend == _NDARRAY_ZERO_DIM_BOOL_ARRAY_FALSE: return # no action is needed slc_key = tuple(idx for idx in key if idx is not None) if len(slc_key) < self.ndim: raise RuntimeError( 'too few indices after normalization: expected `ndim` ({}) ' 'but got {}. This is a bug, please report it!' ''.format(self.ndim, len(slc_key)) ) if len(slc_key) > self.ndim and self.ndim != 0: raise IndexError( 'too many indices ({}) for array with {} dimensions' ''.format(len(slc_key), self.ndim) ) indexing_dispatch_code = get_indexing_dispatch_code(slc_key) if indexing_dispatch_code == _NDARRAY_BASIC_INDEXING: self._set_nd_basic_indexing(key, value) # function is inheritated from NDArray class elif indexing_dispatch_code == _NDARRAY_EMPTY_TUPLE_INDEXING: pass # no action needed elif indexing_dispatch_code == _NDARRAY_ADVANCED_INDEXING: self._set_np_advanced_indexing(key, value) else: raise ValueError( 'Indexing NDArray with index {} of type {} is not supported' ''.format(key, type(key)) ) def _prepare_value_nd(self, value, bcast_shape, squeeze_axes=None): """Return a broadcast `ndarray` with same context and dtype as ``self``. For setting item, The returned `ndarray` is squeezed according to squeeze_axes since the value_nd is assigned to not yet expanded space in original array. `value`: numeric types or array like. `bcast_shape`: a shape tuple. `squeeze_axes`: a sequence of axes to squeeze in the value array. Note: mxnet.numpy.ndarray not support NDArray as assigned value. """ if isinstance(value, numeric_types): value_nd = full(bcast_shape, value, ctx=self.ctx, dtype=self.dtype) elif isinstance(value, self.__class__): value_nd = value.as_in_ctx(self.ctx) if value_nd.dtype != self.dtype: value_nd = value_nd.astype(self.dtype) else: try: value_nd = array(value, ctx=self.ctx, dtype=self.dtype) except: raise TypeError('mxnet.np.ndarray does not support assignment with non-array-like ' 'object {} of type {}'.format(value, type(value))) # For advanced indexing setitem, if there is None in indices, we need to squeeze the # assigned value_nd since None is also ignored in slicing the original array. if squeeze_axes and value_nd.ndim > len(bcast_shape): squeeze_axes = tuple([ax for ax in squeeze_axes if ax < len(value_nd.shape)]) value_nd = value_nd.squeeze(axis=tuple(squeeze_axes)) # handle the cases like the following # a = np.zeros((3, 3)), b = np.ones((1, 1, 1, 1, 3)), a[0] = b # b cannot broadcast directly to a[0].shape unless its leading 1-size axes are trimmed if value_nd.ndim > len(bcast_shape): squeeze_axes = [] for i in range(value_nd.ndim - len(bcast_shape)): if value_nd.shape[i] == 1: squeeze_axes.append(i) else: break if squeeze_axes: value_nd = value_nd.squeeze(squeeze_axes) if value_nd.shape != bcast_shape: if value_nd.size == 0: value_nd = value_nd.reshape(bcast_shape) else: value_nd = value_nd.broadcast_to(bcast_shape) return value_nd @wrap_mxnp_np_ufunc def __add__(self, other): """x.__add__(y) <=> x + y""" return add(self, other) @wrap_mxnp_np_ufunc def __iadd__(self, other): """x.__iadd__(y) <=> x += y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return add(self, other, out=self) def __invert__(self): """x.__invert__() <=> ~x""" return invert(self) @wrap_mxnp_np_ufunc def __and__(self, other): """x.__and__(y) <=> x & y""" return bitwise_and(self, other) @wrap_mxnp_np_ufunc def __or__(self, other): """x.__or__(y) <=> x | y""" return bitwise_or(self, other) @wrap_mxnp_np_ufunc def __xor__(self, other): """x.__xor__(y) <=> x ^ y""" return bitwise_xor(self, other) @wrap_mxnp_np_ufunc def __iand__(self, other): """x.__iand__(y) <=> x &= y""" return bitwise_and(self, other, out=self) @wrap_mxnp_np_ufunc def __ior__(self, other): """x.__ior__(y) <=> x |= y""" return bitwise_or(self, other, out=self) @wrap_mxnp_np_ufunc def __ixor__(self, other): """x.__ixor__(y) <=> x ^= y""" return bitwise_xor(self, other, out=self) def __round__(self, n=0): """x.__round__(n)""" return round(self, decimals=n) def __abs__(self): """x.__abs__()""" return absolute(self) def __ceil__(self): """x.__ceil__()""" return ceil(self) def __floor__(self): """x.__floor__()""" return floor(self) def __trunc__(self): """x.__trunc__()""" return trunc(self) @wrap_mxnp_np_ufunc def __sub__(self, other): """x.__sub__(y) <=> x - y""" return subtract(self, other) @wrap_mxnp_np_ufunc def __isub__(self, other): """x.__isub__(y) <=> x -= y""" if not self.writable: raise ValueError('trying to subtract from a readonly ndarray') return subtract(self, other, out=self) @wrap_mxnp_np_ufunc def __rsub__(self, other): """x.__rsub__(y) <=> y - x""" return subtract(other, self) @wrap_mxnp_np_ufunc def __mul__(self, other): """x.__mul__(y) <=> x * y""" return multiply(self, other) def __neg__(self): return negative(self) @wrap_mxnp_np_ufunc def __imul__(self, other): """x.__imul__(y) <=> x *= y""" if not self.writable: raise ValueError('trying to add to a readonly ndarray') return multiply(self, other, out=self) @wrap_mxnp_np_ufunc def __rmul__(self, other): """x.__rmul__(y) <=> y * x""" return self.__mul__(other) @wrap_mxnp_np_ufunc def __div__(self, other): """x.__div__(y) <=> x / y""" return divide(self, other) @wrap_mxnp_np_ufunc def __rdiv__(self, other): """x.__rdiv__(y) <=> y / x""" return divide(other, self) @wrap_mxnp_np_ufunc def __idiv__(self, other): """x.__idiv__(y) <=> x /= y""" return divide(self, other, out=self) @wrap_mxnp_np_ufunc def __truediv__(self, other): """x.__truediv__(y) <=> x / y""" return divide(self, other) @wrap_mxnp_np_ufunc def __rtruediv__(self, other): """x.__rtruediv__(y) <=> y / x""" return divide(other, self) @wrap_mxnp_np_ufunc def __itruediv__(self, other): """x.__itruediv__(y) <=> x /= y""" return divide(self, other, out=self) @wrap_mxnp_np_ufunc def __mod__(self, other): """x.__mod__(y) <=> x % y""" return mod(self, other) @wrap_mxnp_np_ufunc def __rmod__(self, other): """x.__rmod__(y) <=> y % x""" return mod(other, self) @wrap_mxnp_np_ufunc def __imod__(self, other): """x.__imod__(y) <=> x %= y""" return mod(self, other, out=self) @wrap_mxnp_np_ufunc def __pow__(self, other): """x.__pow__(y) <=> x ** y""" return power(self, other) @wrap_mxnp_np_ufunc def __rpow__(self, other): """x.__rpow__(y) <=> y ** x""" return power(other, self) @wrap_mxnp_np_ufunc def __eq__(self, other): """x.__eq__(y) <=> x == y""" return equal(self, other) def __hash__(self): raise NotImplementedError @wrap_mxnp_np_ufunc def __ne__(self, other): """x.__ne__(y) <=> x != y""" return not_equal(self, other) @wrap_mxnp_np_ufunc def __gt__(self, other): """x.__gt__(y) <=> x > y""" return greater(self, other) @wrap_mxnp_np_ufunc def __ge__(self, other): """x.__ge__(y) <=> x >= y""" return greater_equal(self, other) @wrap_mxnp_np_ufunc def __lt__(self, other): """x.__lt__(y) <=> x < y""" return less(self, other) @wrap_mxnp_np_ufunc def __le__(self, other): """x.__le__(y) <=> x <= y""" return less_equal(self, other) @wrap_mxnp_np_ufunc def __matmul__(self, other): """x.__matmul__(y) <=> x @ y""" return matmul(self, other) @wrap_mxnp_np_ufunc def __rmatmul__(self, other): """x.__rmatmul__(y) <=> y @ x""" return matmul(other, self) @wrap_mxnp_np_ufunc def __imatmul__(self, other): """x.__imatmul__(y) <=> x @= y""" return matmul(self, other, out=self) def __bool__(self): num_elements = self.size if num_elements == 0: warnings.simplefilter('default') warnings.warn('The truth value of an empty array is ambiguous. Returning False, but in' ' future this will result in an error.', DeprecationWarning) return False elif num_elements == 1: return bool(self.item()) else: raise ValueError("The truth value of an ndarray with multiple elements is ambiguous.") __nonzero__ = __bool__ def __float__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return float(self.item()) def __int__(self): num_elements = self.size if num_elements != 1: raise TypeError('only size-1 arrays can be converted to Python scalars') return int(self.item()) def __len__(self): """Number of elements along the first axis.""" shape = self.shape # pylint: disable=redefined-outer-name if len(shape) == 0: raise TypeError('len() of unsized object') return self.shape[0] def __reduce__(self): return ndarray, (None,), self.__getstate__() def item(self, *args): """Copy an element of an array to a standard Python scalar and return it. Parameters ---------- *args : Arguments (variable number and type) none: in this case, the method only works for arrays with one element (a.size == 1), which element is copied into a standard Python scalar object and returned. int_type: this argument is interpreted as a flat index into the array, specifying which element to copy and return. tuple of int_types: functions as does a single int_type argument, except that the argument is interpreted as an nd-index into the array. Returns ------- z : Standard Python scalar object A copy of the specified element of the array as a suitable Python scalar. """ # TODO(junwu): no need to call asnumpy() on the whole array. return self.asnumpy().item(*args) def nonzero(self): """Return the indices of the elements that are non-zero. Refer to `numpy.nonzero` for full documentation. See Also -------- numpy.nonzero : equivalent function """ return nonzero(self) @property # pylint: disable= invalid-name, undefined-variable def T(self): """Same as self.transpose(). This always returns a copy of self.""" return self.transpose() # pylint: enable= invalid-name, undefined-variable def all(self, axis=None, out=None, keepdims=False): return _mx_nd_np.all(self, axis=axis, out=out, keepdims=keepdims) def any(self, axis=None, out=None, keepdims=False): return _mx_nd_np.any(self, axis=axis, out=out, keepdims=keepdims) def as_nd_ndarray(self): """Convert mxnet.numpy.ndarray to mxnet.ndarray.NDArray to use its fluent methods.""" hdl = NDArrayHandle() check_call(_LIB.MXShallowCopyNDArray(self.handle, ctypes.byref(hdl))) return NDArray(handle=hdl, writable=self.writable) def as_np_ndarray(self): """A convenience function for creating a numpy ndarray from the current ndarray with zero copy. For this class, it just returns itself since it's already a numpy ndarray.""" return self def __repr__(self): """ Returns a string representation of the array. The dtype of the ndarray will be appended if it's inconsistent with current dtype. The context of the ndarray will be appended for devices other than CPU. Examples -------- >>> from mxnet import np, npx >>> a = np.random.uniform(size=(2, 3)) >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]]) >>> print(a) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] >>> a.dtype dtype('float32') >>> npx.set_np_float64() >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]], dtype=float32) >>> npx.set_np_float64(default_float64=False) >>> a array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]]) >>> b = a.astype(np.float64) >>> b array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64) >>> print(b) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] >>> b.dtype dtype('float64') >>> c = a.copyto(npx.gpu(0)) >>> c array([[0.5488135 , 0.5928446 , 0.71518934], [0.84426576, 0.60276335, 0.8579456 ]], ctx=gpu(0)) >>> print(c) [[0.5488135 0.5928446 0.71518934] [0.84426576 0.60276335 0.8579456 ]] @gpu(0) >>> d = b.copyto(npx.gpu(0)) >>> d array([[0.54881352, 0.59284461, 0.71518934], [0.84426576, 0.60276335, 0.85794562]], dtype=float64, ctx=gpu(0)) >>> print(d) [[0.54881352 0.59284461 0.71518934] [0.84426576 0.60276335 0.85794562]] @gpu(0) """ array_str = self.asnumpy().__repr__() dtype = self.dtype default_dtype = _np.float64 if is_np_default_dtype() else _np.float32 if 'dtype=' in array_str: if dtype == default_dtype: array_str = array_str[:array_str.rindex(',')] + ')' elif dtype not in (default_dtype, _np.bool_): array_str = array_str[:-1] + ', dtype={})'.format(dtype) context = self.ctx if context.device_type == 'cpu': return array_str return array_str[:-1] + ', ctx={})'.format(str(context)) def __str__(self): """Returns a string representation of the array.""" array_str = self.asnumpy().__str__() context = self.ctx if context.device_type == 'cpu' or self.ndim == 0: return array_str return '{array} @{ctx}'.format(array=array_str, ctx=context) def __format__(self, fmt): """Return value.__format__(format_spec). Overwrite to include 0-d array""" if self.ndim == 0: return self.item().__format__(fmt) elif len(fmt) == 0: return self.__str__().__format__(fmt) else: raise TypeError("Cannot format mxnet.numpy.ndarray with format_spec") def attach_grad(self, grad_req='write'): # pylint: disable=arguments-differ """Attach a gradient buffer to this ndarray, so that `backward` can compute gradient with respect to it. Parameters ---------- grad_req : {'write', 'add', 'null'} How gradient will be accumulated. - 'write': gradient will be overwritten on every backward. - 'add': gradient will be added to existing value on every backward. - 'null': do not compute gradient for this NDArray. """ grad = _mx_nd_np.zeros_like(self) # pylint: disable=undefined-variable grad_req = _GRAD_REQ_MAP[grad_req] check_call(_LIB.MXAutogradMarkVariables( 1, ctypes.pointer(self.handle), ctypes.pointer(mx_uint(grad_req)), ctypes.pointer(grad.handle))) @property def grad(self): """Returns gradient buffer attached to this ndarray.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayGetGrad(self.handle, ctypes.byref(hdl))) if hdl.value is None: return None return _np_ndarray_cls(hdl) def detach(self): """Returns a new ndarray, detached from the current graph.""" hdl = NDArrayHandle() check_call(_LIB.MXNDArrayDetach(self.handle, ctypes.byref(hdl))) return _np_ndarray_cls(hdl) def astype(self, dtype, order='K', casting='unsafe', subok=True, copy=True): # pylint: disable=arguments-differ,unused-argument, too-many-arguments """ Copy of the array, cast to a specified type. Parameters ---------- dtype : str or dtype Typecode or data-type to which the array is cast. order : {'C', 'F', 'A', 'K'}, optional Controls the memory layout order of the result. 'C' means C order, 'F' means Fortran order, 'A' means 'F' order if all the arrays are Fortran contiguous, 'C' order otherwise, and 'K' means as close to the order the array elements appear in memory as possible. Default is 'K'. casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional Controls what kind of data casting may occur. Defaults to 'unsafe' for backwards compatibility. * 'no' means the data types should not be cast at all. * 'equiv' means only byte-order changes are allowed. * 'safe' means only casts which can preserve values are allowed. * 'same_kind' means only safe casts or casts within a kind, like float64 to float32, are allowed. * 'unsafe' means any data conversions may be done. subok : bool, optional If True, then sub-classes will be passed-through (default), otherwise the returned array will be forced to be a base-class array. copy : bool, optional Default `True`. By default, astype always returns a newly allocated ndarray on the same context. If this is set to `False`, and the dtype requested is the same as the ndarray's dtype, the ndarray is returned instead of a copy. Returns ------- arr_t : ndarray Unless `copy` is False and the other conditions for returning the input array are satisfied (see description for `copy` input parameter), `arr_t` is a new array of the same shape as the input array with `dtype`. Notes ----- This function differs from the official `ndarray`'s ``astype`` function in the following aspects: - `order` only supports 'C' and 'K'. - `casting` only supports 'unsafe'. - `subok` only supports ``True``. """ if order is not None and order != 'K' and order != 'C': raise ValueError('order must be either \'K\' or \'C\'') if casting != 'unsafe': raise ValueError('casting must be equal to \'unsafe\'') if not subok: raise ValueError('subok must be equal to True') if dtype is None: dtype = _np.float32 if not copy and _np.dtype(dtype) == self.dtype: return self return _npi.cast(self, dtype=dtype) def copyto(self, other): """Copies the value of this array to another array. If ``other`` is a ``ndarray`` object, then ``other.shape`` and ``self.shape`` should be the same. This function copies the value from ``self`` to ``other``. If ``other`` is a context, a new ``np.ndarray`` will be first created on the target context, and the value of ``self`` is copied. Parameters ---------- other : ndarray or Context The destination array or context. Returns ------- out: ndarray The copied array. If ``other`` is an ``ndarray``, then the return value and ``other`` will point to the same ``ndarray``. Examples -------- >>> x = np.ones((2, 3)) >>> y = np.zeros((2, 3), ctx=npx.gpu(0)) >>> z = x.copyto(y) >>> z is y True >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if isinstance(other, ndarray): if other.handle is self.handle: warnings.warn('You are attempting to copy an array to itself', RuntimeWarning) return False return _npi.copyto(self, out=other) elif isinstance(other, Context): hret = ndarray(_new_alloc_handle(self.shape, other, True, self.dtype)) return _npi.copyto(self, out=hret) else: raise TypeError('copyto does not support type ' + str(type(other))) def asscalar(self): raise AttributeError('mxnet.numpy.ndarray object has no attribute asscalar') def argmax(self, axis=None, out=None): # pylint: disable=arguments-differ """Return indices of the maximum values along the given axis. Refer to `mxnet.numpy.argmax` for full documentation.""" return argmax(self, axis, out) def as_in_context(self, context): """This function has been deprecated. Please refer to ``ndarray.as_in_ctx``.""" warnings.warn('ndarray.as_in_context has been renamed to' ' ndarray.as_in_ctx', DeprecationWarning) return self.as_nd_ndarray().as_in_context(context).as_np_ndarray() def as_in_ctx(self, ctx): """Returns an array on the target device with the same value as this array. If the target context is the same as ``self.context``, then ``self`` is returned. Otherwise, a copy is made. Parameters ---------- context : Context The target context. Returns ------- ndarray The target array. """ if self.ctx == ctx: return self return self.copyto(ctx) @property def ctx(self): """Device context of the array. Examples -------- >>> x = np.array([1, 2, 3, 4]) >>> x.ctx cpu(0) >>> type(x.ctx) <class 'mxnet.context.Context'> >>> y = np.zeros((2, 3), npx.gpu(0)) >>> y.ctx gpu(0) """ dev_typeid = ctypes.c_int() dev_id = ctypes.c_int() check_call(_LIB.MXNDArrayGetContext( self.handle, ctypes.byref(dev_typeid), ctypes.byref(dev_id))) return Context(Context.devtype2str[dev_typeid.value], dev_id.value) @property def context(self): """This function has been deprecated. Please refer to ``ndarray.ctx``.""" warnings.warn('ndarray.context has been renamed to ndarray.ctx', DeprecationWarning) return self.as_nd_ndarray().context def copy(self, order='C'): # pylint: disable=arguments-differ """Return a coyp of the array, keeping the same context. Parameters ---------- order : str The memory layout of the copy. Currently, only c-contiguous memory layout is supported. Examples -------- >>> x = np.ones((2, 3)) >>> y = x.copy() >>> y array([[ 1., 1., 1.], [ 1., 1., 1.]]) """ if order != 'C': raise NotImplementedError('ndarray.copy only supports order=\'C\', while ' 'received {}'.format(str(order))) return self.copyto(self.ctx) def dot(self, b, out=None): """Dot product of two arrays. Refer to ``numpy.dot`` for full documentation.""" return _mx_np_op.dot(self, b, out=out) def reshape(self, *args, **kwargs): # pylint: disable=arguments-differ """Returns a copy of the array with a new shape. Notes ----- Unlike the free function `numpy.reshape`, this method on `ndarray` allows the elements of the shape parameter to be passed in as separate arguments. For example, ``a.reshape(10, 11)`` is equivalent to ``a.reshape((10, 11))``. """ order = 'C' if len(kwargs) > 1: raise TypeError('function takes at most 1 keyword argument') if len(kwargs) == 1: if 'order' not in kwargs: raise TypeError("'{}' is an invalid keyword argument for this function" .format(list(kwargs.keys())[0])) order = kwargs.pop('order', 'C') if order != 'C': raise NotImplementedError('only supports C-order,' ' while received {}'.format(order)) if len(args) == 0: raise TypeError('reshape() takes exactly 1 argument (0 given)') if len(args) == 1 and isinstance(args[0], tuple): return _mx_np_op.reshape(self, newshape=args[0], order=order) else: return _mx_np_op.reshape(self, newshape=args, order=order) def reshape_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`reshape_like`. The arguments are the same as for :py:func:`reshape_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reshape_like') def reshape_view(self, *shape, **kwargs): # pylint: disable=redefined-outer-name """Returns a **view** of this array with a new shape without altering any data. Inheritated from NDArray.reshape. """ return super(ndarray, self).reshape(*shape, **kwargs) def zeros_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`zeros_like`. The arguments are the same as for :py:func:`zeros_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute zeros_like') def ones_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`ones_like`. The arguments are the same as for :py:func:`ones_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ones_like') def broadcast_axes(self, *args, **kwargs): """Convenience fluent method for :py:func:`broadcast_axes`. The arguments are the same as for :py:func:`broadcast_axes`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def repeat(self, repeats, axis=None): # pylint: disable=arguments-differ """Repeat elements of an array.""" return repeat(self, repeats=repeats, axis=axis) def pad(self, *args, **kwargs): """Convenience fluent method for :py:func:`pad`. The arguments are the same as for :py:func:`pad`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pad') def swapaxes(self, axis1, axis2): # pylint: disable=arguments-differ """Return a copy of the array with axis1 and axis2 interchanged. Refer to `mxnet.numpy.swapaxes` for full documentation. """ return swapaxes(self, axis1, axis2) def split(self, *args, **kwargs): """Convenience fluent method for :py:func:`split`. The arguments are the same as for :py:func:`split`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split') def split_v2(self, *args, **kwargs): """Convenience fluent method for :py:func:`split_v2`. The arguments are the same as for :py:func:`split_v2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute split_v2') def slice(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice`. The arguments are the same as for :py:func:`slice`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice') def slice_axis(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_axis`. The arguments are the same as for :py:func:`slice_axis`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_axis') def slice_like(self, *args, **kwargs): """Convenience fluent method for :py:func:`slice_like`. The arguments are the same as for :py:func:`slice_like`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute slice_like') def slice_assign_scalar(self, value, begin, end, step): """ Assign the scalar to a cropped subset of this ndarray. Value will broadcast to the shape of the cropped shape and will be cast to the same dtype of the ndarray. Parameters ---------- value: numeric value Value and this ndarray should be of the same data type. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> y = x.slice_assign_scalar(0, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign_scalar(self, value, begin=begin, end=end, step=step, out=self) def slice_assign(self, rhs, begin, end, step): """ Assign the rhs to a cropped subset of this ndarray in place. Returns the view of this ndarray. Parameters ---------- rhs: ndarray. rhs and this NDArray should be of the same data type, and on the same device. The shape of rhs should be the same as the cropped shape of this ndarray. begin: tuple of begin indices end: tuple of end indices step: tuple of step lenghths Returns ------- out : ndarray This ndarray. Examples -------- >>> x = np.ones((2, 2, 2)) >>> assigned = np.zeros((1, 1, 2)) >>> y = x.slice_assign(assigned, (0, 0, None), (1, 1, None), (None, None, None)) >>> y array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) >>> x array([[[0., 0.], [1., 1.]], [[1., 1.], [1., 1.]]]) """ return _npi.slice_assign(self, rhs, begin=begin, end=end, step=step, out=self) def take(self, indices, axis=None, mode='raise'): # pylint: disable=arguments-differ, redefined-outer-name """Convenience fluent method for :py:func:`take`. The arguments are the same as for :py:func:`take`, with this array as data. """ return take(self, indices, axis, mode=mode) def one_hot(self, *args, **kwargs): """Convenience fluent method for :py:func:`one_hot`. The arguments are the same as for :py:func:`one_hot`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute one_hot') def pick(self, *args, **kwargs): """Convenience fluent method for :py:func:`pick`. The arguments are the same as for :py:func:`pick`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute pick') def sort(self, axis=-1, kind=None, order=None): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`sort`. The arguments are the same as for :py:func:`sort`, with this array as data. """ raise sort(self, axis=axis, kind=kind, order=order) def topk(self, *args, **kwargs): """Convenience fluent method for :py:func:`topk`. The arguments are the same as for :py:func:`topk`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute topk') def argsort(self, axis=-1, kind=None, order=None): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`argsort`. The arguments are the same as for :py:func:`argsort`, with this array as data. """ return argsort(self, axis=axis, kind=kind, order=order) def argmax_channel(self, *args, **kwargs): """Convenience fluent method for :py:func:`argmax_channel`. The arguments are the same as for :py:func:`argmax_channel`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute argmax_channel') def argmin(self, axis=None, out=None): # pylint: disable=arguments-differ """Return indices of the minium values along the given axis. Refer to `mxnet.numpy.argmin` for full documentation.""" return argmin(self, axis, out) def clip(self, min=None, max=None, out=None): # pylint: disable=arguments-differ """Return an array whose values are limited to [min, max]. One of max or min must be given. """ return clip(self, min, max, out=out) def abs(self, *args, **kwargs): """Convenience fluent method for :py:func:`abs`. The arguments are the same as for :py:func:`abs`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute abs') def sign(self, *args, **kwargs): """Convenience fluent method for :py:func:`sign`. The arguments are the same as for :py:func:`sign`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sign') def flatten(self, order='C'): # pylint: disable=arguments-differ """Return a copy of the array collapsed into one dimension.""" return self.reshape(-1, order=order) def shape_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`shape_array`. The arguments are the same as for :py:func:`shape_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute shape_array') def size_array(self, *args, **kwargs): """Convenience fluent method for :py:func:`size_array`. The arguments are the same as for :py:func:`size_array`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute size_array') def expand_dims(self, *args, **kwargs): # pylint: disable=arguments-differ,unused-argument """Convenience fluent method for :py:func:`expand_dims`. The arguments are the same as for :py:func:`expand_dims`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expand_dims') def tile(self, reps): # pylint: disable=arguments-differ """Construct an array by repeating A the number of times given by reps. Refer to `mxnet.numpy.tile` for full documentation.""" return tile(self, reps=reps) def transpose(self, *axes): # pylint: disable=arguments-differ """Permute the dimensions of an array.""" if len(axes) == 0: axes = None elif len(axes) == 1: if isinstance(axes[0], (tuple, list)): axes = axes[0] elif axes[0] is None: axes = None return transpose(self, axes=axes) def flip(self, *args, **kwargs): """Convenience fluent method for :py:func:`flip`. The arguments are the same as for :py:func:`flip`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute flip') def depth_to_space(self, *args, **kwargs): """Convenience fluent method for :py:func:`depth_to_space`. The arguments are the same as for :py:func:`depth_to_space`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute depth_to_space') def space_to_depth(self, *args, **kwargs): """Convenience fluent method for :py:func:`space_to_depth`. The arguments are the same as for :py:func:`space_to_depth`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute space_to_depth') def diag(self, k=0, **kwargs): """Convenience fluent method for :py:func:`diag`. The arguments are the same as for :py:func:`diag`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute diag') def sum(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the sum of the array elements over the given axis.""" return sum(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) def nansum(self, *args, **kwargs): """Convenience fluent method for :py:func:`nansum`. The arguments are the same as for :py:func:`nansum`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nansum') def prod(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the product of the array elements over the given axis.""" return _mx_np_op.prod(self, axis=axis, dtype=dtype, keepdims=keepdims, out=out) def nanprod(self, *args, **kwargs): """Convenience fluent method for :py:func:`nanprod`. The arguments are the same as for :py:func:`nanprod`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute nanprod') def mean(self, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Returns the average of the array elements along given axis.""" return mean(self, axis=axis, dtype=dtype, out=out, keepdims=keepdims) # pylint: disable=too-many-arguments, arguments-differ def std(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the standard deviation of the array elements along given axis.""" return std(self, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) def var(self, axis=None, dtype=None, out=None, ddof=0, keepdims=False): """Returns the variance of the array elements, along given axis.""" return var(self, axis=axis, dtype=dtype, out=out, ddof=ddof, keepdims=keepdims) # pylint: enable=too-many-arguments, arguments-differ def cumsum(self, axis=None, dtype=None, out=None): """Return the cumulative sum of the elements along the given axis.""" return _mx_nd_np.cumsum(self, axis=axis, dtype=dtype, out=out) def tolist(self): return self.asnumpy().tolist() def max(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Return the maximum along a given axis.""" return _mx_nd_np.max(self, axis=axis, out=out, keepdims=keepdims) def min(self, axis=None, out=None, keepdims=False): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`min`. The arguments are the same as for :py:func:`min`, with this array as data. """ return _mx_nd_np.min(self, axis=axis, out=out, keepdims=keepdims) def norm(self, *args, **kwargs): """Convenience fluent method for :py:func:`norm`. The arguments are the same as for :py:func:`norm`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute norm') def round(self, decimals=0, out=None, **kwargs): # pylint: disable=arguments-differ """Convenience fluent method for :py:func:`round`. The arguments are the same as for :py:func:`round`, with this array as data. """ return round(self, decimals=decimals, out=out, **kwargs) def rint(self, *args, **kwargs): """Convenience fluent method for :py:func:`rint`. The arguments are the same as for :py:func:`rint`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rint') def fix(self, *args, **kwargs): """Convenience fluent method for :py:func:`fix`. The arguments are the same as for :py:func:`fix`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute fix') def floor(self, *args, **kwargs): """Convenience fluent method for :py:func:`floor`. The arguments are the same as for :py:func:`floor`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute floor') def ceil(self, *args, **kwargs): """Convenience fluent method for :py:func:`ceil`. The arguments are the same as for :py:func:`ceil`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute ceil') def trunc(self, *args, **kwargs): """Convenience fluent method for :py:func:`trunc`. The arguments are the same as for :py:func:`trunc`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute trunc') def sin(self, *args, **kwargs): """Convenience fluent method for :py:func:`sin`. The arguments are the same as for :py:func:`sin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sin') def cos(self, *args, **kwargs): """Convenience fluent method for :py:func:`cos`. The arguments are the same as for :py:func:`cos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cos') def tan(self, *args, **kwargs): """Convenience fluent method for :py:func:`tan`. The arguments are the same as for :py:func:`tan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tan') def arcsin(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsin`. The arguments are the same as for :py:func:`arcsin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsin') def arccos(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccos`. The arguments are the same as for :py:func:`arccos`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccos') def arctan(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctan`. The arguments are the same as for :py:func:`arctan`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctan') def degrees(self, *args, **kwargs): """Convenience fluent method for :py:func:`degrees`. The arguments are the same as for :py:func:`degrees`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute degrees') def radians(self, *args, **kwargs): """Convenience fluent method for :py:func:`radians`. The arguments are the same as for :py:func:`radians`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute radians') def sinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`sinh`. The arguments are the same as for :py:func:`sinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sinh') def cosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`cosh`. The arguments are the same as for :py:func:`cosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cosh') def tanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`tanh`. The arguments are the same as for :py:func:`tanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute tanh') def arcsinh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arcsinh`. The arguments are the same as for :py:func:`arcsinh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arcsinh') def arccosh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arccosh`. The arguments are the same as for :py:func:`arccosh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arccosh') def arctanh(self, *args, **kwargs): """Convenience fluent method for :py:func:`arctanh`. The arguments are the same as for :py:func:`arctanh`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute arctanh') def exp(self, *args, **kwargs): """Convenience fluent method for :py:func:`exp`. The arguments are the same as for :py:func:`exp`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute exp') def expm1(self, *args, **kwargs): """Convenience fluent method for :py:func:`expm1`. The arguments are the same as for :py:func:`expm1`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute expm1') def log(self, *args, **kwargs): """Convenience fluent method for :py:func:`log`. The arguments are the same as for :py:func:`log`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log') def log10(self, *args, **kwargs): """Convenience fluent method for :py:func:`log10`. The arguments are the same as for :py:func:`log10`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log10') def log2(self, *args, **kwargs): """Convenience fluent method for :py:func:`log2`. The arguments are the same as for :py:func:`log2`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log2') def log1p(self, *args, **kwargs): """Convenience fluent method for :py:func:`log1p`. The arguments are the same as for :py:func:`log1p`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log1p') def sqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`sqrt`. The arguments are the same as for :py:func:`sqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sqrt') def rsqrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rsqrt`. The arguments are the same as for :py:func:`rsqrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rsqrt') def cbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`cbrt`. The arguments are the same as for :py:func:`cbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute cqrt') def rcbrt(self, *args, **kwargs): """Convenience fluent method for :py:func:`rcbrt`. The arguments are the same as for :py:func:`rcbrt`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute rcqrt') def square(self, *args, **kwargs): """Convenience fluent method for :py:func:`square`. The arguments are the same as for :py:func:`square`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute square') def reciprocal(self, *args, **kwargs): """Convenience fluent method for :py:func:`reciprocal`. The arguments are the same as for :py:func:`reciprocal`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute reciprocal') def relu(self, *args, **kwargs): """Convenience fluent method for :py:func:`relu`. The arguments are the same as for :py:func:`relu`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute relu') def sigmoid(self, *args, **kwargs): """Convenience fluent method for :py:func:`sigmoid`. The arguments are the same as for :py:func:`sigmoid`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute sigmoid') def softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmax`. The arguments are the same as for :py:func:`softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmax') def log_softmax(self, *args, **kwargs): """Convenience fluent method for :py:func:`log_softmax`. The arguments are the same as for :py:func:`log_softmax`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute log_softmax') def softmin(self, *args, **kwargs): """Convenience fluent method for :py:func:`softmin`. The arguments are the same as for :py:func:`softmin`, with this array as data. """ raise AttributeError('mxnet.numpy.ndarray object has no attribute softmin') def squeeze(self, axis=None): # pylint: disable=arguments-differ """Remove single-dimensional entries from the shape of a.""" return squeeze(self, axis=axis) def broadcast_to(self, shape): # pylint: disable=redefined-outer-name return _mx_nd_np.broadcast_to(self, shape) def broadcast_like(self, other): raise AttributeError('mxnet.numpy.ndarray object has no attribute broadcast_like') def _full(self, value): """ Currently for internal use only. Implemented for __setitem__. Assign to self an array of self's same shape and type, filled with value. """ return _mx_nd_np.full(self.shape, value, ctx=self.ctx, dtype=self.dtype, out=self) # pylint: disable=redefined-outer-name def _scatter_set_nd(self, value_nd, indices): """ This is added as an ndarray class method in order to support polymorphism in NDArray and numpy.ndarray indexing """ return _npi.scatter_set_nd( lhs=self, rhs=value_nd, indices=indices, shape=self.shape, out=self ) # pylint: enable=redefined-outer-name @property def shape(self): return super(ndarray, self).shape @property def ndim(self): """Number of array dimensions.""" return len(self.shape) @property def size(self): """Number of elements in the array.""" return super(ndarray, self).size @property def dtype(self): """Data-type of the array's elements. Returns ------- numpy.dtype This NDArray's data type. Examples -------- >>> x = np.zeros((2,3)) >>> x.dtype dtype('float32') >>> y = np.zeros((2,3), dtype='int32') >>> y.dtype dtype('int32') """ return _np.dtype(super(ndarray, self).dtype) def tostype(self, stype): raise AttributeError('mxnet.numpy.ndarray object has no attribute tostype') @set_module('mxnet.numpy') def empty(shape, dtype=float, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, without initializing entries. Parameters ---------- shape : int or tuple of int Shape of the empty array, e.g., ``(2, 3)`` or ``2``. dtype : data-type, optional Desired output data-type for the array, e.g, `numpy.int8`. Note that this behavior is different from NumPy's `empty` function where `float64` is the default value, here you can set your default dtype as 'float32' or 'float64' because `float32` is considered as the default data type in deep learning. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray Array of uninitialized (arbitrary) data of the given shape, dtype, and order. Examples -------- >>> np.empty([2, 2]) array([[ 0.000000e+00, -2.524355e-29], [ nan, -8.592023e+09]]) # uninitialized >>> np.empty([2, 2], dtype=int) array([[8751743591039004782, 3196766424264760104], [7583328881310196768, 562950123910254]], dtype=int64) # uninitialized """ if order != 'C': raise NotImplementedError('`empty` only supports order equal to `C`, while received {}' .format(str(order))) if ctx is None: ctx = current_context() if dtype is None or dtype is float: dtype = _np.float64 if is_np_default_dtype() else _np.float32 if isinstance(shape, int): shape = (shape,) return ndarray(handle=_new_alloc_handle(shape, ctx, False, dtype)) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def array(object, dtype=None, ctx=None): """ Create an array. Parameters ---------- object : array_like or `numpy.ndarray` or `mxnet.numpy.ndarray` An array, any object exposing the array interface, an object whose __array__ method returns an array, or any (nested) sequence. dtype : data-type, optional The desired data-type for the array. The default dtype is ``object.dtype`` if `object` is an `ndarray`, `float32` otherwise. Default dtype can be set to be consistent with offical numpy by `npx.set_np(dtype=True)`. - When npx.is_np_default_dtype() returns False, default dtype is float32; - When npx.is_np_default_dtype() returns True, default dtype is float64. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- out : ndarray An array object satisfying the specified requirements. Examples -------- >>> np.array([1, 2, 3]) array([1., 2., 3.]) >>> np.array([[1, 2], [3, 4]]) array([[1., 2.], [3., 4.]]) >>> np.array([[1, 0], [0, 1]], dtype=bool) array([[ True, False], [False, True]]) >>> np.array([1, 2, 3]).dtype dtype('float32') >>> npx.set_np(dtype=True) >>> np.array([1, 2, 3]).dtype dtype('float64') """ if ctx is None: ctx = current_context() if isinstance(object, _np.ndarray): if is_np_default_dtype(): dtype = object.dtype if dtype is None else dtype else: dtype = _np.float32 if dtype is None or object.dtype is _np.float64 else dtype if isinstance(object, ndarray): dtype = object.dtype if dtype is None else dtype elif isinstance(object, NDArray): raise ValueError("If you're trying to create a mxnet.numpy.ndarray " "from mx.nd.NDArray, please use the zero-copy as_np_ndarray function.") else: if dtype is None: default_dtype = _np.float64 if is_np_default_dtype() else _np.float32 dtype = object.dtype if hasattr(object, "dtype") else default_dtype try: object = _np.array(object, dtype=dtype) except Exception as e: # printing out the error raised by official NumPy's array function # for transparency on users' side raise TypeError('{}'.format(str(e))) ret = empty(object.shape, dtype=dtype, ctx=ctx) if len(object.shape) == 0: ret[()] = object else: ret[:] = object return ret # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def shape(a): """ Return the shape of an array. Parameters ---------- a : array_like Input array. Returns ------- shape : tuple of ints The elements of the shape tuple give the lengths of the corresponding array dimensions. See Also -------- ndarray.shape : Equivalent array method. Examples -------- >>> np.shape(np.eye(3)) (3, 3) >>> np.shape([[1, 2]]) (1, 2) >>> np.shape([0]) (1,) >>> np.shape(0) () """ return _mx_nd_np.shape(a) @set_module('mxnet.numpy') def zeros(shape, dtype=None, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with zeros. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64. Note that this behavior is different from NumPy's `zeros` function where `float64` is the default value, here we can set 'float32' or 'float64' as your default dtype, because `float32` is considered as the default data type in deep learning. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of zeros with the given shape, dtype, and ctx. Examples -------- >>> np.zeros(5) array([0., 0., 0., 0., 0.]) >>> np.zeros((5,), dtype=int) array([0, 0, 0, 0, 0], dtype=int64) >>> np.zeros((2, 1)) array([[0.], [0.]]) """ return _mx_nd_np.zeros(shape, dtype, order, ctx) @set_module('mxnet.numpy') def ones(shape, dtype=None, order='C', ctx=None): # pylint: disable=redefined-outer-name """Return a new array of given shape and type, filled with ones. This function currently only supports storing multi-dimensional data in row-major (C-style). Parameters ---------- shape : int or tuple of int The shape of the empty array. dtype : str or numpy.dtype, optional An optional value type. Default is depend on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that this behavior is different from NumPy's `ones` function where `float64` is the default value. order : {'C'}, optional, default: 'C' How to store multi-dimensional data in memory, currently only row-major (C-style) is supported. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray Array of ones with the given shape, dtype, and ctx. Examples -------- >>> np.ones(5) array([1., 1., 1., 1., 1.]) >>> np.ones((5,), dtype=int) array([1, 1, 1, 1, 1], dtype=int64) >>> np.ones((2, 1)) array([[1.], [1.]]) >>> s = (2,2) >>> np.ones(s) array([[1., 1.], [1., 1.]]) """ return _mx_nd_np.ones(shape, dtype, order, ctx) @set_module('mxnet.numpy') def broadcast_to(array, shape): # pylint: disable=redefined-outer-name """ Broadcast an array to a new shape. Parameters ---------- array : ndarray or scalar The array to broadcast. shape : tuple The shape of the desired array. Returns ------- broadcast : array A readonly view on the original array with the given shape. It is typically not contiguous. Furthermore, more than one element of a broadcasted array may refer to a single memory location. Raises ------ MXNetError If the array is not compatible with the new shape according to NumPy's broadcasting rules. """ return _mx_nd_np.broadcast_to(array, shape) # pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def full(shape, fill_value, dtype=None, order='C', ctx=None, out=None): """ Return a new array of given shape and type, filled with `fill_value`. Parameters ---------- shape : int or sequence of ints Shape of the new array, e.g., ``(2, 3)`` or ``2``. fill_value : scalar or ndarray Fill value. dtype : data-type, optional The desired data-type for the array. The default, `None`, means `np.array(fill_value).dtype`. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of `fill_value` with the given shape, dtype, and order. If `fill_value` is an ndarray, out will have the same context as `fill_value` regardless of the provided `ctx`. Notes ----- This function differs from the original `numpy.full https://docs.scipy.org/doc/numpy/reference/generated/numpy.full.html`_ in the following way(s): - Has an additional `ctx` argument to specify the device - Has an additional `out` argument - Currently does not support `order` selection See Also -------- empty : Return a new uninitialized array. ones : Return a new array setting values to one. zeros : Return a new array setting values to zero. Examples -------- >>> np.full((2, 2), 10) array([[10., 10.], [10., 10.]]) >>> np.full((2, 2), 2, dtype=np.int32, ctx=mx.cpu(0)) array([[2, 2], [2, 2]], dtype=int32) """ return _mx_nd_np.full(shape, fill_value, order=order, ctx=ctx, dtype=dtype, out=out) # pylint: enable=too-many-arguments, redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def empty_like(prototype, dtype=None, order='C', subok=False, shape=None): # pylint: disable=W0621 """ Return a new array with the same shape and type as a given array. Parameters ---------- prototype : ndarray The shape and data-type of `prototype` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. subok : {False}, optional If True, then the newly created array will use the sub-class type of 'a', otherwise it will be a base-class array. Defaults to False. (Only support False at this moment) shape : int or sequence of ints, optional. Overrides the shape of the result. If order='K' and the number of dimensions is unchanged, will try to keep order, otherwise, order='C' is implied. (Not supported at this moment) Returns ------- out : ndarray Array of uninitialized (arbitrary) data with the same shape and type as `prototype`. See Also -------- ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. empty : Return a new uninitialized array. Notes ----- This function does *not* initialize the returned array; to do that use `zeros_like` or `ones_like` instead. It may be marginally faster than the functions that do set the array values. Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> np.empty_like(a) array([[-5764607523034234880, -2305834244544065442, 4563075075], # uninitialized [ 4567052944, -5764607523034234880, 844424930131968]]) >>> a = np.array([[1., 2., 3.],[4.,5.,6.]]) >>> np.empty_like(a) array([[4.9e-324, 9.9e-324, 1.5e-323], # uninitialized [2.0e-323, 2.5e-323, 3.0e-323]]) """ return _mx_nd_np.empty_like(prototype, dtype=dtype, order=order, subok=subok, shape=shape) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def all(a, axis=None, out=None, keepdims=False): """ Test whether all array elements along a given axis evaluate to True. Parameters ---------- a : ndarray Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical AND reduction is performed. The default (axis = None) is to perform a logical AND over all the dimensions of the input array. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved Returns -------- all : ndarray, bool A new boolean or array is returned unless out is specified, in which case a reference to out is returned. Examples: --------- >>> np.all([[True,False],[True,True]]) False >>> np.all([[True,False],[True,True]], axis=0) array([ True, False]) >>> np.all([-1, 4, 5]) True >>> np.all([1.0, np.nan]) True >>> o=np.array(False) >>> z=np.all([-1, 4, 5], out=o) >>> id(z), id(o), z (28293632, 28293632, array(True)) # may vary """ return _mx_nd_np.all(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def any(a, axis=None, out=None, keepdims=False): """ Test whether any array element along a given axis evaluates to True. Returns single boolean unless axis is not None Parameters ---------- a : ndarray Input array or object that can be converted to an array. axis : None or int or tuple of ints, optional Axis or axes along which a logical AND reduction is performed. The default (axis = None) is to perform a logical AND over all the dimensions of the input array. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output and its type is preserved Returns -------- any : bool or ndarray A new boolean or ndarray is returned unless out is specified, in which case a reference to out is returned. Examples: --------- >>> np.any([[True, False], [True, True]]) True >>> np.any([[True, False], [False, False]], axis=0) array([ True, False]) >>> np.any([-1, 0, 5]) True >>> np.any(np.nan) True >>> o=np.array(False) >>> z=np.any([-1, 4, 5], out=o) >>> z, o (array(True), array(True)) >>> # Check now that z is a reference to o >>> z is o True >>> id(z), id(o) # identity of z and o # doctest: +SKIP (191614240, 191614240) """ return _mx_nd_np.any(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def identity(n, dtype=None, ctx=None): """ Return the identity array. The identity array is a square array with ones on the main diagonal. Parameters ---------- n : int Number of rows (and columns) in `n` x `n` output. dtype : data-type, optional Data-type of the output. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray `n` x `n` array with its main diagonal set to one, and all other elements 0. Examples -------- >>> np.identity(3) >>> np.identity(3) array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) """ return _mx_nd_np.identity(n, dtype, ctx) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def take(a, indices, axis=None, mode='raise', out=None): r""" Take elements from an array along an axis. When axis is not None, this function does the same thing as "fancy" indexing (indexing arrays using arrays); however, it can be easier to use if you need elements along a given axis. A call such as ``np.take(arr, indices, axis=3)`` is equivalent to ``arr[:,:,:,indices,...]``. Explained without fancy indexing, this is equivalent to the following use of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices:: Ni, Nk = a.shape[:axis], a.shape[axis+1:] Nj = indices.shape for ii in ndindex(Ni): for jj in ndindex(Nj): for kk in ndindex(Nk): out[ii + jj + kk] = a[ii + (indices[jj],) + kk] Parameters ---------- a : ndarray The source array. indices : ndarray The indices of the values to extract. Also allow scalars for indices. axis : int, optional The axis over which to select values. By default, the flattened input array is used. out : ndarray, optional If provided, the result will be placed in this array. It should be of the appropriate shape and dtype. mode : {'clip', 'wrap'}, optional Specifies how out-of-bounds indices will behave. * 'clip' -- clip to the range (default) * 'wrap' -- wrap around 'clip' mode means that all indices that are too large are replaced by the index that addresses the last element along that axis. Note that this disables indexing with negative numbers. Returns ------- out : ndarray The returned array has the same type as `a`. Notes ----- This function differs from the original `numpy.take <https://docs.scipy.org/doc/numpy/reference/generated/numpy.take.html>`_ in the following way(s): - Only ndarray or scalar ndarray is accepted as valid input. Examples -------- >>> a = np.array([4, 3, 5, 7, 6, 8]) >>> indices = np.array([0, 1, 4]) >>> np.take(a, indices) array([4., 3., 6.]) In this example for `a` is an ndarray, "fancy" indexing can be used. >>> a[indices] array([4., 3., 6.]) If `indices` is not one dimensional, the output also has these dimensions. >>> np.take(a, np.array([[0, 1], [2, 3]])) array([[4., 3.], [5., 7.]]) """ return _mx_nd_np.take(a, indices, axis, mode, out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def unique(ar, return_index=False, return_inverse=False, return_counts=False, axis=None): """ Find the unique elements of an array. Returns the sorted unique elements of an array. There are three optional outputs in addition to the unique elements: * the indices of the input array that give the unique values * the indices of the unique array that reconstruct the input array * the number of times each unique value comes up in the input array Parameters ---------- ar : ndarray Input array. Unless `axis` is specified, this will be flattened if it is not already 1-D. return_index : bool, optional If True, also return the indices of `ar` (along the specified axis, if provided, or in the flattened array) that result in the unique array. return_inverse : bool, optional If True, also return the indices of the unique array (for the specified axis, if provided) that can be used to reconstruct `ar`. return_counts : bool, optional If True, also return the number of times each unique item appears in `ar`. axis : int or None, optional The axis to operate on. If None, `ar` will be flattened. If an integer, the subarrays indexed by the given axis will be flattened and treated as the elements of a 1-D array with the dimension of the given axis, see the notes for more details. The default is None. Returns ------- unique : ndarray The sorted unique values. unique_indices : ndarray, optional The indices of the first occurrences of the unique values in the original array. Only provided if `return_index` is True. unique_inverse : ndarray, optional The indices to reconstruct the original array from the unique array. Only provided if `return_inverse` is True. unique_counts : ndarray, optional The number of times each of the unique values comes up in the original array. Only provided if `return_counts` is True. Notes ----- When an axis is specified the subarrays indexed by the axis are sorted. This is done by making the specified axis the first dimension of the array and then flattening the subarrays in C order. The flattened subarrays are then viewed as a structured type with each element given a label, with the effect that we end up with a 1-D array of structured types that can be treated in the same way as any other 1-D array. The result is that the flattened subarrays are sorted in lexicographic order starting with the first element. This function differs from the original `numpy.unique <https://docs.scipy.org/doc/numpy/reference/generated/numpy.unique.html>`_ in the following aspects: - Only support ndarray as input. - Object arrays or structured arrays are not supported. Examples -------- >>> np.unique(np.array([1, 1, 2, 2, 3, 3])) array([1., 2., 3.]) >>> a = np.array([[1, 1], [2, 3]]) >>> np.unique(a) array([1., 2., 3.]) Return the unique rows of a 2D array >>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]]) >>> np.unique(a, axis=0) array([[1., 0., 0.], [2., 3., 4.]]) Return the indices of the original array that give the unique values: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = np.unique(a, return_index=True) >>> u array([1., 2., 3., 4., 6.]) >>> indices array([0, 1, 5, 3, 2], dtype=int64) >>> a[indices] array([1., 2., 3., 4., 6.]) Reconstruct the input array from the unique values: >>> a = np.array([1, 2, 6, 4, 2, 3, 2]) >>> u, indices = np.unique(a, return_inverse=True) >>> u array([1., 2., 3., 4., 6.]) >>> indices array([0, 1, 4, 3, 1, 2, 1], dtype=int64) >>> u[indices] array([1., 2., 6., 4., 2., 3., 2.]) """ return _mx_nd_np.unique(ar, return_index, return_inverse, return_counts, axis) @set_module('mxnet.numpy') @wrap_np_binary_func def add(x1, x2, out=None, **kwargs): """ Add arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be added. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- add : ndarray or scalar The sum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.add(1.0, 4.0) 5.0 >>> >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.add(x1, x2) array([[ 0., 2., 4.], [ 3., 5., 7.], [ 6., 8., 10.]]) """ return _mx_nd_np.add(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def subtract(x1, x2, out=None, **kwargs): """ Subtract arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be subtracted from each other. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- subtract : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.subtract(1.0, 4.0) -3.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.subtract(x1, x2) array([[0., 0., 0.], [3., 3., 3.], [6., 6., 6.]]) """ return _mx_nd_np.subtract(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def multiply(x1, x2, out=None, **kwargs): """ Multiply arguments element-wise. Parameters ---------- x1, x2 : ndarrays or scalar values The arrays to be multiplied. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The difference of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), not supported yet. Examples -------- >>> np.multiply(2.0, 4.0) 8.0 >>> x1 = np.arange(9.0).reshape((3, 3)) >>> x2 = np.arange(3.0) >>> np.multiply(x1, x2) array([[ 0., 1., 4.], [ 0., 4., 10.], [ 0., 7., 16.]]) """ return _mx_nd_np.multiply(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def divide(x1, x2, out=None, **kwargs): """ Returns a true division of the inputs, element-wise. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), the output is of float32 or float64 type, which depends on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Examples -------- >>> np.true_divide(x, 4) array([0. , 0.25, 0.5 , 0.75, 1. ]) """ return _mx_nd_np.divide(x1, x2, out=out) @set_module('mxnet.numpy') def true_divide(x1, x2, out=None): """Returns a true division of the inputs, element-wise. Instead of the Python traditional 'floor division', this returns a true division. True division adjusts the output type to present the best answer, regardless of input types. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Notes ----- This operator now supports automatic type promotion. The resulting type will be determined according to the following rules: * If both inputs are of floating number types, the output is the more precise type. * If only one of the inputs is floating number type, the result is that type. * If both inputs are of integer types (including boolean), the output is of float32 or float64 type, which depends on your current default dtype. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Examples -------- >>> x = np.arange(5) >>> np.true_divide(x, 4) array([0. , 0.25, 0.5 , 0.75, 1. ]) """ return _mx_nd_np.true_divide(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def mod(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.mod(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.mod(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmod(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmod(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.fmod(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def matmul(a, b, out=None, **kwargs): """ Matrix product of two arrays. Parameters ---------- a, b : ndarray Input arrays, scalars not allowed. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that matches the signature (n,k),(k,m)->(n,m). If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The matrix product of the inputs. This is a scalar only when both x1, x2 are 1-d vectors. Raises ------ MXNetError If the last dimension of a is not the same size as the second-to-last dimension of b. If a scalar value is passed in. See Also -------- tensordot : Sum products over arbitrary axes. dot : alternative matrix product with different broadcasting rules. einsum : Einstein summation convention. Notes ----- The behavior depends on the arguments in the following way. - If both arguments are 2-D they are multiplied like conventional matrices. - If either argument is N-D, N > 2, it is treated as a stack of matrices residing in the last two indexes and broadcast accordingly. - If the first argument is 1-D, it is promoted to a matrix by prepending a 1 to its dimensions. After matrix multiplication the prepended 1 is removed. - If the second argument is 1-D, it is promoted to a matrix by appending a 1 to its dimensions. After matrix multiplication the appended 1 is removed. matmul differs from dot in two important ways: - Multiplication by scalars is not allowed, use multiply instead. - Stacks of matrices are broadcast together as if the matrices were elements, respecting the signature (n,k),(k,m)->(n,m): >>> a = np.ones([9, 5, 7, 4]) >>> c = np.ones([9, 5, 4, 3]) >>> np.dot(a, c).shape (9, 5, 7, 9, 5, 3) >>> np.matmul(a, c).shape (9, 5, 7, 3) >>> # n is 7, k is 4, m is 3 Examples -------- For 2-D arrays it is the matrix product: >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([[4, 1], ... [2, 2]]) >>> np.matmul(a, b) array([[4., 1.], [2., 2.]]) For 2-D mixed with 1-D, the result is the usual. >>> a = np.array([[1, 0], ... [0, 1]]) >>> b = np.array([1, 2]) >>> np.matmul(a, b) array([1., 2.]) >>> np.matmul(b, a) array([1., 2.]) Broadcasting is conventional for stacks of arrays >>> a = np.arange(2 * 2 * 4).reshape((2, 2, 4)) >>> b = np.arange(2 * 2 * 4).reshape((2, 4, 2)) >>> np.matmul(a, b).shape (2, 2, 2) >>> np.matmul(a, b)[0, 1, 1] array(98.) >>> sum(a[0, 1, :] * b[0, :, 1]) array(98.) Scalar multiplication raises an error. >>> np.matmul([1, 2], 3) Traceback (most recent call last): ... mxnet.base.MXNetError: ... : Multiplication by scalars is not allowed. """ return _mx_nd_np.matmul(a, b, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def remainder(x1, x2, out=None, **kwargs): """ Return element-wise remainder of division. Parameters ---------- x1 : ndarray or scalar Dividend array. x2 : ndarray or scalar Divisor array. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.remainder(np.arange(7), 5) array([0., 1., 2., 3., 4., 0., 1.]) """ return _mx_nd_np.remainder(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def power(x1, x2, out=None, **kwargs): """ First array elements raised to powers from second array, element-wise. Parameters ---------- x1 : ndarray or scalar The bases. x2 : ndarray or scalar The exponent. out : ndarray A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The bases in x1 raised to the exponents in x2. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> x1 = np.arange(6) >>> np.power(x1, 3) array([ 0., 1., 8., 27., 64., 125.]) Raise the bases to different exponents. >>> x2 = np.array([1.0, 2.0, 3.0, 3.0, 2.0, 1.0]) >>> np.power(x1, x2) array([ 0., 1., 8., 27., 16., 5.]) The effect of broadcasting. >>> x2 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) >>> x2 array([[1., 2., 3., 3., 2., 1.], [1., 2., 3., 3., 2., 1.]]) >>> np.power(x1, x2) array([[ 0., 1., 8., 27., 16., 5.], [ 0., 1., 8., 27., 16., 5.]]) """ return _mx_nd_np.power(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def lcm(x1, x2, out=None, **kwargs): """ Returns the lowest common multiple of ``|x1|`` and ``|x2|`` Parameters ---------- x1, x2 : ndarrays or scalar values The arrays for computing lowest common multiple. If x1.shape != x2.shape, they must be broadcastable to a common shape (which may be the shape of one or the other). out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The lowest common multiple of the absolute value of the inputs This is a scalar if both `x1` and `x2` are scalars. See Also -------- gcd : The greatest common divisor Examples -------- >>> np.lcm(12, 20) 60 >>> np.lcm(np.arange(6, dtype=int), 20) array([ 0, 20, 20, 60, 20, 20], dtype=int64) """ return _mx_nd_np.lcm(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def sin(x, out=None, **kwargs): r""" Trigonometric sine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The sine of each element of x. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sin(np.pi/2.) 1.0 >>> np.sin(np.array((0., 30., 45., 60., 90.)) * np.pi / 180.) array([0. , 0.5 , 0.70710677, 0.86602545, 1. ]) """ return _mx_nd_np.sin(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cos(x, out=None, **kwargs): r""" Cosine, element-wise. Parameters ---------- x : ndarray or scalar Angle, in radians (:math:`2 \pi` rad equals 360 degrees). out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding cosine values. This is a scalar if x is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.cos(np.array([0, np.pi/2, np.pi])) array([ 1.000000e+00, -4.371139e-08, -1.000000e+00]) >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='f') >>> out2 = np.cos(np.array([0.1]), out1) >>> out2 is out1 True """ return _mx_nd_np.cos(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sinh(x, out=None, **kwargs): """ Hyperbolic sine, element-wise. Equivalent to ``1/2 * (np.exp(x) - np.exp(-x))`` or ``-1j * np.sin(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic sine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sinh(0) 0.0 >>> # Example of providing the optional output parameter >>> out1 = np.array([0], dtype='f') >>> out2 = np.sinh(np.array([0.1]), out1) >>> out2 is out1 True """ return _mx_nd_np.sinh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cosh(x, out=None, **kwargs): """ Hyperbolic cosine, element-wise. Equivalent to ``1/2 * (np.exp(x) + np.exp(-x))`` and ``np.cos(1j*x)``. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The corresponding hyperbolic cosine values. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.cosh(0) 1.0 """ return _mx_nd_np.cosh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def tanh(x, out=None, **kwargs): """ Compute hyperbolic tangent element-wise. Equivalent to ``np.sinh(x)/np.cosh(x)``. Parameters ---------- x : ndarray or scalar. Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ---------- y : ndarray or scalar The corresponding hyperbolic tangent values. Notes ----- If `out` is provided, the function writes the result into it, and returns a reference to `out`. (See Examples) - input x does not support complex computation (like imaginary number) >>> np.tanh(np.pi*1j) TypeError: type <type 'complex'> not supported Examples -------- >>> np.tanh(np.array[0, np.pi])) array([0. , 0.9962721]) >>> np.tanh(np.pi) 0.99627207622075 >>> # Example of providing the optional output parameter illustrating >>> # that what is returned is a reference to said parameter >>> out1 = np.array(1) >>> out2 = np.tanh(np.array(0.1), out1) >>> out2 is out1 True """ return _mx_nd_np.tanh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log10(x, out=None, **kwargs): """ Return the base 10 logarithm of the input array, element-wise. Parameters ---------- x : ndarray or scalar Input array or scalar. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. The dtype of the output is the same as that of the input if the input is an ndarray. Returns ------- y : ndarray or scalar The logarithm to the base 10 of `x`, element-wise. NaNs are returned where x is negative. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.log10(np.array([1e-15, -3.])) array([-15., nan]) """ return _mx_nd_np.log10(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sqrt(x, out=None, **kwargs): """ Return the non-negative square-root of an array, element-wise. Parameters ---------- x : ndarray or scalar The values whose square-roots are required. out : ndarray, or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar An array of the same shape as `x`, containing the positive square-root of each element in `x`. This is a scalar if `x` is a scalar. Notes ---- This function only supports input type of float. Examples -------- >>> np.sqrt(np.array([1,4,9])) array([1., 2., 3.]) >>> np.sqrt(np.array([4, -1, _np.inf])) array([ 2., nan, inf]) """ return _mx_nd_np.sqrt(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def cbrt(x, out=None, **kwargs): """ Return the cube-root of an array, element-wise. Parameters ---------- x : ndarray The values whose cube-roots are required. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- y : ndarray An array of the same shape as x, containing the cube cube-root of each element in x. If out was provided, y is a reference to it. This is a scalar if x is a scalar. Examples ---------- >>> np.cbrt([1,8,27]) array([ 1., 2., 3.]) """ return _mx_nd_np.cbrt(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def abs(x, out=None, **kwargs): r""" Calculate the absolute value element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. This is a scalar if `x` is a scalar. Examples -------- >>> x = np.array([-1.2, 1.2]) >>> np.abs(x) array([1.2, 1.2]) """ return _mx_nd_np.abs(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def fabs(x, out=None, **kwargs): r""" Calculate the absolute value element-wise. This function returns the absolute values (positive magnitude) of the data in `x`. Complex values are not handled, use `absolute` to find the absolute values of complex data. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- absolute : ndarray An ndarray containing the absolute value of each element in `x`. This is a scalar if `x` is a scalar. Examples -------- >>> np.fabs(-1) 1.0 >>> np.fabs(np.array([-1.2, 1.2]))s array([ 1.2, 1.2]) """ return _mx_nd_np.fabs(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def absolute(x, out=None, **kwargs): """ Calculate the absolute value element-wise. np.abs is a shorthand for this function. Parameters ---------- x : ndarray Input array. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- absolute : ndarray An ndarray containing the absolute value of each element in x. Examples ---------- >>> x = np.array([-1.2, 1.2]) >>> np.absolute(x) array([ 1.2, 1.2]) """ return _mx_nd_np.absolute(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def exp(x, out=None, **kwargs): r""" Calculate the exponential of all elements in the input array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential of `x`. This is a scalar if `x` is a scalar. Examples -------- >>> np.exp(1) 2.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([0.36787945, 2.7182817 , 0.13533528, 7.389056 ]) """ return _mx_nd_np.exp(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def expm1(x, out=None, **kwargs): r""" Calculate `exp(x) - 1` for all elements in the array. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array, element-wise exponential minus one: `out = exp(x) - 1`. This is a scalar if `x` is a scalar. Examples -------- >>> np.expm1(1) 1.718281828459045 >>> x = np.array([-1, 1, -2, 2]) >>> np.exp(x) array([-0.63212056, 1.71828183, -0.86466472, 6.3890561]) """ return _mx_nd_np.expm1(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arcsin(x, out=None, **kwargs): r""" Inverse sine, element-wise. Parameters ---------- x : ndarray or scalar `y`-coordinate on the unit circle. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- angle : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. The inverse sine of each element in `x`, in radians and in the closed interval ``[-pi/2, pi/2]``. Examples -------- >>> np.arcsin(1) # pi/2 1.5707963267948966 >>> np.arcsin(-1) # -pi/2 -1.5707963267948966 >>> np.arcsin(0) 0.0 Notes ----- `arcsin` is a multivalued function: for each `x` there are infinitely many numbers `z` such that :math:`sin(z) = x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, *arcsin* always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. The inverse sine is also known as `asin` or sin^{-1}. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.arcsin <https://docs.scipy.org/doc/numpy/reference/generated/numpy.arcsin.html>`_ in the following aspects: - Only support ndarray or scalar now. - `where` argument is not supported. - Complex input is not supported. References ---------- Abramowitz, M. and Stegun, I. A., *Handbook of Mathematical Functions*, 10th printing, New York: Dover, 1964, pp. 79ff. http://www.math.sfu.ca/~cbm/aands/ """ return _mx_nd_np.arcsin(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arccos(x, out=None, **kwargs): """ Trigonometric inverse cosine, element-wise. The inverse of cos so that, if y = cos(x), then x = arccos(y). Parameters ---------- x : ndarray x-coordinate on the unit circle. For real arguments, the domain is [-1, 1]. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ---------- angle : ndarray The angle of the ray intersecting the unit circle at the given x-coordinate in radians [0, pi]. This is a scalar if x is a scalar. Notes ---------- arccos is a multivalued function: for each x there are infinitely many numbers z such that cos(z) = x. The convention is to return the angle z whose real part lies in [0, pi]. For real-valued input data types, arccos always returns real output. For each value that cannot be expressed as a real number or infinity, it yields nan and sets the invalid floating point error flag. The inverse cos is also known as acos or cos^-1. Examples ---------- >>> np.arccos([1, -1]) array([ 0. , 3.14159265]) """ return _mx_nd_np.arccos(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arctan(x, out=None, **kwargs): r""" Trigonometric inverse tangent, element-wise. The inverse of tan, so that if ``y = tan(x)`` then ``x = arctan(y)``. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Out has the same shape as `x`. It lies is in ``[-pi/2, pi/2]`` (``arctan(+/-inf)`` returns ``+/-pi/2``). This is a scalar if `x` is a scalar. Notes ----- `arctan` is a multi-valued function: for each `x` there are infinitely many numbers `z` such that tan(`z`) = `x`. The convention is to return the angle `z` whose real part lies in [-pi/2, pi/2]. For real-valued input data types, `arctan` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. For complex-valued input, we do not have support for them yet. The inverse tangent is also known as `atan` or tan^{-1}. Examples -------- >>> x = np.array([0, 1]) >>> np.arctan(x) array([0. , 0.7853982]) >>> np.pi/4 0.7853981633974483 """ return _mx_nd_np.arctan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def sign(x, out=None, **kwargs): """ Returns an element-wise indication of the sign of a number. The `sign` function returns ``-1 if x < 0, 0 if x==0, 1 if x > 0``. Only supports real number. Parameters ---------- x : ndarray or a scalar Input values. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The sign of `x`. This is a scalar if `x` is a scalar. Note ------- - Only supports real number as input elements. - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([-5., 4.5]) >>> np.sign(a) array([-1., 1.]) Scalars as input: >>> np.sign(4.0) 1.0 >>> np.sign(0) 0 Use ``out`` parameter: >>> b = np.zeros((2, )) >>> np.sign(a, out=b) array([-1., 1.]) >>> b array([-1., 1.]) """ return _mx_nd_np.sign(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def log(x, out=None, **kwargs): """ Natural logarithm, element-wise. The natural logarithm `log` is the inverse of the exponential function, so that `log(exp(x)) = x`. The natural logarithm is logarithm in base `e`. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The natural logarithm of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- Currently only supports data of real values and ``inf`` as input. Returns data of real value, ``inf``, ``-inf`` and ``nan`` according to the input. This function differs from the original `numpy.log <https://docs.scipy.org/doc/numpy/reference/generated/numpy.log.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.array([1, np.exp(1), np.exp(2), 0], dtype=np.float64) >>> np.log(a) array([ 0., 1., 2., -inf], dtype=float64) >>> # Using the default float32 dtype leads to slightly different behavior >>> a = np.array([1, np.exp(1), np.exp(2), 0]) >>> np.log(a) array([ 0., 0.99999994, 2., -inf]) >>> np.log(1) 0.0 """ return _mx_nd_np.log(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def rint(x, out=None, **kwargs): """ Round elements of the array to the nearest integer. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.rint <https://docs.scipy.org/doc/numpy/reference/generated/numpy.rint.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.rint(a) array([-2., -2., -0., 0., 1., 2., 2.]) """ return _mx_nd_np.rint(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log2(x, out=None, **kwargs): """ Base-2 logarithm of x. Parameters ---------- x : ndarray or scalar Input values. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The logarithm base two of `x`, element-wise. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original `numpy.log2 <https://www.google.com/search?q=numpy+log2>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> x = np.array([0, 1, 2, 2**4]) >>> np.log2(x) array([-inf, 0., 1., 4.]) """ return _mx_nd_np.log2(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def log1p(x, out=None, **kwargs): """ Return the natural logarithm of one plus the input array, element-wise. Calculates ``log(1 + x)``. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar Natural logarithm of 1 + x, element-wise. This is a scalar if x is a scalar. Notes ----- For real-valued input, `log1p` is accurate also for `x` so small that `1 + x == 1` in floating-point accuracy. Logarithm is a multivalued function: for each `x` there is an infinite number of `z` such that `exp(z) = 1 + x`. The convention is to return the `z` whose imaginary part lies in `[-pi, pi]`. For real-valued input data types, `log1p` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. cannot support complex-valued input. Examples -------- >>> np.log1p(1e-99) 1e-99 >>> a = np.array([3, 4, 5]) >>> np.log1p(a) array([1.3862944, 1.609438 , 1.7917595]) """ return _mx_nd_np.log1p(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def degrees(x, out=None, **kwargs): """ Convert angles from radians to degrees. Parameters ---------- x : ndarray Input value. Elements must be of real value. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding degree values; if `out` was supplied this is a reference to it. This is a scalar if `x` is a scalar. Notes ------- This function differs from the original `numpy.degrees <https://docs.scipy.org/doc/numpy/reference/generated/numpy.degrees.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). Only ndarray is supported. - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> rad = np.arange(12.) * np.pi / 6 >>> np.degrees(rad) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> # Use specified ``out`` ndarray: >>> out = np.zeros((rad.shape)) >>> np.degrees(rad, out) array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) >>> out array([ 0., 30., 60., 90., 120., 150., 180., 210., 240., 270., 300., 330.]) """ return _mx_nd_np.degrees(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def rad2deg(x, out=None, **kwargs): r""" Convert angles from radians to degrees. Parameters ---------- x : ndarray or scalar Angles in degrees. out : ndarray or None, optional A location into which the result is stored. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The corresponding angle in radians. This is a scalar if `x` is a scalar. Notes ----- "rad2deg(x)" is "x * 180 / pi". This function differs from the original numpy.arange in the following aspects: - Only support float32 and float64. - `out` must be in the same size of input. Examples -------- >>> np.rad2deg(np.pi/2) 90.0 """ return _mx_nd_np.rad2deg(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def radians(x, out=None, **kwargs): """ Convert angles from degrees to radians. Parameters ---------- x : ndarray or scalar Input array in degrees. out : ndarray or None A location into which the result is stored. If provided, it must have the same shape and type as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray The corresponding radian values. This is a scalar if x is a scalar. Notes ----- This function differs from the original `numpy.radians <https://docs.scipy.org/doc/numpy/reference/generated/numpy.radians.html>`_ in the following way(s): - only ndarray or scalar is accpted as valid input, tuple of ndarray is not supported - broadcasting to `out` of different shape is currently not supported - when input is plain python numerics, the result will not be stored in the `out` param Examples -------- >>> deg = np.arange(12.) * 30. >>> np.radians(deg) array([0. , 0.5235988, 1.0471976, 1.5707964, 2.0943952, 2.6179938, 3.1415927, 3.6651914, 4.1887903, 4.712389 , 5.2359877, 5.7595863], dtype=float32) """ return _mx_nd_np.radians(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def deg2rad(x, out=None, **kwargs): r""" Convert angles from degrees to radians. Parameters ---------- x : ndarray or scalar Angles in degrees. out : ndarray or None, optional A location into which the result is stored. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The corresponding angle in radians. This is a scalar if `x` is a scalar. Notes ----- "deg2rad(x)" is "x * pi / 180". This function differs from the original numpy.arange in the following aspects: - Only support float32 and float64. - `out` must be in the same size of input. Examples -------- >>> np.deg2rad(180) 3.1415927 """ return _mx_nd_np.deg2rad(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def reciprocal(x, out=None, **kwargs): r""" Return the reciprocal of the argument, element-wise. Calculates ``1/x``. Parameters ---------- x : ndarray or scalar The values whose reciprocals are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.reciprocal(2.) 0.5 >>> x = np.array([1, 2., 3.33]) >>> np.reciprocal(x) array([1. , 0.5 , 0.3003003]) Notes ----- .. note:: This function is not designed to work with integers. For integer arguments with absolute value larger than 1 the result is always zero because of the way Python handles integer division. For integer zero the result is an overflow. The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.reciprocal <https://docs.scipy.org/doc/numpy/reference/generated/numpy.reciprocal.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. """ return _mx_nd_np.reciprocal(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def square(x, out=None, **kwargs): r""" Return the element-wise square of the input. Parameters ---------- x : ndarray or scalar The values whose squares are required. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape as the input. If not provided or None, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar Output array is same shape and type as x. This is a scalar if x is a scalar. Examples -------- >>> np.square(2.) 4.0 >>> x = np.array([1, 2., -1]) >>> np.square(x) array([1., 4., 1.]) Notes ----- The output `ndarray` has the same `ctx` as the input `ndarray`. This function differs from the original `numpy.square <https://docs.scipy.org/doc/numpy/reference/generated/numpy.square.html>`_ in the following aspects: - Only support ndarray and scalar now. - `where` argument is not supported. - Complex input is not supported. """ return _mx_nd_np.square(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def negative(x, out=None, **kwargs): r""" Numerical negative, element-wise. Parameters: ------------ x : ndarray or scalar Input array. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar. Examples -------- >>> np.negative(1) -1 """ return _mx_nd_np.negative(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def fix(x, out=None, **kwargs): """ Round an array of floats element-wise to nearest integer towards zero. The rounded values are returned as floats. Parameters: ---------- x : ndarray An array of floats to be rounded out : ndarray, optional Output array Returns: ------- y : ndarray or scalar Returned array or scalar: y = -x. This is a scalar if x is a scalar.ndarray of floats Examples --------- >>> np.fix(3.14) 3 """ return _mx_nd_np.fix(x, out=out) @set_module('mxnet.numpy') @wrap_np_unary_func def tan(x, out=None, **kwargs): r""" Compute tangent element-wise. Equivalent to np.sin(x)/np.cos(x) element-wise. Parameters: ---------- x : ndarray Input array. out : ndarray or none, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns: ------- y : ndarray The corresponding tangent values. This is a scalar if x is a scalar. Examples --------- >>> np.tan(np.array([-np.pi, np.pi/2, np.pi])) array([-8.7422777e-08, -2.2877332e+07, 8.7422777e-08]) """ return _mx_nd_np.tan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def ceil(x, out=None, **kwargs): r""" Return the ceiling of the input, element-wise. The ceil of the ndarray `x` is the smallest integer `i`, such that `i >= x`. It is often denoted as :math:`\lceil x \rceil`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The ceiling of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.ceil(a) array([-1., -1., -0., 1., 2., 2., 2.]) >>> # if you use parameter out, x and out must be ndarray. >>> a = np.array(1) >>> np.ceil(np.array(3.5), a) array(4.) >>> a array(4.) """ return _mx_nd_np.ceil(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def floor(x, out=None, **kwargs): r""" Return the floor of the input, element-wise. The ceil of the ndarray `x` is the largest integer `i`, such that `i <= x`. It is often denoted as :math:`\lfloor x \rfloor`. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None A location into which the result is stored. If provided, it must have a shape that the inputs fill into. If not provided or None, a freshly-allocated array is returned. The dtype of the output and input must be the same. Returns ------- y : ndarray or scalar The floor of each element in `x`, with `float` dtype. This is a scalar if `x` is a scalar. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.floor(a) array([-2., -2., -1., 0., 1., 1., 2.]) >>> # if you use parameter out, x and out must be ndarray. >>> a = np.array(1) >>> np.floor(np.array(3.5), a) array(3.) >>> a array(3.) """ return _mx_nd_np.floor(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def invert(x, out=None, **kwargs): r""" Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. Parameters ---------- x : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- out : ndarray or scalar Result. This is a scalar if `x` is a scalar. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010' Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True """ return _mx_nd_np.bitwise_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def bitwise_not(x, out=None, **kwargs): r""" Compute bit-wise inversion, or bit-wise NOT, element-wise. Computes the bit-wise NOT of the underlying binary representation of the integers in the input arrays. This ufunc implements the C/Python operator ``~``. Parameters ---------- x : array_like Only integer and boolean types are handled. out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- out : ndarray or scalar Result. This is a scalar if `x` is a scalar. See Also -------- bitwise_and, bitwise_or, bitwise_xor logical_not binary_repr : Return the binary representation of the input number as a string. Examples -------- We've seen that 13 is represented by ``00001101``. The invert or bit-wise NOT of 13 is then: >>> x = np.invert(np.array(13, dtype=np.uint8)) >>> x 242 >>> np.binary_repr(x, width=8) '11110010' Notes ----- `bitwise_not` is an alias for `invert`: >>> np.bitwise_not is np.invert True """ return _mx_nd_np.bitwise_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def trunc(x, out=None, **kwargs): r""" Return the truncated value of the input, element-wise. The truncated value of the scalar `x` is the nearest integer `i` which is closer to zero than `x` is. In short, the fractional part of the signed number `x` is discarded. Parameters ---------- x : ndarray or scalar Input data. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : ndarray or scalar The truncated value of each element in `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.trunc in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) >>> np.trunc(a) array([-1., -1., -0., 0., 1., 1., 2.]) """ return _mx_nd_np.trunc(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def logical_not(x, out=None, **kwargs): r""" Compute the truth value of NOT x element-wise. Parameters ---------- x : ndarray or scalar Logical NOT is applied to the elements of `x`. out : ndarray or None, optional A location into which the result is stored. Returns ------- y : bool or ndarray of bool Boolean result with the same shape as `x` of the NOT operation on elements of `x`. This is a scalar if `x` is a scalar. Notes ----- This function differs from the original numpy.logical_not in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> x= np.array([True, False, 0, 1]) >>> np.logical_not(x) array([False, True, True, False]) >>> x = np.arange(5) >>> np.logical_not(x<3) array([False, False, False, True, True]) """ return _mx_nd_np.logical_not(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arcsinh(x, out=None, **kwargs): r""" Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arcsinh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arcsinh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `sinh(z) = x`. For real-valued input data types, `arcsinh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arcsinh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. DType of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arcsinh(a) array([1.8309381, 2.2924316]) >>> np.arcsinh(1) 0.0 """ return _mx_nd_np.arcsinh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arccosh(x, out=None, **kwargs): r""" Inverse hyperbolic cosine, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arccosh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arccosh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `cosh(z) = x`. For real-valued input data types, `arccosh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arccosh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([3.2, 5.0]) >>> np.arccosh(a) array([1.8309381, 2.2924316]) >>> np.arccosh(1) 0.0 """ return _mx_nd_np.arccosh(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def arctanh(x, out=None, **kwargs): r""" Inverse hyperbolic tangent, element-wise. Parameters ---------- x : ndarray or scalar Input array. out : ndarray or None, optional A location into which the result is stored. Returns ------- arctanh : ndarray Array of the same shape as `x`. This is a scalar if `x` is a scalar. Notes ----- `arctanh` is a multivalued function: for each `x` there are infinitely many numbers `z` such that `tanh(z) = x`. For real-valued input data types, `arctanh` always returns real output. For each value that cannot be expressed as a real number or infinity, it yields ``nan`` and sets the `invalid` floating point error flag. This function differs from the original numpy.arctanh in the following aspects: - Do not support `where`, a parameter in numpy which indicates where to calculate. - Do not support complex-valued input. - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot broadcast automatically. Shape of `out` must be same as the expected one. - If `x` is plain python numeric, the result won't be stored in out. Examples -------- >>> a = np.array([0.0, -0.5]) >>> np.arctanh(a) array([0., -0.54930615]) >>> np.arctanh(1) 0.0 """ return _mx_nd_np.arctanh(x, out=out, **kwargs) @set_module('mxnet.numpy') def argsort(a, axis=-1, kind=None, order=None): """ Returns the indices that would sort an array. Perform an indirect sort along the given axis using the algorithm specified by the `kind` keyword. It returns an array of indices of the same shape as `a` that index data along the given axis in sorted order. Parameters ---------- a : ndarray Array to sort. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : string, optional This argument can take any string, but it does not have any effect on the final result. order : str or list of str, optional Not supported yet, will raise NotImplementedError if not None. Returns ------- index_array : ndarray, int Array of indices that sort `a` along the specified `axis`. If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`. More generally, ``np.take_along_axis(a, index_array, axis=axis)`` always yields the sorted `a`, irrespective of dimensionality. Notes ----- This operator does not support different sorting algorithms. Examples -------- One dimensional array: >>> x = np.array([3, 1, 2]) >>> np.argsort(x) array([1, 2, 0]) Two-dimensional array: >>> x = np.array([[0, 3], [2, 2]]) >>> x array([[0, 3], [2, 2]]) >>> ind = np.argsort(x, axis=0) # sorts along first axis (down) >>> ind array([[0, 1], [1, 0]]) >>> np.take_along_axis(x, ind, axis=0) # same as np.sort(x, axis=0) array([[0, 2], [2, 3]]) >>> ind = np.argsort(x, axis=1) # sorts along last axis (across) >>> ind array([[0, 1], [0, 1]]) >>> np.take_along_axis(x, ind, axis=1) # same as np.sort(x, axis=1) array([[0, 3], [2, 2]]) Indices of the sorted elements of a N-dimensional array: >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape) >>> ind (array([0, 1, 1, 0]), array([0, 0, 1, 1])) >>> x[ind] # same as np.sort(x, axis=None) array([0, 2, 2, 3]) """ return _mx_nd_np.argsort(a, axis=axis, kind=kind, order=order) @set_module('mxnet.numpy') def sort(a, axis=-1, kind=None, order=None): """ Return a sorted copy of an array. Parameters ---------- a : ndarray Array to be sorted. axis : int or None, optional Axis along which to sort. The default is -1 (the last axis). If None, the flattened array is used. kind : string, optional This argument can take any string, but it does not have any effect on the final result. order : str or list of str, optional Not supported yet, will raise NotImplementedError if not None. Returns ------- sorted_array : ndarray Array of the same type and shape as `a`. Notes ----- This operator does not support different sorting algorithms. Examples -------- >>> a = np.array([[1,4],[3,1]]) >>> np.sort(a) # sort along the last axis array([[1, 4], [1, 3]]) >>> np.sort(a, axis=None) # sort the flattened array array([1, 1, 3, 4]) >>> np.sort(a, axis=0) # sort along the first axis array([[1, 1], [3, 4]]) """ return _mx_nd_np.sort(a, axis=axis, kind=kind, order=order) @set_module('mxnet.numpy') def tensordot(a, b, axes=2): r""" tensordot(a, b, axes=2) Compute tensor dot product along specified axes for arrays >= 1-D. Given two tensors (arrays of dimension greater than or equal to one), `a` and `b`, and an ndarray object containing two ndarray objects, ``(a_axes, b_axes)``, sum the products of `a`'s and `b`'s elements (components) over the axes specified by ``a_axes`` and ``b_axes``. The third argument can be a single non-negative integer_like scalar, ``N``; if it is such, then the last ``N`` dimensions of `a` and the first ``N`` dimensions of `b` are summed over. Parameters ---------- a, b : ndarray, len(shape) >= 1 Tensors to "dot". axes : int or (2,) ndarray * integer_like If an int N, sum over the last N axes of `a` and the first N axes of `b` in order. The sizes of the corresponding axes must match. * (2,) ndarray Or, a list of axes to be summed over, first sequence applying to `a`, second to `b`. Both elements ndarray must be of the same length. See Also -------- dot, einsum Notes ----- Three common use cases are: * ``axes = 0`` : tensor product :math:`a\otimes b` * ``axes = 1`` : tensor dot product :math:`a\cdot b` * ``axes = 2`` : (default) tensor double contraction :math:`a:b` When `axes` is integer_like, the sequence for evaluation will be: first the -Nth axis in `a` and 0th axis in `b`, and the -1th axis in `a` and Nth axis in `b` last. When there is more than one axis to sum over - and they are not the last (first) axes of `a` (`b`) - the argument `axes` should consist of two sequences of the same length, with the first axis to sum over given first in both sequences, the second axis second, and so forth. Examples -------- >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> c = np.tensordot(a,b, axes=([1,0],[0,1])) >>> c.shape (5, 2) >>> c array([[ 4400., 4730.], [ 4532., 4874.], [ 4664., 5018.], [ 4796., 5162.], [ 4928., 5306.]]) """ return _mx_nd_np.tensordot(a, b, axes) @set_module('mxnet.numpy') def histogram(a, bins=10, range=None, normed=None, weights=None, density=None): # pylint: disable=too-many-arguments """ Compute the histogram of a set of data. Parameters ---------- a : ndarray Input data. The histogram is computed over the flattened array. bins : int or ndarray If `bins` is an int, it defines the number of equal-width bins in the given range (10, by default). If `bins` is a sequence, it defines a monotonically increasing array of bin edges, including the rightmost edge, allowing for non-uniform bin widths. .. versionadded:: 1.11.0 If `bins` is a string, it defines the method used to calculate the optimal bin width, as defined by `histogram_bin_edges`. range : (float, float) The lower and upper range of the bins. Required when `bins` is an integer. Values outside the range are ignored. The first element of the range must be less than or equal to the second. normed : bool, optional Not supported yet, coming soon. weights : array_like, optional Not supported yet, coming soon. density : bool, optional Not supported yet, coming soon. Examples -------- >>> np.histogram(np.arange(4), bins=np.arange(5)) [array([1, 1, 1, 1], dtype=int64), array([0., 1., 2., 3., 4.])] """ return _mx_nd_np.histogram(a, bins=bins, range=range, normed=normed, weights=weights, density=density) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def eye(N, M=None, k=0, dtype=float, **kwargs): """ Return a 2-D array with ones on the diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the output. M : int, optional Number of columns in the output. If None, defaults to N. k : int, optional Index of the diagonal: 0 (the default) refers to the main diagonal, a positive value refers to an upper diagonal, and a negative value to a lower diagonal. dtype : data-type, optional Data-type of the returned array. When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Returns ------- I : ndarray of shape (N,M) An array where all elements are equal to zero, except for the k-th diagonal, whose values are equal to one. Examples -------- >>> np.eye(2, dtype=int) array([[1, 0], [0, 1]], dtype=int64) >>> np.eye(3, k=1) array([[0., 1., 0.], [0., 0., 1.], [0., 0., 0.]]) """ return _mx_nd_np.eye(N, M, k, dtype, **kwargs) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0, ctx=None): # pylint: disable=too-many-arguments r""" Return evenly spaced numbers over a specified interval. Returns num evenly spaced samples, calculated over the interval [start, stop]. The endpoint of the interval can optionally be excluded. Parameters ---------- start : real number The starting value of the sequence. stop : real number The end value of the sequence, unless endpoint is set to False. In that case, the sequence consists of all but the last of num + 1 evenly spaced samples, so that stop is excluded. Note that the step size changes when endpoint is False. num : int, optional Number of samples to generate. Default is 50. Must be non-negative. endpoint : bool, optional If True, stop is the last sample. Otherwise, it is not included. Default is True. retstep : bool, optional If True, return (samples, step), where step is the spacing between samples. dtype : dtype, optional The type of the output array. If dtype is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Use -1 to get an axis at the end. Returns ------- samples : ndarray There are num equally spaced samples in the closed interval `[start, stop]` or the half-open interval `[start, stop)` (depending on whether endpoint is True or False). step : float, optional Only returned if retstep is True Size of spacing between samples. See Also -------- arange : Similar to `linspace`, but uses a step size (instead of the number of samples). Examples -------- >>> np.linspace(2.0, 3.0, num=5) array([2. , 2.25, 2.5 , 2.75, 3. ]) >>> np.linspace(2.0, 3.0, num=5, endpoint=False) array([2. , 2.2, 2.4, 2.6, 2.8]) >>> np.linspace(2.0, 3.0, num=5, retstep=True) (array([2. , 2.25, 2.5 , 2.75, 3. ]), 0.25) Graphical illustration: >>> import matplotlib.pyplot as plt >>> N = 8 >>> y = np.zeros(N) >>> x1 = np.linspace(0, 10, N, endpoint=True) >>> x2 = np.linspace(0, 10, N, endpoint=False) >>> plt.plot(x1.asnumpy(), y.asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(x2.asnumpy(), (y + 0.5).asnumpy(), 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.ylim([-0.5, 1]) (-0.5, 1) >>> plt.show() Notes ----- This function differs from the original `numpy.linspace <https://docs.scipy.org/doc/numpy/reference/generated/numpy.linspace.html>`_ in the following aspects: - `start` and `stop` do not support list, numpy ndarray and mxnet ndarray - axis could only be 0 - There could be an additional `ctx` argument to specify the device, e.g. the i-th GPU. """ return _mx_nd_np.linspace(start, stop, num, endpoint, retstep, dtype, axis, ctx) # pylint: enable=redefined-outer-name # pylint: disable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0, ctx=None): r"""Return numbers spaced evenly on a log scale. In linear space, the sequence starts at ``base ** start`` (`base` to the power of `start`) and ends with ``base ** stop`` (see `endpoint` below). Non-scalar `start` and `stop` are now supported. Parameters ---------- start : int or float ``base ** start`` is the starting value of the sequence. stop : int or float ``base ** stop`` is the final value of the sequence, unless `endpoint` is False. In that case, ``num + 1`` values are spaced over the interval in log-space, of which all but the last (a sequence of length `num`) are returned. num : integer, optional Number of samples to generate. Default is 50. endpoint : boolean, optional If true, `stop` is the last sample. Otherwise, it is not included. Default is True. base : float, optional The base of the log space. The step size between the elements in ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform. Default is 10.0. dtype : dtype The type of the output array. If `dtype` is not given, infer the data type from the other input arguments. axis : int, optional The axis in the result to store the samples. Relevant only if start or stop are array-like. By default (0), the samples will be along a new axis inserted at the beginning. Now, axis only support axis = 0. ctx : Context, optional An optional device context (default is the current default context). Returns ------- samples : ndarray `num` samples, equally spaced on a log scale. See Also -------- arange : Similar to linspace, with the step size specified instead of the number of samples. Note that, when used with a float endpoint, the endpoint may or may not be included. linspace : Similar to logspace, but with the samples uniformly distributed in linear space, instead of log space. Notes ----- Logspace is equivalent to the code >>> y = np.linspace(start, stop, num=num, endpoint=endpoint) ... >>> power(base, y).astype(dtype) ... Examples -------- >>> np.logspace(2.0, 3.0, num=4) array([ 100. , 215.44347, 464.15887, 1000. ]) >>> np.logspace(2.0, 3.0, num=4, endpoint=False) array([100. , 177.82794, 316.22775, 562.3413 ]) >>> np.logspace(2.0, 3.0, num=4, base=2.0) array([4. , 5.0396843, 6.349604 , 8. ]) >>> np.logspace(2.0, 3.0, num=4, base=2.0, dtype=np.int32) array([4, 5, 6, 8], dtype=int32) >>> np.logspace(2.0, 3.0, num=4, ctx=npx.gpu(0)) array([ 100. , 215.44347, 464.15887, 1000. ], ctx=gpu(0)) """ return _mx_nd_np.logspace(start, stop, num, endpoint, base, dtype, axis, ctx=ctx) # pylint: enable=too-many-arguments, redefined-outer-name @set_module('mxnet.numpy') def expand_dims(a, axis): """Expand the shape of an array. Insert a new axis that will appear at the `axis` position in the expanded array shape. Parameters ---------- a : ndarray Input array. axis : int Position in the expanded axes where the new axis is placed. Returns ------- res : ndarray Output array. The number of dimensions is one greater than that of the input array. See Also -------- squeeze : The inverse operation, removing singleton dimensions reshape : Insert, remove, and combine dimensions, and resize existing ones Examples -------- >>> x = np.array([1,2]) >>> x.shape (2,) >>> y = np.expand_dims(x, axis=0) >>> y array([[1., 2.]]) >>> y.shape (1, 2) >>> y = np.expand_dims(x, axis=1) # Equivalent to x[:,np.newaxis] >>> y array([[1.], [2.]]) >>> y.shape (2, 1) Note that some examples may use None instead of np.newaxis. These are the same objects: >>> np.newaxis is None True """ return _npi.expand_dims(a, axis) @set_module('mxnet.numpy') def tile(A, reps): r""" Construct an array by repeating A the number of times given by reps. If `reps` has length ``d``, the result will have dimension of ``max(d, A.ndim)``. If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication, or shape (1, 1, 3) for 3-D replication. If this is not the desired behavior, promote `A` to d-dimensions manually before calling this function. If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it. Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as (1, 1, 2, 2). Parameters ---------- A : ndarray or scalar An input array or a scalar to repeat. reps : a single integer or tuple of integers The number of repetitions of `A` along each axis. Returns ------- c : ndarray The tiled output array. Examples -------- >>> a = np.array([0, 1, 2]) >>> np.tile(a, 2) array([0., 1., 2., 0., 1., 2.]) >>> np.tile(a, (2, 2)) array([[0., 1., 2., 0., 1., 2.], [0., 1., 2., 0., 1., 2.]]) >>> np.tile(a, (2, 1, 2)) array([[[0., 1., 2., 0., 1., 2.]], [[0., 1., 2., 0., 1., 2.]]]) >>> b = np.array([[1, 2], [3, 4]]) >>> np.tile(b, 2) array([[1., 2., 1., 2.], [3., 4., 3., 4.]]) >>> np.tile(b, (2, 1)) array([[1., 2.], [3., 4.], [1., 2.], [3., 4.]]) >>> c = np.array([1,2,3,4]) >>> np.tile(c,(4,1)) array([[1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.], [1., 2., 3., 4.]]) Scalar as input: >>> np.tile(2, 3) array([2, 2, 2]) # repeating integer `2` """ return _mx_nd_np.tile(A, reps) @set_module('mxnet.numpy') def trace(a, offset=0, axis1=0, axis2=1, out=None): """ Return the sum along diagonals of the array. If `a` is 2-D, the sum along its diagonal with the given offset is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i. If `a` has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-arrays whose traces are returned. The shape of the resulting array is the same as that of `a` with `axis1` and `axis2` removed. Parameters ---------- a : ndarray Input array, from which the diagonals are taken. offset : int, optional Offset of the diagonal from the main diagonal. Can be both positive and negative. Defaults to 0. axis1, axis2 : int, optional Axes to be used as the first and second axis of the 2-D sub-arrays from which the diagonals should be taken. Defaults are the first two axes of `a`. out : ndarray, optional Array into which the output is placed. It must be of the right shape and right type to hold the output. Returns ------- sum_along_diagonals : ndarray If `a` is 2-D, the sum along the diagonal is returned. If `a` has larger dimensions, then an array of sums along diagonals is returned. Examples -------- >>> a = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) >>> np.trace(a) array(3.) >>> a = np.arange(8).reshape((2, 2, 2)) >>> np.trace(a) array([6., 8.]) >>> a = np.arange(24).reshape((2, 2, 2, 3)) >>> np.trace(a).shape (2, 3) """ return _mx_nd_np.trace(a, offset, axis1, axis2, out) @set_module('mxnet.numpy') def transpose(a, axes=None): """ Permute the dimensions of an array. Parameters ---------- a : ndarray Input array. axes : list of ints, optional By default, reverse the dimensions, otherwise permute the axes according to the values given. Returns ------- p : ndarray a with its axes permuted. Notes ----- This function differs from the original `numpy.transpose <https://docs.scipy.org/doc/numpy/reference/generated/numpy.transpose.html>`_ in the following way(s): - only ndarray is accepted as valid input, python iterables are not supported - the operator always returns an `ndarray` that does not share the memory with the input Examples -------- >>> x = np.arange(4).reshape((2,2)) >>> x array([[0., 1.], [2., 3.]]) >>> np.transpose(x) array([[0., 2.], [1., 3.]]) >>> x = np.ones((1, 2, 3)) >>> np.transpose(x, (1, 0, 2)).shape (2, 1, 3) """ return _mx_nd_np.transpose(a, axes) @set_module('mxnet.numpy') def repeat(a, repeats, axis=None): """ Repeat elements of an array. Parameters ---------- a : array_like Input array. repeats : int The number of repetitions for each element. axis : int, optional The axis along which to repeat values. By default, use the flattened input array, and return a flat output array. Returns ------- repeated_array : ndarray Output array which has the same shape as `a`, except along the given axis. See Also -------- tile : Tile an array. Examples -------- >>> np.repeat(3, 4) array([3, 3, 3, 3]) >>> x = np.array([[1,2],[3,4]]) >>> np.repeat(x, 2) array([1, 1, 2, 2, 3, 3, 4, 4]) >>> np.repeat(x, 3, axis=1) array([[1, 1, 1, 2, 2, 2], [3, 3, 3, 4, 4, 4]]) >>> np.repeat(x, [1, 2], axis=0) array([[1, 2], [3, 4], [3, 4]]) """ return _mx_nd_np.repeat(a, repeats, axis) @set_module('mxnet.numpy') def tril(m, k=0): r""" Lower triangle of an array. Return a copy of an array with elements above the `k`-th diagonal zeroed. Parameters ---------- m : ndarray, shape (M, N) Input array. k : int, optional Diagonal above which to zero elements. `k = 0` (the default) is the main diagonal, `k < 0` is below it and `k > 0` is above. Returns ------- tril : ndarray, shape (M, N) Lower triangle of `m`, of same shape and data-type as `m`. See Also -------- triu : same thing, only for the upper triangle Examples -------- >>> a = np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) >>> np.tril(a, -1) array([[ 0., 0., 0.], [ 4., 0., 0.], [ 7., 8., 0.], [10., 11., 12.]]) """ return _mx_nd_np.tril(m, k) @set_module('mxnet.numpy') def tri(N, M=None, k=0, dtype=None, ctx=None): # pylint: disable=redefined-outer-name r""" An array with ones at and below the given diagonal and zeros elsewhere. Parameters ---------- N : int Number of rows in the array. M : int, optional Number of columns in the array. By default, `M` is taken equal to `N`. k : int, optional The sub-diagonal at and below which the array is filled. `k` = 0 is the main diagonal, while `k` < 0 is below it, and `k` > 0 is above. The default is 0. dtype : dtype, optional Data type of the returned array. The default is float. Returns ------- tri : ndarray of shape (N, M) Array with its lower triangle filled with ones and zero elsewhere; in other words ``T[i,j] == 1`` for ``i <= j + k``, 0 otherwise. Examples -------- >>> np.tri(3, 5, 2, dtype=int) array([[1, 1, 1, 0, 0], [1, 1, 1, 1, 0], [1, 1, 1, 1, 1]]) >>> np.tri(3, 5, -1) array([[0., 0., 0., 0., 0.], [1., 0., 0., 0., 0.], [1., 1., 0., 0., 0.]]) """ return _mx_nd_np.tri(N, M, k, dtype, ctx) @set_module('mxnet.numpy') def triu_indices(n, k=0, m=None, ctx=None): # pylint: disable=redefined-outer-name r""" Return the indices for the upper-triangle of an (n, m) array. Parameters ---------- n : int The size of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `triu` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple, shape(2) of ndarrays, shape(`n`) The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. Can be used to slice a ndarray of shape(`n`, `n`). See also -------- tril_indices : similar function, for lower-triangular. mask_indices : generic function accepting an arbitrary mask function. triu, tril Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the upper triangular part starting at the main diagonal, and one starting two diagonals further right: >>> iu1 = np.triu_indices(4) >>> iu2 = np.triu_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[iu1] array([ 0, 1, 2, ..., 10, 11, 15]) And for assigning values: >>> a[iu1] = -1 >>> a array([[-1, -1, -1, -1], [ 4, -1, -1, -1], [ 8, 9, -1, -1], [12, 13, 14, -1]]) These cover only a small part of the whole array (two diagonals right of the main one): >>> a[iu2] = -10 >>> a array([[ -1, -1, -10, -10], [ 4, -1, -1, -10], [ 8, 9, -1, -1], [ 12, 13, 14, -1]]) """ return _mx_nd_np.triu_indices(n, k, m, ctx) @set_module('mxnet.numpy') def triu_indices_from(arr, k=0): """ Return the indices for the upper-triangle of arr. See `triu_indices` for full details. Parameters ---------- arr : ndarray, shape(N, N) The indices will be valid for square arrays. k : int, optional Diagonal offset (see `triu` for details). Returns ------- triu_indices_from : tuple, shape(2) of ndarray, shape(N) Indices for the upper-triangle of `arr`. See Also -------- triu_indices, triu """ return _mx_nd_np.triu_indices_from(arr, k) @set_module('mxnet.numpy') def tril_indices(n, k=0, m=None): """ Return the indices for the lower-triangle of an (n, m) array. Parameters ---------- n : int The row dimension of the arrays for which the returned indices will be valid. k : int, optional Diagonal offset (see `tril` for details). m : int, optional .. versionadded:: 1.9.0 The column dimension of the arrays for which the returned arrays will be valid. By default `m` is taken equal to `n`. Returns ------- inds : tuple of arrays The indices for the triangle. The returned tuple contains two arrays, each with the indices along one dimension of the array. See also -------- triu_indices : similar function, for upper-triangular. mask_indices : generic function accepting an arbitrary mask function. tril, triu Examples -------- Compute two different sets of indices to access 4x4 arrays, one for the lower triangular part starting at the main diagonal, and one starting two diagonals further right: >>> il1 = np.tril_indices(4) >>> il2 = np.tril_indices(4, 2) Here is how they can be used with a sample array: >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Both for indexing: >>> a[il1] array([ 0, 4, 5, 8, 9, 10, 12, 13, 14, 15]) And for assigning values: >>> a[il1] = -1 >>> a array([[-1, 1, 2, 3], [-1, -1, 6, 7], [-1, -1, -1, 11], [-1, -1, -1, -1]]) These cover almost the whole array (two diagonals right of the main one): >>> a[il2] = -10 >>> a array([[-10, -10, -10, 3], [-10, -10, -10, -10], [-10, -10, -10, -10], [-10, -10, -10, -10]]) """ if m is None: m = n return tuple(_mx_nd_np.tril_indices(n, k, m)) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def triu(m, k=0): r""" Upper triangle of an array. Return a copy of a matrix with the elements below the `k`-th diagonal zeroed. Please refer to the documentation for `tril` for further details. See Also -------- tril : lower triangle of an array Examples -------- >>> np.triu(np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]), -1) array([[ 1, 2, 3], [ 4, 5, 6], [ 0, 8, 9], [ 0, 0, 12]]) """ return _mx_nd_np.triu(m, k) @set_module('mxnet.numpy') def arange(start, stop=None, step=1, dtype=None, ctx=None): """Return evenly spaced values within a given interval. Values are generated within the half-open interval ``[start, stop)`` (in other words, the interval including `start` but excluding `stop`). For integer arguments the function is equivalent to the Python built-in `range` function, but returns an ndarray rather than a list. Parameters ---------- start : number, optional Start of interval. The interval includes this value. The default start value is 0. stop : number End of interval. The interval does not include this value, except in some cases where `step` is not an integer and floating point round-off affects the length of `out`. step : number, optional Spacing between values. For any output `out`, this is the distance between two adjacent values, ``out[i+1] - out[i]``. The default step size is 1. If `step` is specified as a position argument, `start` must also be given. dtype : dtype The type of the output array. Default dtype can be set to be consistent with offical numpy by `npx.set_np(dtype=True)`. - When npx.is_np_default_dtype() returns False, default dtype is float32; - When npx.is_np_default_dtype() returns True, default dtype is int64. Returns ------- arange : ndarray Array of evenly spaced values. For floating point arguments, the length of the result is ``ceil((stop - start)/step)``. Because of floating point overflow, this rule may result in the last element of `out` being greater than `stop`. Examples -------- >>> np.arange(3) array([0., 1., 2.]) >>> np.arange(3.0) array([0., 1., 2.]) >>> np.arange(3,7) array([3., 4., 5., 6.]) >>> np.arange(3,7,2) array([3., 5.]) >>> np.arange(3).dtype dtype('float32') >>> npx.set_np(dtype=True) >>> np.arange(3).dtype dtype('int64') """ return _mx_nd_np.arange(start, stop, step, dtype, ctx) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def split(ary, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Raises ------ ValueError If `indices_or_sections` is given as an integer, but a split does not result in equal division. See Also -------- hsplit : Split array into multiple sub-arrays horizontally (column-wise). vsplit : Split array into multiple sub-arrays vertically (row wise). dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). concatenate : Join a sequence of arrays along an existing axis. stack : Join a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise). vstack : Stack arrays in sequence vertically (row wise). dstack : Stack arrays in sequence depth wise (along third dimension). Examples -------- >>> x = np.arange(9.0) >>> np.split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] >>> np.split(x, [3, 5, 6, 8]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([])] """ return _mx_nd_np.split(ary, indices_or_sections, axis=axis) @set_module('mxnet.numpy') def array_split(ary, indices_or_sections, axis=0): """Split an array into multiple sub-arrays. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an array of length l that should be split into n sections, it returns l % n sub-arrays of size l//n + 1 and the rest of size l//n. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along `axis` the array is split. For example, ``[2, 3]`` would, for ``axis=0``, result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along `axis`, an empty sub-array is returned correspondingly. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1-D Python tuple, list or set. Param used to determine the number and size of the subarray. axis : int, optional The axis along which to split, default is 0. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Examples -------- >>> x = np.arange(9.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])] >>> np.array_split(x, [3, 5, 6, 8]) [array([0., 1., 2.]), array([3., 4.]), array([5.]), array([6., 7.]), array([])] >>> x = np.arange(8.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])] >>> x = np.arange(7.0) >>> np.array_split(x, 3) [array([0., 1., 2.]), array([3., 4.]), array([5., 6.])] """ return _mx_nd_np.array_split(ary, indices_or_sections, axis=axis) @set_module('mxnet.numpy') def vsplit(ary, indices_or_sections): r""" vsplit(ary, indices_or_sections) Split an array into multiple sub-arrays vertically (row-wise). ``vsplit`` is equivalent to ``split`` with `axis=0` (default): the array is always split along the first axis regardless of the array dimension. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1 - D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along axis 0. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along axis 0 the array is split. For example, ``[2, 3]`` would result in - ary[:2] - ary[2:3] - ary[3:] If an index exceeds the dimension of the array along axis 0, an error will be thrown. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. See Also -------- split : Split an array into multiple sub-arrays of equal size. Notes ------- This function differs from the original `numpy.vsplit <https://docs.scipy.org/doc/numpy/reference/generated/numpy.vsplit.html>`_ in the following aspects: - Currently parameter ``indices_or_sections`` does not support ndarray, but supports scalar, tuple and list. - In ``indices_or_sections``, if an index exceeds the dimension of the array along axis 0, an error will be thrown. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [ 12., 13., 14., 15.]]) >>> np.vsplit(x, 2) [array([[0., 1., 2., 3.], [4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.], [12., 13., 14., 15.]])] >>> # With a higher dimensional array the split is still along the first axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.vsplit(x, 2) [array([[[0., 1.], [2., 3.]]]), array([[[4., 5.], [6., 7.]]])] """ return _mx_nd_np.vsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def dsplit(ary, indices_or_sections): r""" Split array into multiple sub-arrays along the 3rd axis (depth). Please refer to the `split` documentation. `dsplit` is equivalent to `split` with ``axis=2``, the array is always split along the third axis provided the array dimension is greater than or equal to 3. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int or 1 - D Python tuple, list or set. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along axis 2. If such a split is not possible, an error is raised. If `indices_or_sections` is a 1-D array of sorted integers, the entries indicate where along axis 2 the array is split. For example, ``[2, 3]`` would result in - ary[:, :, :2] - ary[:, :, 2:3] - ary[:, :, 3:] If an index exceeds the dimension of the array along axis 2, an error will be thrown. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. See Also -------- split : Split an array into multiple sub-arrays of equal size. Notes ------- This function differs from the original `numpy.dsplit <https://docs.scipy.org/doc/numpy/reference/generated/numpy.dsplit.html>`_ in the following aspects: - Currently parameter ``indices_or_sections`` does not support ndarray, but supports scalar, tuple and list. - In ``indices_or_sections``, if an index exceeds the dimension of the array along axis 2, an error will be thrown. Examples -------- >>> x = np.arange(16.0).reshape(2, 2, 4) >>> x array([[[ 0., 1., 2., 3.], [ 4., 5., 6., 7.]], [[ 8., 9., 10., 11.], [12., 13., 14., 15.]]]) >>> np.dsplit(x, 2) [array([[[ 0., 1.], [ 4., 5.]], [[ 8., 9.], [12., 13.]]]), array([[[ 2., 3.], [ 6., 7.]], [[10., 11.], [14., 15.]]])] >>> np.dsplit(x, np.array([3, 6])) [array([[[ 0., 1., 2.], [ 4., 5., 6.]], [[ 8., 9., 10.], [12., 13., 14.]]]), array([[[ 3.], [ 7.]], [[11.], [15.]]]), array([], shape=(2, 2, 0), dtype=float64)] """ return _mx_nd_np.dsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def concatenate(seq, axis=0, out=None): """Join a sequence of arrays along an existing axis. Parameters ---------- a1, a2, ... : sequence of array_like The arrays must have the same shape, except in the dimension corresponding to `axis` (the first, by default). axis : int, optional The axis along which the arrays will be joined. If axis is None, arrays are flattened before use. Default is 0. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what concatenate would have returned if no out argument were specified. Returns ------- res : ndarray The concatenated array. See Also -------- split : Split array into a list of multiple sub-arrays of equal size. hsplit : Split array into multiple sub-arrays horizontally (column wise) vsplit : Split array into multiple sub-arrays vertically (row wise) dsplit : Split array into multiple sub-arrays along the 3rd axis (depth). stack : Stack a sequence of arrays along a new axis. hstack : Stack arrays in sequence horizontally (column wise) vstack : Stack arrays in sequence vertically (row wise) dstack : Stack arrays in sequence depth wise (along third dimension) Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> b = np.array([[5, 6]]) >>> np.concatenate((a, b), axis=0) array([[1., 2.], [3., 4.], [5., 6.]]) >>> np.concatenate((a, b.T), axis=1) array([[1., 2., 5.], [3., 4., 6.]]) >>> np.concatenate((a, b), axis=None) array([1., 2., 3., 4., 5., 6.]) """ return _mx_nd_np.concatenate(seq, axis=axis, out=out) @set_module('mxnet.numpy') def append(arr, values, axis=None): # pylint: disable=redefined-outer-name """ Append values to the end of an array. Parameters ---------- arr : ndarray Values are appended to a copy of this array. values : ndarray These values are appended to a copy of `arr`. It must be of the correct shape (the same shape as `arr`, excluding `axis`). If `axis` is not specified, `values` can be any shape and will be flattened before use. axis : int, optional The axis along which `values` are appended. If `axis` is not given, both `arr` and `values` are flattened before use. Returns ------- append : ndarray A copy of `arr` with `values` appended to `axis`. Note that `append` does not occur in-place: a new array is allocated and filled. If `axis` is None, `out` is a flattened array. Examples -------- >>> np.append(np.array([1, 2, 3]), np.array([[4, 5, 6],[7, 8, 9]])) array([1., 2., 3., 4., 5., 6., 7., 8., 9.]) When `axis` is specified, `values` must have the correct shape. >>> np.append(np.array([[1, 2, 3], [4, 5, 6]]), np.array([[7, 8, 9]]), axis=0) array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) """ return _mx_nd_np.append(arr, values, axis=axis) @set_module('mxnet.numpy') def stack(arrays, axis=0, out=None): """Join a sequence of arrays along a new axis. The axis parameter specifies the index of the new axis in the dimensions of the result. For example, if `axis=0` it will be the first dimension and if `axis=-1` it will be the last dimension. Parameters ---------- arrays : sequence of array_like Each array must have the same shape. axis : int, optional The axis in the result array along which the input arrays are stacked. out : ndarray, optional If provided, the destination to place the result. The shape must be correct, matching that of what stack would have returned if no out argument were specified. Returns ------- stacked : ndarray The stacked array has one more dimension than the input arrays. See Also -------- concatenate : Join a sequence of arrays along an existing axis. split : Split array into a list of multiple sub-arrays of equal size. Examples -------- >>> arrays = [np.random.rand(3, 4) for _ in range(10)] >>> np.stack(arrays, axis=0).shape (10, 3, 4) >>> np.stack(arrays, axis=1).shape (3, 10, 4) >>> np.stack(arrays, axis=2).shape (3, 4, 10) >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.stack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> np.stack((a, b), axis=-1) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.stack(arrays, axis=axis, out=out) @set_module('mxnet.numpy') def vstack(arrays, out=None): r"""Stack arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by `vsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate` and `stack` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 2-D. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a, b)) array([[1.], [2.], [3.], [2.], [3.], [4.]]) """ return _mx_nd_np.vstack(arrays) @set_module('mxnet.numpy') def row_stack(arrays): r"""Stack arrays in sequence vertically (row wise). This is equivalent to concatenation along the first axis after 1-D arrays of shape `(N,)` have been reshaped to `(1,N)`. Rebuilds arrays divided by `vsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate` and `stack` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the first axis. 1-D arrays must have the same length. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 2-D. Examples -------- >>> a = np.array([1, 2, 3]) >>> b = np.array([2, 3, 4]) >>> np.vstack((a, b)) array([[1., 2., 3.], [2., 3., 4.]]) >>> a = np.array([[1], [2], [3]]) >>> b = np.array([[2], [3], [4]]) >>> np.vstack((a, b)) array([[1.], [2.], [3.], [2.], [3.], [4.]]) """ return _mx_nd_np.row_stack(arrays) @set_module('mxnet.numpy') def column_stack(tup): """ Stack 1-D arrays as columns into a 2-D array. Take a sequence of 1-D arrays and stack them as columns to make a single 2-D array. 2-D arrays are stacked as-is, just like with `hstack`. 1-D arrays are turned into 2-D columns first. Parameters ---------- tup : sequence of 1-D or 2-D arrays. Arrays to stack. All of them must have the same first dimension. Returns -------- stacked : 2-D array The array formed by stacking the given arrays. See Also -------- stack, hstack, vstack, concatenate Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.column_stack((a,b)) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.column_stack(tup) @set_module('mxnet.numpy') def hstack(arrays): """ Stack arrays in sequence horizontally (column wise). This is equivalent to concatenation along the second axis, except for 1-D arrays where it concatenates along the first axis. Rebuilds arrays divided by hsplit. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions concatenate, stack and block provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of ndarrays The arrays must have the same shape along all but the second axis, except 1-D arrays which can be any length. Returns ------- stacked : ndarray The array formed by stacking the given arrays. Examples -------- >>> from mxnet import np,npx >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.hstack((a,b)) array([1., 2., 3., 2., 3., 4.]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.hstack((a,b)) array([[1., 2.], [2., 3.], [3., 4.]]) """ return _mx_nd_np.hstack(arrays) @set_module('mxnet.numpy') def dstack(arrays): """ Stack arrays in sequence depth wise (along third axis). This is equivalent to concatenation along the third axis after 2-D arrays of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape `(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by `dsplit`. This function makes most sense for arrays with up to 3 dimensions. For instance, for pixel-data with a height (first axis), width (second axis), and r/g/b channels (third axis). The functions `concatenate`, `stack` and `block` provide more general stacking and concatenation operations. Parameters ---------- tup : sequence of arrays The arrays must have the same shape along all but the third axis. 1-D or 2-D arrays must have the same shape. Returns ------- stacked : ndarray The array formed by stacking the given arrays, will be at least 3-D. Examples -------- >>> a = np.array((1,2,3)) >>> b = np.array((2,3,4)) >>> np.dstack((a,b)) array([[[1, 2], [2, 3], [3, 4]]]) >>> a = np.array([[1],[2],[3]]) >>> b = np.array([[2],[3],[4]]) >>> np.dstack((a,b)) array([[[1, 2]], [[2, 3]], [[3, 4]]]) """ return _npi.dstack(*arrays) @set_module('mxnet.numpy') @wrap_np_binary_func def maximum(x1, x2, out=None, **kwargs): """ Returns element-wise maximum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.maximum(np.array([2, 3, 4]), np.array([1, 5, 2])) array([2., 5., 4.]) >>> np.maximum(np.eye(2), np.array([0.5, 2])) # broadcasting array([[1. , 2. ], [0.5, 2. ]]) """ return _mx_nd_np.maximum(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmax(x1, x2, out=None, **kwargs): """ Returns element-wise maximum of the input arrays with broadcasting. (Ignores NaNs) Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The maximum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmax(np.array([2, 3, 4]), np.array([1, 5, 2])) array([2., 5., 4.]) >>> np.fmax(np.eye(2), np.array([0.5, 2])) # broadcasting array([[1. , 2. ], [0.5, 2. ]]) """ return _mx_nd_np.fmax(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def minimum(x1, x2, out=None, **kwargs): """ Returns element-wise minimum of the input arrays with broadcasting. Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The minimum of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.minimum(np.array([2, 3, 4]), np.array([1, 5, 2])) array([1., 3., 2.]) >>> np.minimum(np.eye(2), np.array([0.5, 2])) # broadcasting array([[0.5, 0. ], [0. , 1. ]]) """ return _mx_nd_np.minimum(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def fmin(x1, x2, out=None, **kwargs): """ Returns element-wise minimum of the input arrays with broadcasting. (Ignores NaNs) Parameters ---------- x1, x2 : scalar or mxnet.numpy.ndarray The arrays holding the elements to be compared. They must have the same shape, or shapes that can be broadcast to a single shape. Returns ------- out : mxnet.numpy.ndarray or scalar The fmin of x1 and x2, element-wise. This is a scalar if both x1 and x2 are scalars. Examples -------- >>> np.fmin(np.array([2, 3, 4]), np.array([1, 5, 2])) array([1., 3., 2.]) >>> np.fmin(np.eye(2), np.array([0.5, 2])) # broadcasting array([[0.5, 0. ], [0. , 1. ]]) """ return _mx_nd_np.fmin(x1, x2, out=out) @set_module('mxnet.numpy') def max(a, axis=None, out=None, keepdims=False): """ Return the maximum of an array or maximum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- max : ndarray Maximum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- min : The minimum value of an array along a given axis, ignoring any nan. maximum : Element-wise maximum of two arrays, ignoring any nan. argmax : Return the indices of the maximum values. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `max` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than ``max(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.max(a) # Maximum of the flattened array array(3.) >>> np.max(a, axis=0) # Maxima along the first axis array([2., 3.]) >>> np.max(a, axis=1) # Maxima along the second axis array([1., 3.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.max(b) array(4.) """ return _mx_nd_np.max(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def min(a, axis=None, out=None, keepdims=False): """ Return the minimum of an array or minimum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- min : ndarray Minimum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- max : The maximum value of an array along a given axis, ignoring any nan. minimum : Element-wise minimum of two arrays, ignoring any nan. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `min` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than ``min(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.min(a) # Minimum of the flattened array array(0.) >>> np.min(a, axis=0) # Minima along the first axis array([0., 1.]) >>> np.min(a, axis=1) # Minima along the second axis array([0., 2.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.min(b) array(0.) # nan will be ignored """ return _mx_nd_np.min(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def swapaxes(a, axis1, axis2): """Interchange two axes of an array. Parameters ---------- a : ndarray Input array. axis1 : int First axis. axis2 : int Second axis. Returns ------- a_swapped : ndarray Swapped array. This is always a copy of the input array. Examples -------- >>> x = np.array([[1,2,3]]) >>> np.swapaxes(x,0,1) array([[1.], [2.], [3.]]) >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]]) >>> x array([[[0., 1.], [2., 3.]], [[4., 5.], [6., 7.]]]) >>> np.swapaxes(x,0,2) array([[[0., 4.], [2., 6.]], [[1., 5.], [3., 7.]]]) """ return _npi.swapaxes(a, dim1=axis1, dim2=axis2) @set_module('mxnet.numpy') def clip(a, a_min, a_max, out=None): """clip(a, a_min, a_max, out=None) Clip (limit) the values in an array. Given an interval, values outside the interval are clipped to the interval edges. For example, if an interval of ``[0, 1]`` is specified, values smaller than 0 become 0, and values larger than 1 become 1. Parameters ---------- a : ndarray Array containing elements to clip. a_min : scalar or `None` Minimum value. If `None`, clipping is not performed on lower interval edge. Not more than one of `a_min` and `a_max` may be `None`. a_max : scalar or `None` Maximum value. If `None`, clipping is not performed on upper interval edge. Not more than one of `a_min` and `a_max` may be `None`. out : ndarray, optional The results will be placed in this array. It may be the input array for in-place clipping. `out` must be of the right shape to hold the output. Its type is preserved. Returns ------- clipped_array : ndarray An array with the elements of `a`, but where values < `a_min` are replaced with `a_min`, and those > `a_max` with `a_max`. Notes ----- array_like `a_min` and `a_max` are not supported. Examples -------- >>> a = np.arange(10) >>> np.clip(a, 1, 8) array([1., 1., 2., 3., 4., 5., 6., 7., 8., 8.]) >>> a array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.clip(a, 3, 6, out=a) array([3., 3., 3., 3., 4., 5., 6., 6., 6., 6.]) """ from numbers import Number if isinstance(a, Number): # In case input is a scalar, the computation would fall back to native numpy. # The value returned would be a python scalar. return _np.clip(a, a_min, a_max, out=None) return _mx_nd_np.clip(a, a_min, a_max, out=out) @set_module('mxnet.numpy') def argmax(a, axis=None, out=None): r""" Returns the indices of the maximum values along an axis. Parameters ---------- a : ndarray Input array. Only support ndarrays of dtype `float16`, `float32`, and `float64`. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : ndarray or None, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of indices whose dtype is same as the input ndarray. Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. Notes ----- In case of multiple occurrences of the maximum values, the indices corresponding to the first occurrence are returned. This function differs from the original `numpy.argmax <https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmax.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10., 11., 12.], [13., 14., 15.]]) >>> np.argmax(a) array(5.) >>> np.argmax(a, axis=0) array([1., 1., 1.]) >>> np.argmax(a, axis=1) array([2., 2.]) >>> b = np.arange(6) >>> b[1] = 5 >>> b array([0., 5., 2., 3., 4., 5.]) >>> np.argmax(b) # Only the first occurrence is returned. array(1.) Specify ``out`` ndarray: >>> a = np.arange(6).reshape(2,3) + 10 >>> b = np.zeros((2,)) >>> np.argmax(a, axis=1, out=b) array([2., 2.]) >>> b array([2., 2.]) """ return _mx_nd_np.argmax(a, axis, out) @set_module('mxnet.numpy') def argmin(a, axis=None, out=None): r""" Returns the indices of the minimum values along an axis. Parameters ---------- a : ndarray Input array. Only support ndarrays of dtype `float16`, `float32`, and `float64`. axis : int, optional By default, the index is into the flattened array, otherwise along the specified axis. out : ndarray or None, optional If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype. Returns ------- index_array : ndarray of indices whose dtype is same as the input ndarray. Array of indices into the array. It has the same shape as `a.shape` with the dimension along `axis` removed. Notes ----- In case of multiple occurrences of the minimum values, the indices corresponding to the first occurrence are returned. This function differs from the original `numpy.argmin <https://docs.scipy.org/doc/numpy/reference/generated/numpy.argmin.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> a = np.arange(6).reshape(2,3) + 10 >>> a array([[10., 11., 12.], [13., 14., 15.]]) >>> np.argmin(a) array(0.) >>> np.argmin(a, axis=0) array([0., 0., 0.]) >>> np.argmin(a, axis=1) array([0., 0.]) >>> b = np.arange(6) >>> b[2] = 0 >>> b array([0., 1., 0., 3., 4., 5.]) >>> np.argmax(b) # Only the first occurrence is returned. array(0.) Specify ``out`` ndarray: >>> a = np.arange(6).reshape(2,3) + 10 >>> b = np.zeros((2,)) >>> np.argmin(a, axis=1, out=b) array([0., 0.]) >>> b array([0., 0.]) """ return _mx_nd_np.argmin(a, axis, out) @set_module('mxnet.numpy') def amax(a, axis=None, out=None, keepdims=False): """ Return the maximum of an array or maximum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- max : ndarray Maximum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- min : The minimum value of an array along a given axis, ignoring any nan. maximum : Element-wise maximum of two arrays, ignoring any nan. argmax : Return the indices of the maximum values. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `max` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than ``max(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.max(a) # Maximum of the flattened array array(3.) >>> np.max(a, axis=0) # Maxima along the first axis array([2., 3.]) >>> np.max(a, axis=1) # Maxima along the second axis array([1., 3.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.max(b) array(4.) """ return _mx_nd_np.amax(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def amin(a, axis=None, out=None, keepdims=False): """ Return the minimum of an array or minimum along an axis. Parameters ---------- a : ndarray Input data. axis : int, optional Axis along which to operate. By default, flattened input is used. out : ndarray, optional Alternative output array in which to place the result. Must be of the same shape and buffer length as the expected output. See `doc.ufuncs` (Section "Output arguments") for more details. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- min : ndarray Minimum of `a`. If `axis` is None, the result is an array of dimension 1. If `axis` is given, the result is an array of dimension ``a.ndim - 1``. See Also -------- max : The maximum value of an array along a given axis, ignoring any nan. minimum : Element-wise minimum of two arrays, ignoring any nan. Notes ----- NaN in the orginal `numpy` is denoted as nan and will be ignored. Don't use `min` for element-wise comparison of 2 arrays; when ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than ``min(a, axis=0)``. Examples -------- >>> a = np.arange(4).reshape((2,2)) >>> a array([[0., 1.], [2., 3.]]) >>> np.min(a) # Minimum of the flattened array array(0.) >>> np.min(a, axis=0) # Minima along the first axis array([0., 1.]) >>> np.min(a, axis=1) # Minima along the second axis array([0., 2.]) >>> b = np.arange(5, dtype=np.float32) >>> b[2] = np.nan >>> np.min(b) array(0.) # nan will be ignored """ return _mx_nd_np.amin(a, axis=axis, out=out, keepdims=keepdims) @set_module('mxnet.numpy') def average(a, axis=None, weights=None, returned=False, out=None): """ Compute the weighted average along the specified axis. Parameters -------- a : ndarray Array containing data to be averaged. axis : None or int or tuple of ints, optional Axis or axes along which to average a. The default, axis=None, will average over all of the elements of the input array. If axis is negative it counts from the last to the first axis. New in version 1.7.0. If axis is a tuple of ints, averaging is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. weights : ndarray, optional An array of weights associated with the values in a, must be the same dtype with a. Each value in a contributes to the average according to its associated weight. The weights array can either be 1-D (in which case its length must be the size of a along the given axis) or of the same shape as a. If weights=None, then all data in a are assumed to have a weight equal to one. The 1-D calculation is: avg = sum(a * weights) / sum(weights) The only constraint on weights is that sum(weights) must not be 0. returned : bool, optional Default is False. If True, the tuple (average, sum_of_weights) is returned, otherwise only the average is returned. If weights=None, sum_of_weights is equivalent to the number of elements over which the average is taken. out : ndarray, optional If provided, the calculation is done into this array. Returns -------- retval, [sum_of_weights] : ndarray Return the average along the specified axis. When returned is True, return a tuple with the average as the first element and the sum of the weights as the second element. sum_of_weights is of the same type as retval. If a is integral, the result dtype will be current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; otherwise it will be the same as dtype of a. Raises -------- MXNetError - When all weights along axis sum to zero. - When the length of 1D weights is not the same as the shape of a along axis. - When given 1D weights, the axis is not specified or is not int. - When the shape of weights and a differ, but weights are not 1D. See also -------- mean Notes -------- This function differs from the original `numpy.average` <https://numpy.org/devdocs/reference/generated/numpy.average.html>`_ in the following way(s): - Does not guarantee the same behavior with numpy when given float16 dtype and overflow happens - Does not support complex dtype - The dtypes of a and weights must be the same - Integral a results in float32 or float64 returned dtype: When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; Examples -------- >>> data = np.arange(1, 5) >>> data array([1., 2., 3., 4.]) >>> np.average(data) array(2.5) >>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1)) array(4.) >>> data = np.arange(6).reshape((3,2)) >>> data array([[0., 1.], [2., 3.], [4., 5.]]) >>> weights = np.array([0.25, 0.75]) array([0.25, 0.75]) >>> np.average(data, axis=1, weights=weights) array([0.75, 2.75, 4.75]) """ return _mx_nd_np.average(a, axis=axis, weights=weights, returned=returned, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def mean(a, axis=None, dtype=None, out=None, keepdims=False): # pylint: disable=arguments-differ """ Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. Parameters ---------- a : ndarray ndarray containing numbers whose mean is desired. axis : None or int or tuple of ints, optional Axis or axes along which the means are computed. The default is to compute the mean of the flattened array. If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the mean. For integer inputs, the default is of your current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64; For floating point inputs, it is the same as the input dtype. out : ndarray, optional Alternate output array in which to place the result. The default is None; if provided, it must have the same shape and type as the expected output. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then keepdims will not be passed through to the mean method of sub-classes of ndarray, however any non-default value will be. If the sub-class method does not implement keepdims any exceptions will be raised. Returns ------- m : ndarray, see dtype parameter above If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned. Notes ----- This function differs from the original `numpy.mean <https://docs.scipy.org/doc/numpy/reference/generated/numpy.mean.html>`_ in the following way(s): - only ndarray is accepted as valid input, python iterables or scalar is not supported - default data type for integer input is float32 or float64, which depends on your current default dtype Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.mean(a) array(2.5) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0,:] = 1.0 >>> a[1,:] = 0.1 >>> np.mean(a) array(0.55) >>> np.mean(a, dtype=np.float64) array(0.55, dtype=float64) """ return _npi.mean(a, axis=axis, dtype=dtype, keepdims=keepdims, out=out) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the standard deviation along the specified axis. Returns the standard deviation, a measure of the spread of a distribution, of the array elements. The standard deviation is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Calculate the standard deviation of these values. axis : None or int or tuple of ints, optional Axis or axes along which the standard deviation is computed. The default is to compute the standard deviation of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a standard deviation is performed over multiple axes, instead of a single axis or all the axes as before. dtype : dtype, optional Type to use in computing the standard deviation. For arrays of integer type the default is float64, for arrays of float types it is the same as the array type. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output but the type (of the calculated values) will be cast if necessary. ddof : int, optional Means Delta Degrees of Freedom. The divisor used in calculations is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `std` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- standard_deviation : ndarray, see dtype parameter above. If `out` is None, return a new array containing the standard deviation, otherwise return a reference to the output array. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.std(a) 1.1180339887498949 # may vary >>> np.std(a, axis=0) array([1., 1.]) >>> np.std(a, axis=1) array([0.5, 0.5]) In single precision, std() can be inaccurate: >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.std(a) array(0.45) >>> np.std(a, dtype=np.float64) array(0.45, dtype=float64) """ return _mx_nd_np.std(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def delete(arr, obj, axis=None): """ Return a new array with sub-arrays along an axis deleted. For a one dimensional array, this returns those entries not returned by `arr[obj]`. Parameters ---------- arr : ndarray Input array. obj : slice, int or ndarray of ints Indicate indices of sub-arrays to remove along the specified axis. axis : int, optional The axis along which to delete the subarray defined by `obj`. If `axis` is None, `obj` is applied to the flattened array. Returns ------- out : ndarray A copy of `arr` with the elements specified by `obj` removed. Note that `delete` does not occur in-place. If `axis` is None, `out` is a flattened array. Examples -------- >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]]) >>> arr array([[ 1., 2., 3., 4.], [ 5., 6., 7., 8.], [ 9., 10., 11., 12.]]) >>> np.delete(arr, 1, 0) array([[ 1., 2., 3., 4.], [ 9., 10., 11., 12.]]) >>> np.delete(arr, slice(None, None, 2), 1) array([[ 2., 4.], [ 6., 8.], [10., 12.]]) >>> np.delete(arr, np.array([1,3,5]), None) array([ 1., 3., 5., 7., 8., 9., 10., 11., 12.]) >>> np.delete(arr, np.array([1,1,5]), None) array([ 1., 3., 4., 5., 7., 8., 9., 10., 11., 12.]) """ return _mx_nd_np.delete(arr, obj, axis=axis) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=False): # pylint: disable=too-many-arguments """ Compute the variance along the specified axis. Returns the variance of the array elements, a measure of the spread of a distribution. The variance is computed for the flattened array by default, otherwise over the specified axis. Parameters ---------- a : array_like Array containing numbers whose variance is desired. If `a` is not an array, a conversion is attempted. axis : None or int or tuple of ints, optional Axis or axes along which the variance is computed. The default is to compute the variance of the flattened array. .. versionadded:: 1.7.0 If this is a tuple of ints, a variance is performed over multiple axes, instead of a single axis or all the axes as before. dtype : data-type, optional Type to use in computing the variance. For arrays of integer type, the default is of your current default dtype, When npx.is_np_default_dtype() returns False, default dtype is float32, When npx.is_np_default_dtype() returns True, default dtype is float64. For arrays of float types it is the same as the array type. out : ndarray, optional Alternate output array in which to place the result. It must have the same shape as the expected output, but the type is cast if necessary. ddof : int, optional "Delta Degrees of Freedom": the divisor used in the calculation is ``N - ddof``, where ``N`` represents the number of elements. By default `ddof` is zero. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `var` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. Returns ------- variance : ndarray, see dtype parameter above If ``out=None``, returns a new array containing the variance; otherwise, a reference to the output array is returned. Examples -------- >>> a = np.array([[1, 2], [3, 4]]) >>> np.var(a) array(1.25) >>> np.var(a, axis=0) array([1., 1.]) >>> np.var(a, axis=1) array([0.25, 0.25]) >>> a = np.zeros((2, 512*512), dtype=np.float32) >>> a[0, :] = 1.0 >>> a[1, :] = 0.1 >>> np.var(a) array(0.2025) >>> np.var(a, dtype=np.float64) array(0.2025, dtype=float64) >>> ((1-0.55)**2 + (0.1-0.55)**2)/2 0.2025 """ return _mx_nd_np.var(a, axis=axis, dtype=dtype, ddof=ddof, keepdims=keepdims, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def indices(dimensions, dtype=None, ctx=None): """Return an array representing the indices of a grid. Compute an array where the subarrays contain index values 0,1,... varying only along the corresponding axis. Parameters ---------- dimensions : sequence of ints The shape of the grid. dtype : data-type, optional The desired data-type for the array. Default is `int64`. ctx : device context, optional Device context on which the memory is allocated. Default is `mxnet.context.current_context()`. Returns ------- grid : ndarray The array of grid indices, ``grid.shape = (len(dimensions),) + tuple(dimensions)``. Notes ----- The output shape is obtained by prepending the number of dimensions in front of the tuple of dimensions, i.e. if `dimensions` is a tuple ``(r0, ..., rN-1)`` of length ``N``, the output shape is ``(N,r0,...,rN-1)``. The subarrays ``grid[k]`` contains the N-D array of indices along the ``k-th`` axis. Explicitly:: grid[k,i0,i1,...,iN-1] = ik Examples -------- >>> grid = np.indices((2, 3)) >>> grid.shape (2, 2, 3) >>> grid[0] # row indices array([[0, 0, 0], [1, 1, 1]], dtype=int64) >>> grid[1] # column indices array([[0, 0, 0], [1, 1, 1]], dtype=int64) The indices can be used as an index into an array. >>> x = np.arange(20).reshape(5, 4) >>> row, col = np.indices((2, 3)) >>> x[row, col] array([[0., 1., 2.], [4., 5., 6.]]) Note that it would be more straightforward in the above example to extract the required elements directly with ``x[:2, :3]``. """ return _mx_nd_np.indices(dimensions=dimensions, dtype=dtype, ctx=ctx) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') @wrap_np_binary_func def copysign(x1, x2, out=None, **kwargs): r""" Change the sign of x1 to that of x2, element-wise. If `x2` is a scalar, its sign will be copied to all elements of `x1`. Parameters ---------- x1 : ndarray or scalar Values to change the sign of. x2 : ndarray or scalar The sign of `x2` is copied to `x1`. out : ndarray or None, optional A location into which the result is stored. It must be of the right shape and right type to hold the output. If not provided or `None`,a freshly-allocated array is returned. Returns ------- out : ndarray or scalar The values of `x1` with the sign of `x2`. This is a scalar if both `x1` and `x2` are scalars. Notes ------- This function differs from the original `numpy.copysign <https://docs.scipy.org/doc/numpy/reference/generated/numpy.copysign.html>`_ in the following aspects: - ``where`` param is not supported. Examples -------- >>> np.copysign(1.3, -1) -1.3 >>> 1/np.copysign(0, 1) inf >>> 1/np.copysign(0, -1) -inf >>> a = np.array([-1, 0, 1]) >>> np.copysign(a, -1.1) array([-1., -0., -1.]) >>> np.copysign(a, np.arange(3)-1) array([-1., 0., 1.]) """ return _mx_nd_np.copysign(x1, x2, out=out) @set_module('mxnet.numpy') def ravel(x, order='C'): r""" ravel(x) Return a contiguous flattened array. A 1-D array, containing the elements of the input, is returned. A copy is made only if needed. Parameters ---------- x : ndarray Input array. The elements in `x` are read in row-major, C-style order and packed as a 1-D array. order : `C`, optional Only support row-major, C-style order. Returns ------- y : ndarray y is an array of the same subtype as `x`, with shape ``(x.size,)``. Note that matrices are special cased for backward compatibility, if `x` is a matrix, then y is a 1-D ndarray. Notes ----- This function differs from the original numpy.arange in the following aspects: - Only support row-major, C-style order. Examples -------- It is equivalent to ``reshape(x, -1)``. >>> x = np.array([[1, 2, 3], [4, 5, 6]]) >>> print(np.ravel(x)) [1. 2. 3. 4. 5. 6.] >>> print(x.reshape(-1)) [1. 2. 3. 4. 5. 6.] >>> print(np.ravel(x.T)) [1. 4. 2. 5. 3. 6.] """ return _mx_nd_np.ravel(x, order) @set_module('mxnet.numpy') def unravel_index(indices, shape, order='C'): # pylint: disable=redefined-outer-name """ Converts a flat index or array of flat indices into a tuple of coordinate arrays. Parameters: ------------- indices : array_like An integer array whose elements are indices into the flattened version of an array of dimensions shape. Before version 1.6.0, this function accepted just one index value. shape : tuple of ints The shape of the array to use for unraveling indices. order : Only row-major is supported currently. Returns: ------------- unraveled_coords : ndarray Each row in the ndarray has the same shape as the indices array. Each column in the ndarray represents the unravelled index Examples: ------------- >>> np.unravel_index([22, 41, 37], (7,6)) [[3. 6. 6.] [4. 5. 1.]] >>> np.unravel_index(1621, (6,7,8,9)) [3, 1, 4, 1] """ return _mx_nd_np.unravel_index(indices, shape, order=order) @set_module('mxnet.numpy') def flatnonzero(a): r""" Return indices that are non-zero in the flattened version of a. This is equivalent to np.nonzero(np.ravel(a))[0]. Parameters ---------- a : array_like Input data. Returns ------- res : ndarray Output array, containing the indices of the elements of `a.ravel()` that are non-zero. See Also -------- nonzero : Return the indices of the non-zero elements of the input array. ravel : Return a 1-D array containing the elements of the input array. Examples -------- >>> x = np.arange(-2, 3) >>> x array([-2, -1, 0, 1, 2]) >>> np.flatnonzero(x) array([0, 1, 3, 4]) Use the indices of the non-zero elements as an index array to extract these elements: >>> x.ravel()[np.flatnonzero(x)] array([-2, -1, 1, 2]) """ return _mx_nd_np.flatnonzero(a) @set_module('mxnet.numpy') def diag_indices_from(arr): """ This returns a tuple of indices that can be used to access the main diagonal of an array a with a.ndim >= 2 dimensions and shape (n, n, ..., n). For a.ndim = 2 this is the usual diagonal, for a.ndim > 2 this is the set of indices to access a[i, i, ..., i] for i = [0..n-1]. Parameters: ------------- arr : ndarray Input array for acessing the main diagonal. All dimensions should have equal length. Return: ------------- diag: tuple of ndarray indices of the main diagonal. Examples: ------------- >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) >>> idx = np.diag_indices_from(a) >>> idx (array([0, 1, 2, 3]), array([0, 1, 2, 3])) >>> a[idx] = 100 >>> a array([[100, 1, 2, 3], [ 4, 100, 6, 7], [ 8, 9, 100, 11], [ 12, 13, 14, 100]]) """ return _mx_nd_np.diag_indices_from(arr) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def hanning(M, dtype=None, ctx=None): r"""Return the Hanning window. The Hanning window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- blackman, hamming Notes ----- The Hanning window is defined as .. math:: w(n) = 0.5 - 0.5cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The Hanning was named for Julius von Hann, an Austrian meteorologist. It is also known as the Cosine Bell. Some authors prefer that it be called a Hann window, to help avoid confusion with the very similar Hamming window. Most references to the Hanning window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 106-108. .. [3] Wikipedia, "Window function", http://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hanning(12) array([0. , 0.07937324, 0.29229254, 0.5711574 , 0.8274304 , 0.9797465 , 0.97974646, 0.82743025, 0.5711573 , 0.29229245, 0.07937312, 0. ]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.hanning(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("Hann window") Text(0.5, 1.0, 'Hann window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.hanning(M, dtype=dtype, ctx=ctx) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def hamming(M, dtype=None, ctx=None): r"""Return the hamming window. The hamming window is a taper formed by using a weighted cosine. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray, shape(M,) The window, with the maximum value normalized to one (the value one appears only if `M` is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- blackman, hanning Notes ----- The Hamming window is defined as .. math:: w(n) = 0.54 - 0.46cos\left(\frac{2\pi{n}}{M-1}\right) \qquad 0 \leq n \leq M-1 The Hamming was named for R. W. Hamming, an associate of J. W. Tukey and is described in Blackman and Tukey. It was recommended for smoothing the truncated autocovariance function in the time domain. Most references to the Hamming window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. References ---------- .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The University of Alberta Press, 1975, pp. 109-110. .. [3] Wikipedia, "Window function", https://en.wikipedia.org/wiki/Window_function .. [4] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, "Numerical Recipes", Cambridge University Press, 1986, page 425. Examples -------- >>> np.hamming(12) array([0.08000001, 0.15302339, 0.34890914, 0.6054648 , 0.841236 , 0.9813669 , 0.9813668 , 0.8412359 , 0.6054647 , 0.34890908, 0.15302327, 0.08000001]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.hamming(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("hamming window") Text(0.5, 1.0, 'hamming window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.hamming(M, dtype=dtype, ctx=ctx) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def blackman(M, dtype=None, ctx=None): r"""Return the Blackman window. The Blackman window is a taper formed by using the first three terms of a summation of cosines. It was designed to have close to the minimal leakage possible. It is close to optimal, only slightly worse than a Kaiser window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. ctx : Context, optional An optional device context (default is the current default context). Returns ------- out : ndarray The window, with the maximum value normalized to one (the value one appears only if the number of samples is odd). When npx.is_np_default_dtype() returns False, default dtype is float32; When npx.is_np_default_dtype() returns True, default dtype is float64. Note that you need select numpy.float32 or float64 in this operator. See Also -------- hamming, hanning Notes ----- The Blackman window is defined as .. math:: w(n) = 0.42 - 0.5 \cos(2\pi n/{M-1}) + 0.08 \cos(4\pi n/{M-1}) Most references to the Blackman window come from the signal processing literature, where it is used as one of many windowing functions for smoothing values. It is also known as an apodization (which means "removing the foot", i.e. smoothing discontinuities at the beginning and end of the sampled signal) or tapering function. It is known as a "near optimal" tapering function, almost as good (by some measures) as the kaiser window. References ---------- Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra, Dover Publications, New York. Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing. Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471. Examples -------- >>> np.blackman(12) array([-1.4901161e-08, 3.2606423e-02, 1.5990365e-01, 4.1439798e-01, 7.3604530e-01, 9.6704686e-01, 9.6704674e-01, 7.3604506e-01, 4.1439781e-01, 1.5990359e-01, 3.2606363e-02, -1.4901161e-08]) Plot the window and its frequency response: >>> import matplotlib.pyplot as plt >>> window = np.blackman(51) >>> plt.plot(window.asnumpy()) [<matplotlib.lines.Line2D object at 0x...>] >>> plt.title("blackman window") Text(0.5, 1.0, 'blackman window') >>> plt.ylabel("Amplitude") Text(0, 0.5, 'Amplitude') >>> plt.xlabel("Sample") Text(0.5, 0, 'Sample') >>> plt.show() """ return _mx_nd_np.blackman(M, dtype=dtype, ctx=ctx) @set_module('mxnet.numpy') def flip(m, axis=None, out=None): r""" flip(m, axis=None, out=None) Reverse the order of elements in an array along the given axis. The shape of the array is preserved, but the elements are reordered. Parameters ---------- m : ndarray or scalar Input array. axis : None or int or tuple of ints, optional Axis or axes along which to flip over. The default, axis=None, will flip over all of the axes of the input array. If axis is negative it counts from the last to the first axis. If axis is a tuple of ints, flipping is performed on all of the axes specified in the tuple. out : ndarray or scalar, optional Alternative output array in which to place the result. It must have the same shape and type as the expected output. Returns ------- out : ndarray or scalar A view of `m` with the entries of axis reversed. Since a view is returned, this operation is done in constant time. Examples -------- >>> A = np.arange(8).reshape((2,2,2)) >>> A array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> np.flip(A, 0) array([[[4, 5], [6, 7]], [[0, 1], [2, 3]]]) >>> np.flip(A, 1) array([[[2, 3], [0, 1]], [[6, 7], [4, 5]]]) >>> np.flip(A) array([[[7, 6], [5, 4]], [[3, 2], [1, 0]]]) >>> np.flip(A, (0, 2)) array([[[5, 4], [7, 6]], [[1, 0], [3, 2]]]) """ return _mx_nd_np.flip(m, axis, out=out) @set_module('mxnet.numpy') def flipud(m): r""" flipud(*args, **kwargs) Flip array in the up/down direction. Flip the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array. Returns ------- out : array_like A view of `m` with the rows reversed. Since a view is returned, this operation is :math:`\mathcal O(1)`. See Also -------- fliplr : Flip array in the left/right direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to ``m[::-1,...]``. Does not require the array to be two-dimensional. Examples -------- >>> A = np.diag(np.array([1.0, 2, 3])) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.flipud(A) array([[0., 0., 3.], [0., 2., 0.], [1., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.flipud(A) == A[::-1,...]) array(True) >>> np.flipud(np.array([1,2])) array([2., 1.]) """ return flip(m, 0) @set_module('mxnet.numpy') def fliplr(m): r""" fliplr(*args, **kwargs) Flip array in the left/right direction. Flip the entries in each row in the left/right direction. Columns are preserved, but appear in a different order than before. Parameters ---------- m : array_like Input array, must be at least 2-D. Returns ------- f : ndarray A view of `m` with the columns reversed. Since a view is returned, this operation is :math:`\mathcal O(1)`. See Also -------- flipud : Flip array in the up/down direction. rot90 : Rotate array counterclockwise. Notes ----- Equivalent to m[:,::-1]. Requires the array to be at least 2-D. Examples -------- >>> A = np.diag([1.,2.,3.]) >>> A array([[1., 0., 0.], [0., 2., 0.], [0., 0., 3.]]) >>> np.fliplr(A) array([[0., 0., 1.], [0., 2., 0.], [3., 0., 0.]]) >>> A = np.random.randn(2,3,5) >>> np.all(np.fliplr(A) == A[:,::-1,...]) array(True) """ return flip(m, 1) @set_module('mxnet.numpy') def around(x, decimals=0, out=None, **kwargs): r""" around(x, decimals=0, out=None) Evenly round to the given number of decimals. Parameters ---------- x : ndarray or scalar Input data. decimals : int, optional Number of decimal places to round to (default: 0). If decimals is negative, it specifies the number of positions to the left of the decimal point. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and type as the expected output. Returns ------- rounded_array : ndarray or scalar An array of the same type as `x`, containing the rounded values. A reference to the result is returned. Notes ----- For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. This function differs from the original numpy.prod in the following aspects: - Cannot cast type automatically. Dtype of `out` must be same as the expected one. - Cannot support complex-valued number. Examples -------- >>> np.around([0.37, 1.64]) array([ 0., 2.]) >>> np.around([0.37, 1.64], decimals=1) array([ 0.4, 1.6]) >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value array([ 0., 2., 2., 4., 4.]) >>> np.around([1, 2, 3, 11], decimals=1) # ndarray of ints is returned array([ 1, 2, 3, 11]) >>> np.around([1, 2, 3, 11], decimals=-1) array([ 0, 0, 0, 10]) """ return _mx_nd_np.around(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') def round(x, decimals=0, out=None, **kwargs): r""" round(a, decimals=0, out=None) Round an array to the given number of decimals. See Also -------- around : equivalent function; see for details. """ return _mx_nd_np.round(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') def round_(x, decimals=0, out=None, **kwargs): r""" round_(a, decimals=0, out=None) Round an array to the given number of decimals. See Also -------- around : equivalent function; see for details. """ return _mx_nd_np.round_(x, decimals, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_binary_func def arctan2(x1, x2, out=None, **kwargs): r""" Element-wise arc tangent of ``x1/x2`` choosing the quadrant correctly. The quadrant (i.e., branch) is chosen so that ``arctan2(x1, x2)`` is the signed angle in radians between the ray ending at the origin and passing through the point (1,0), and the ray ending at the origin and passing through the point (`x2`, `x1`). (Note the role reversal: the "`y`-coordinate" is the first function parameter, the "`x`-coordinate" is the second.) By IEEE convention, this function is defined for `x2` = +/-0 and for either or both of `x1` and `x2` = +/-inf (see Notes for specific values). This function is not defined for complex-valued arguments; for the so-called argument of complex values, use `angle`. Parameters ---------- x1 : ndarray or scalar `y`-coordinates. x2 : ndarray or scalar `x`-coordinates. `x2` must be broadcastable to match the shape of `x1` or vice versa. out : ndarray or None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Array of angles in radians, in the range ``[-pi, pi]``. This is a scalar if `x1` and `x2` are scalars. Notes ----- *arctan2* is identical to the `atan2` function of the underlying C library. The following special values are defined in the C standard: [1]_ ====== ====== ================ `x1` `x2` `arctan2(x1,x2)` ====== ====== ================ +/- 0 +0 +/- 0 +/- 0 -0 +/- pi > 0 +/-inf +0 / +pi < 0 +/-inf -0 / -pi +/-inf +inf +/- (pi/4) +/-inf -inf +/- (3*pi/4) ====== ====== ================ Note that +0 and -0 are distinct floating point numbers, as are +inf and -inf. This function differs from the original numpy.arange in the following aspects: - Only support float16, float32 and float64. References ---------- .. [1] ISO/IEC standard 9899:1999, "Programming language C." Examples -------- Consider four points in different quadrants: >>> x = np.array([-1, +1, +1, -1]) >>> y = np.array([-1, -1, +1, +1]) >>> np.arctan2(y, x) * 180 / np.pi array([-135., -45., 45., 135.]) Note the order of the parameters. `arctan2` is defined also when `x2` = 0 and at several other special points, obtaining values in the range ``[-pi, pi]``: >>> x = np.array([1, -1]) >>> y = np.array([0, 0]) >>> np.arctan2(x, y) array([ 1.5707964, -1.5707964]) """ return _mx_nd_np.arctan2(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def hypot(x1, x2, out=None, **kwargs): r""" Given the "legs" of a right triangle, return its hypotenuse. Equivalent to ``sqrt(x1**2 + x2**2)``, element-wise. If `x1` or `x2` is scalar_like (i.e., unambiguously cast-able to a scalar type), it is broadcast for use with each element of the other argument. Parameters ---------- x1, x2 : array_like Leg of the triangle(s). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- z : ndarray The hypotenuse of the triangle(s). This is a scalar if both `x1` and `x2` are scalars. Notes ----- This function differs from the original numpy.arange in the following aspects: - Only support float16, float32 and float64. Examples -------- >>> np.hypot(3*np.ones((3, 3)), 4*np.ones((3, 3))) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) Example showing broadcast of scalar_like argument: >>> np.hypot(3*np.ones((3, 3)), [4]) array([[ 5., 5., 5.], [ 5., 5., 5.], [ 5., 5., 5.]]) """ return _mx_nd_np.hypot(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_and(x1, x2, out=None, **kwargs): r""" Compute the bit-wise XOR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_and(13, 17) 1 >>> np.bitwise_and(14, 13) 12 >>> np.bitwise_and(np.array([14,3], dtype='int32'), 13) array([26, 5], dtype=int32) >>> np.bitwise_and(np.array([11,7], dtype='int32'), np.array([4,25], dtype='int32')) array([0, 1], dtype=int32) >>> np.bitwise_and(np.array([2,5,255], dtype='int32'), np.array([3,14,16], dtype='int32')) array([ 2, 4, 16], dtype=int32) >>> np.bitwise_and(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([False, True]) """ return _mx_nd_np.bitwise_and(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_xor(x1, x2, out=None, **kwargs): r""" Compute the bit-wise XOR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_xor(13, 17) 28 >>> np.bitwise_xor(31, 5) 26 >>> np.bitwise_xor(np.array([31,3], dtype=np.int32), 5) array([26, 6], dtype=int32) >>> np.bitwise_xor(np.array([31,3], dtype='int32'), np.array([5,6], dtype='int32')) array([26, 5], dtype=int32) >>> np.bitwise_xor(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, False]) """ return _mx_nd_np.bitwise_xor(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def bitwise_or(x1, x2, out=None, **kwargs): r""" Compute the bit-wise OR of two arrays element-wise. Parameters ---------- x1, x2 : ndarray or scalar Only integer and boolean types are handled. If x1.shape != x2.shape, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or None, a freshly-allocated array is returned. Returns ------- out : ndarray Result. Examples -------- >>> np.bitwise_or(13, 17) 29 >>> np.bitwise_or(31, 5) 31 >>> np.bitwise_or(np.array([31,3], dtype=np.int32), 5) array([31, 7]) >>> np.bitwise_or(np.array([31,3], dtype='int32'), np.array([5,6], dtype='int32')) array([31, 7]) >>> np.bitwise_or(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, True]) """ return _mx_nd_np.bitwise_or(x1, x2, out=out) @set_module('mxnet.numpy') @wrap_np_binary_func def ldexp(x1, x2, out=None, **kwargs): """ Returns x1 * 2**x2, element-wise. The mantissas `x1` and twos exponents `x2` are used to construct floating point numbers ``x1 * 2**x2``. Parameters ---------- x1 : ndarray or scalar Array of multipliers. x2 : ndarray or scalar, int Array of twos exponents. out : ndarray, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not, a freshly-allocated array is returned. Returns ------- y : ndarray or scalar The result of ``x1 * 2**x2``. This is a scalar if both `x1` and `x2` are scalars. Notes ----- Complex dtypes are not supported, they will raise a TypeError. Different from numpy, we allow x2 to be float besides int. `ldexp` is useful as the inverse of `frexp`, if used by itself it is more clear to simply use the expression ``x1 * 2**x2``. Examples -------- >>> np.ldexp(5, np.arange(4)) array([ 5., 10., 20., 40.]) """ return _mx_nd_np.ldexp(x1, x2, out) @set_module('mxnet.numpy') def vdot(a, b): r""" Return the dot product of two vectors. Note that `vdot` handles multidimensional arrays differently than `dot`: it does *not* perform a matrix product, but flattens input arguments to 1-D vectors first. Consequently, it should only be used for vectors. Parameters ---------- a : ndarray First argument to the dot product. b : ndarray Second argument to the dot product. Returns ------- output : ndarray Dot product of `a` and `b`. See Also -------- dot : Return the dot product without using the complex conjugate of the first argument. Examples -------- Note that higher-dimensional arrays are flattened! >>> a = np.array([[1, 4], [5, 6]]) >>> b = np.array([[4, 1], [2, 2]]) >>> np.vdot(a, b) array(30.) >>> np.vdot(b, a) array(30.) >>> 1*4 + 4*1 + 5*2 + 6*2 30 """ return tensordot(a.flatten(), b.flatten(), 1) @set_module('mxnet.numpy') def inner(a, b): r"""Inner product of two arrays. Ordinary inner product of vectors for 1-D arrays (without complex conjugation), in higher dimensions a sum product over the last axes. Parameters ---------- a, b : ndarray If `a` and `b` are nonscalar, their last dimensions must match. Returns ------- out : ndarray `out.shape = a.shape[:-1] + b.shape[:-1]` Raises ------ ValueError If the last dimension of `a` and `b` has different size. See Also -------- tensordot : Sum products over arbitrary axes. dot : Generalised matrix product, using second last dimension of `b`. einsum : Einstein summation convention. Notes ----- For vectors (1-D arrays) it computes the ordinary inner-product:: np.inner(a, b) = sum(a[:]*b[:]) More generally, if `ndim(a) = r > 0` and `ndim(b) = s > 0`:: np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1)) or explicitly:: np.inner(a, b)[i0,...,ir-1,j0,...,js-1] = sum(a[i0,...,ir-1,:]*b[j0,...,js-1,:]) In addition `a` or `b` may be scalars, in which case:: np.inner(a,b) = a*b Examples -------- Ordinary inner product for vectors: >>> a = np.array([1,2,3]) >>> b = np.array([0,1,0]) >>> np.inner(a, b) array(2.) A multidimensional example: >>> a = np.arange(24).reshape((2,3,4)) >>> b = np.arange(4) >>> np.inner(a, b) array([[ 14., 38., 62.], [ 86., 110., 134.]]) """ return tensordot(a, b, [-1, -1]) @set_module('mxnet.numpy') def outer(a, b): r"""Compute the outer product of two vectors. Given two vectors, ``a = [a0, a1, ..., aM]`` and ``b = [b0, b1, ..., bN]``, the outer product [1]_ is:: [[a0*b0 a0*b1 ... a0*bN ] [a1*b0 . [ ... . [aM*b0 aM*bN ]] Parameters ---------- a : (M,) ndarray First input vector. Input is flattened if not already 1-dimensional. b : (N,) ndarray Second input vector. Input is flattened if not already 1-dimensional. Returns ------- out : (M, N) ndarray ``out[i, j] = a[i] * b[j]`` See also -------- inner einsum : ``einsum('i,j->ij', a.ravel(), b.ravel())`` is the equivalent. ufunc.outer : A generalization to N dimensions and other operations. ``np.multiply.outer(a.ravel(), b.ravel())`` is the equivalent. References ---------- .. [1] : G. H. Golub and C. F. Van Loan, *Matrix Computations*, 3rd ed., Baltimore, MD, Johns Hopkins University Press, 1996, pg. 8. Examples -------- Make a (*very* coarse) grid for computing a Mandelbrot set: >>> rl = np.outer(np.ones((5,)), np.linspace(-2, 2, 5)) >>> rl array([[-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.], [-2., -1., 0., 1., 2.]]) """ return tensordot(a.flatten(), b.flatten(), 0) @set_module('mxnet.numpy') def cross(a, b, axisa=-1, axisb=-1, axisc=-1, axis=None): # pylint: disable=too-many-arguments """ Return the cross product of two (arrays of) vectors. The cross product of `a` and `b` in :math:`R^3` is a vector perpendicular to both `a` and `b`. If `a` and `b` are arrays of vectors, the vectors are defined by the last axis of `a` and `b` by default, and these axes can have dimensions 2 or 3. Where the dimension of either `a` or `b` is 2, the third component of the input vector is assumed to be zero and the cross product calculated accordingly. In cases where both input vectors have dimension 2, the z-component of the cross product is returned. Parameters ---------- a : ndarray Components of the first vector(s). b : ndarray Components of the second vector(s). axisa : int, optional Axis of `a` that defines the vector(s). By default, the last axis. axisb : int, optional Axis of `b` that defines the vector(s). By default, the last axis. axisc : int, optional Axis of `c` containing the cross product vector(s). Ignored if both input vectors have dimension 2, as the return is scalar. By default, the last axis. axis : int, optional If defined, the axis of `a`, `b` and `c` that defines the vector(s) and cross product(s). Overrides `axisa`, `axisb` and `axisc`. Returns ------- c : ndarray Vector cross product(s). Raises ------ ValueError When the dimension of the vector(s) in `a` and/or `b` does not equal 2 or 3. Notes ----- Supports full broadcasting of the inputs. Examples -------- Vector cross-product. >>> x = np.array([1., 2., 3.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([-3., 6., -3.]) One vector with dimension 2. >>> x = np.array([1., 2.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([12., -6., -3.]) Equivalently: >>> x = np.array([1., 2., 0.]) >>> y = np.array([4., 5., 6.]) >>> np.cross(x, y) array([12., -6., -3.]) Both vectors with dimension 2. >>> x = np.array([1., 2.]) >>> y = np.array([4., 5.]) >>> np.cross(x, y) array(-3.) Multiple vector cross-products. Note that the direction of the cross product vector is defined by the `right-hand rule`. >>> x = np.array([[1., 2., 3.], [4., 5., 6.]]) >>> y = np.array([[4., 5., 6.], [1., 2., 3.]]) >>> np.cross(x, y) array([[-3., 6., -3.], [ 3., -6., 3.]]) The orientation of `c` can be changed using the `axisc` keyword. >>> np.cross(x, y, axisc=0) array([[-3., 3.], [ 6., -6.], [-3., 3.]]) Change the vector definition of `x` and `y` using `axisa` and `axisb`. >>> x = np.array([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]]) >>> y = np.array([[7., 8., 9.], [4., 5., 6.], [1., 2., 3.]]) >>> np.cross(x, y) array([[ -6., 12., -6.], [ 0., 0., 0.], [ 6., -12., 6.]]) >>> np.cross(x, y, axisa=0, axisb=0) array([[-24., 48., -24.], [-30., 60., -30.], [-36., 72., -36.]]) """ return _mx_nd_np.cross(a, b, axisa=axisa, axisb=axisb, axisc=axisc, axis=axis) @set_module('mxnet.numpy') def kron(a, b): r""" Kronecker product of two arrays. Computes the Kronecker product, a composite array made of blocks of the second array scaled by the first. Parameters ---------- a, b : ndarray Returns ------- out : ndarray See Also -------- outer : The outer product Notes ----- The function assumes that the number of dimensions of `a` and `b` are the same, if necessary prepending the smallest with ones. If `a.shape = (r0,r1,..,rN)` and `b.shape = (s0,s1,...,sN)`, the Kronecker product has shape `(r0*s0, r1*s1, ..., rN*SN)`. The elements are products of elements from `a` and `b`, organized explicitly by:: kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN] where:: kt = it * st + jt, t = 0,...,N In the common 2-D case (N=1), the block structure can be visualized:: [[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ], [ ... ... ], [ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]] Examples -------- >>> np.kron([1,10,100], [5,6,7]) array([ 5, 6, 7, 50, 60, 70, 500, 600, 700]) >>> np.kron([5,6,7], [1,10,100]) array([ 5, 50, 500, 6, 60, 600, 7, 70, 700]) """ return _mx_nd_np.kron(a, b) @set_module('mxnet.numpy') def equal(x1, x2, out=None): """ Return (x1 == x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- not_equal, greater_equal, less_equal, greater, less Examples -------- >>> np.equal(np.ones(2, 1)), np.zeros(1, 3)) array([[False, False, False], [False, False, False]]) >>> np.equal(1, np.ones(1)) array([ True]) """ return _mx_nd_np.equal(x1, x2, out) @set_module('mxnet.numpy') def not_equal(x1, x2, out=None): """ Return (x1 != x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.not_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.not_equal(1, np.ones(1)) array([False]) """ return _mx_nd_np.not_equal(x1, x2, out) @set_module('mxnet.numpy') def greater(x1, x2, out=None): """ Return the truth value of (x1 > x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.greater(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.greater(1, np.ones(1)) array([False]) """ return _mx_nd_np.greater(x1, x2, out) @set_module('mxnet.numpy') def less(x1, x2, out=None): """ Return the truth value of (x1 < x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.less(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.less(1, np.ones(1)) array([False]) """ return _mx_nd_np.less(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_and(x1, x2, out=None): r""" Compute the truth value of x1 AND x2 element-wise. Parameters ---------- x1, x2 : array_like Logical AND is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical AND operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_or, logical_not, logical_xor, bitwise_or Examples -------- >>> np.logical_and(True, False) False >>> np.logical_and(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([False, True]) """ return _mx_nd_np.logical_and(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_or(x1, x2, out=None): r""" Compute the truth value of x1 OR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical OR is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical OR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_and, logical_not, logical_xor, bitwise_or Examples -------- >>> np.logical_or(True, False) True >>> np.logical_or(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([True, True]) """ return _mx_nd_np.logical_or(x1, x2, out) @set_module('mxnet.numpy') @wrap_np_binary_func def logical_xor(x1, x2, out=None): r""" Compute the truth value of x1 XOR x2 element-wise. Parameters ---------- x1, x2 : array_like Logical XOR is applied to the elements of `x1` and `x2`. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. A tuple (possible only as a keyword argument) must have length equal to the number of outputs. Returns ------- y : ndarray or bool Boolean result of the logical XOR operation applied to the elements of `x1` and `x2`; the shape is determined by broadcasting. This is a scalar if both `x1` and `x2` are scalars. See Also -------- logical_and, logical_not, logical_or, bitwise_or Examples -------- >>> np.logical_xor(True, False) True >>> np.logical_xor(np.array([True, True], dtype='bool'), np.array([False, True], dtype='bool')) array([ True, False]) """ return _mx_nd_np.logical_xor(x1, x2, out) @set_module('mxnet.numpy') def greater_equal(x1, x2, out=None): """ Return the truth value of (x1 >= x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.greater_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[ True, True, True], [ True, True, True]]) >>> np.greater_equal(1, np.ones(1)) array([True]) """ return _mx_nd_np.greater_equal(x1, x2, out) @set_module('mxnet.numpy') def less_equal(x1, x2, out=None): """ Return the truth value of (x1 <= x2) element-wise. Parameters ---------- x1, x2 : ndarrays or scalars Input arrays. If ``x1.shape != x2.shape``, they must be broadcastable to a common shape (which becomes the shape of the output). out : ndarray, None, or tuple of ndarray and None, optional A location into which the result is stored. If provided, it must have a shape that the inputs broadcast to. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray or scalar Output array of type bool, element-wise comparison of `x1` and `x2`. This is a scalar if both `x1` and `x2` are scalars. See Also -------- equal, greater, greater_equal, less, less_equal Examples -------- >>> np.less_equal(np.ones(2, 1)), np.zeros(1, 3)) array([[False, False, False], [False, False, False]]) >>> np.less_equal(1, np.ones(1)) array([True]) """ return _mx_nd_np.less_equal(x1, x2, out) @set_module('mxnet.numpy') def roll(a, shift, axis=None): """ Roll array elements along a given axis. Elements that roll beyond the last position are re-introduced at the first. Parameters ---------- a : ndarray Input array. shift : int or tuple of ints The number of places by which elements are shifted. If a tuple, then `axis` must be a tuple of the same size, and each of the given axes is shifted by the corresponding number. If an int while `axis` is a tuple of ints, then the same value is used for all given axes. axis : int or tuple of ints, optional Axis or axes along which elements are shifted. By default, the array is flattened before shifting, after which the original shape is restored. Returns ------- res : ndarray Output array, with the same shape as `a`. Notes ----- Supports rolling over multiple dimensions simultaneously. Examples -------- >>> x = np.arange(10) >>> np.roll(x, 2) array([8., 9., 0., 1., 2., 3., 4., 5., 6., 7.]) >>> np.roll(x, -2) array([2., 3., 4., 5., 6., 7., 8., 9., 0., 1.]) >>> x2 = np.reshape(x, (2,5)) >>> x2 array([[0., 1., 2., 3., 4.], [5., 6., 7., 8., 9.]]) >>> np.roll(x2, 1) array([[9., 0., 1., 2., 3.], [4., 5., 6., 7., 8.]]) >>> np.roll(x2, -1) array([[1., 2., 3., 4., 5.], [6., 7., 8., 9., 0.]]) >>> np.roll(x2, 1, axis=0) array([[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]) >>> np.roll(x2, -1, axis=0) array([[5., 6., 7., 8., 9.], [0., 1., 2., 3., 4.]]) >>> np.roll(x2, 1, axis=1) array([[4., 0., 1., 2., 3.], [9., 5., 6., 7., 8.]]) >>> np.roll(x2, -1, axis=1) array([[1., 2., 3., 4., 0.], [6., 7., 8., 9., 5.]]) """ return _mx_nd_np.roll(a, shift, axis=axis) @set_module('mxnet.numpy') def rot90(m, k=1, axes=(0, 1)): """ Rotate an array by 90 degrees in the plane specified by axes. Rotation direction is from the first towards the second axis. Parameters ---------- m : ndarray Array of two or more dimensions. k : integer Number of times the array is rotated by 90 degrees. axes: (2,) array_like The array is rotated in the plane defined by the axes. Axes must be different. Returns ------- y : ndarray A rotated view of `m`. Notes ----- rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1)) rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1)) Examples -------- >>> m = np.array([[1,2],[3,4]], 'int') >>> m array([[1, 2], [3, 4]], dtype=int64) >>> np.rot90(m) array([[2, 4], [1, 3]], dtype=int64) >>> np.rot90(m, 2) array([[4, 3], [2, 1]], dtype=int64) >>> m = np.arange(8).reshape((2,2,2)) >>> np.rot90(m, 1, (1,2)) array([[[1., 3.], [0., 2.]], [[5., 7.], [4., 6.]]]) """ return _mx_nd_np.rot90(m, k=k, axes=axes) @set_module('mxnet.numpy') def hsplit(ary, indices_or_sections): """Split an array into multiple sub-arrays horizontally (column-wise). This is equivalent to ``split`` with ``axis=0`` if ``ary`` has one dimension, and otherwise that with ``axis=1``. Parameters ---------- ary : ndarray Array to be divided into sub-arrays. indices_or_sections : int, list of ints or tuple of ints. If `indices_or_sections` is an integer, N, the array will be divided into N equal arrays along `axis`. If such a split is not possible, an error is raised. If `indices_or_sections` is a list of sorted integers, the entries indicate where along `axis` the array is split. If an index exceeds the dimension of the array along `axis`, it will raises errors. so index must less than or euqal to the dimension of the array along axis. Returns ------- sub-arrays : list of ndarrays A list of sub-arrays. Notes ------ - If `indices_or_sections` is given as an integer, but a split does not result in equal division.It will raises ValueErrors. - If indices_or_sections is an integer, and the number is 1, it will raises an error. Because single output from split is not supported yet... See Also -------- split : Split an array into multiple sub-arrays of equal size. Examples -------- >>> x = np.arange(16.0).reshape(4, 4) >>> x array([[ 0., 1., 2., 3.], [ 4., 5., 6., 7.], [ 8., 9., 10., 11.], [12., 13., 14., 15.]]) >>> np.hsplit(x, 2) [array([[ 0., 1.], [ 4., 5.], [ 8., 9.], [12., 13.]]), array([[ 2., 3.], [ 6., 7.], [10., 11.], [14., 15.]])] >>> np.hsplit(x, [3, 6]) [array([[ 0., 1., 2.], [ 4., 5., 6.], [ 8., 9., 10.], [12., 13., 14.]]), array([[ 3.], [ 7.], [11.], [15.]]), array([], shape=(4, 0), dtype=float32)] With a higher dimensional array the split is still along the second axis. >>> x = np.arange(8.0).reshape(2, 2, 2) >>> x array([[[ 0., 1.], [ 2., 3.]], [[ 4., 5.], [ 6., 7.]]]) >>> np.hsplit(x, 2) [array([[[ 0., 1.]], [[ 4., 5.]]]), array([[[ 2., 3.]], [[ 6., 7.]]])] If ``ary`` has one dimension, 'axis' = 0. >>> x = np.arange(4) array([0., 1., 2., 3.]) >>> np.hsplit(x, 2) [array([0., 1.]), array([2., 3.])] If you want to produce an empty sub-array, you can see an example. >>> np.hsplit(x, [2, 2]) [array([0., 1.]), array([], dtype=float32), array([2., 3.])] """ return _mx_nd_np.hsplit(ary, indices_or_sections) @set_module('mxnet.numpy') def einsum(*operands, **kwargs): r""" einsum(subscripts, *operands, out=None, optimize=False) Evaluates the Einstein summation convention on the operands. Using the Einstein summation convention, many common multi-dimensional, linear algebraic array operations can be represented in a simple fashion. In *implicit* mode `einsum` computes these values. In *explicit* mode, `einsum` provides further flexibility to compute other array operations that might not be considered classical Einstein summation operations, by disabling, or forcing summation over specified subscript labels. See the notes and examples for clarification. Parameters ---------- subscripts : str Specifies the subscripts for summation as comma separated list of subscript labels. An implicit (classical Einstein summation) calculation is performed unless the explicit indicator '->' is included as well as subscript labels of the precise output form. operands : list of ndarray These are the arrays for the operation. out : ndarray, optional If provided, the calculation is done into this array. optimize : {False, True}, optional Controls if intermediate optimization should occur. No optimization will occur if False. Defaults to False. Returns ------- output : ndarray The calculation based on the Einstein summation convention. Notes ----- The Einstein summation convention can be used to compute many multi-dimensional, linear algebraic array operations. `einsum` provides a succinct way of representing these. A non-exhaustive list of these operations, which can be computed by `einsum`, is shown below along with examples: * Trace of an array, :py:func:`np.trace`. * Return a diagonal, :py:func:`np.diag`. * Array axis summations, :py:func:`np.sum`. * Transpositions and permutations, :py:func:`np.transpose`. * Matrix multiplication and dot product, :py:func:`np.matmul` :py:func:`np.dot`. * Vector inner and outer products, :py:func:`np.inner` :py:func:`np.outer`. * Broadcasting, element-wise and scalar multiplication, :py:func:`np.multiply`. * Tensor contractions, :py:func:`np.tensordot`. The subscripts string is a comma-separated list of subscript labels, where each label refers to a dimension of the corresponding operand. Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)`` is equivalent to :py:func:`np.inner(a,b) <np.inner>`. If a label appears only once, it is not summed, so ``np.einsum('i', a)`` produces a view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)`` describes traditional matrix multiplication and is equivalent to :py:func:`np.matmul(a,b) <np.matmul>`. Repeated subscript labels in one operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent to :py:func:`np.trace(a) <np.trace>`. In *implicit mode*, the chosen subscripts are important since the axes of the output are reordered alphabetically. This means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while ``np.einsum('ji', a)`` takes its transpose. Additionally, ``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while, ``np.einsum('ij,jh', a, b)`` returns the transpose of the multiplication since subscript 'h' precedes subscript 'i'. In *explicit mode* the output can be directly controlled by specifying output subscript labels. This requires the identifier '->' as well as the list of output subscript labels. This feature increases the flexibility of the function since summing can be disabled or forced when required. The call ``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <np.sum>`, and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <np.diag>`. The difference is that `einsum` does not allow broadcasting by default. Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the order of the output subscript labels and therefore returns matrix multiplication, unlike the example above in implicit mode. To enable and control broadcasting, use an ellipsis. Default NumPy-style broadcasting is done by adding an ellipsis to the left of each term, like ``np.einsum('...ii->...i', a)``. To take the trace along the first and last axes, you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix product with the left-most indices instead of rightmost, one can do ``np.einsum('ij...,jk...->ik...', a, b)``. When there is only one operand, no axes are summed, and no output parameter is provided, a view into the operand is returned instead of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)`` produces a view. The ``optimize`` argument which will optimize the contraction order of an einsum expression. For a contraction with three or more operands this can greatly increase the computational efficiency at the cost of a larger memory footprint during computation. Typically a 'greedy' algorithm is applied which empirical tests have shown returns the optimal path in the majority of cases. 'optimal' is not supported for now. This function differs from the original `numpy.einsum <https://docs.scipy.org/doc/numpy/reference/generated/numpy.einsum.html>`_ in the following way(s): - Does not support 'optimal' strategy - Does not support the alternative subscript like `einsum(op0, sublist0, op1, sublist1, ..., [sublistout])` - Does not produce view in any cases Examples -------- >>> a = np.arange(25).reshape(5,5) >>> b = np.arange(5) >>> c = np.arange(6).reshape(2,3) Trace of a matrix: >>> np.einsum('ii', a) array(60.) Extract the diagonal (requires explicit form): >>> np.einsum('ii->i', a) array([ 0., 6., 12., 18., 24.]) Sum over an axis (requires explicit form): >>> np.einsum('ij->i', a) array([ 10., 35., 60., 85., 110.]) >>> np.sum(a, axis=1) array([ 10., 35., 60., 85., 110.]) For higher dimensional arrays summing a single axis can be done with ellipsis: >>> np.einsum('...j->...', a) array([ 10., 35., 60., 85., 110.]) Compute a matrix transpose, or reorder any number of axes: >>> np.einsum('ji', c) array([[0., 3.], [1., 4.], [2., 5.]]) >>> np.einsum('ij->ji', c) array([[0., 3.], [1., 4.], [2., 5.]]) >>> np.transpose(c) array([[0., 3.], [1., 4.], [2., 5.]]) Vector inner products: >>> np.einsum('i,i', b, b) array(30.) Matrix vector multiplication: >>> np.einsum('ij,j', a, b) array([ 30., 80., 130., 180., 230.]) >>> np.dot(a, b) array([ 30., 80., 130., 180., 230.]) >>> np.einsum('...j,j', a, b) array([ 30., 80., 130., 180., 230.]) Broadcasting and scalar multiplication: >>> np.einsum('..., ...', np.array(3), c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) >>> np.einsum(',ij', np.array(3), c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) >>> np.multiply(3, c) array([[ 0., 3., 6.], [ 9., 12., 15.]]) Vector outer product: >>> np.einsum('i,j', np.arange(2)+1, b) array([[0., 1., 2., 3., 4.], [0., 2., 4., 6., 8.]]) Tensor contraction: >>> a = np.arange(60.).reshape(3,4,5) >>> b = np.arange(24.).reshape(4,3,2) >>> np.einsum('ijk,jil->kl', a, b) array([[4400., 4730.], [4532., 4874.], [4664., 5018.], [4796., 5162.], [4928., 5306.]]) Example of ellipsis use: >>> a = np.arange(6).reshape((3,2)) >>> b = np.arange(12).reshape((4,3)) >>> np.einsum('ki,jk->ij', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) >>> np.einsum('ki,...k->i...', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) >>> np.einsum('k...,jk', a, b) array([[10., 28., 46., 64.], [13., 40., 67., 94.]]) Chained array operations. For more complicated contractions, speed ups might be achieved by repeatedly computing a 'greedy' path. Performance improvements can be particularly significant with larger arrays: >>> a = np.ones(64).reshape(2,4,8) # Basic `einsum`: ~42.22ms (benchmarked on 3.4GHz Intel Xeon.) >>> for iteration in range(500): ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a) # Greedy `einsum` (faster optimal path approximation): ~0.117ms >>> for iteration in range(500): ... np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=True) """ return _mx_nd_np.einsum(*operands, **kwargs) @set_module('mxnet.numpy') def insert(arr, obj, values, axis=None): """ Insert values along the given axis before the given indices. Parameters ---------- arr : ndarray Input array. obj : int, slice or ndarray of int64 Object that defines the index or indices before which `values` is inserted. Support for multiple insertions when `obj` is a single scalar or a sequence with one element (only support int32 and int64 element). values : ndarray Values to insert into `arr`. If the type of values is different from that of arr, values is converted to the type of arr. axis : int, optional Axis along which to insert `values`. If `axis` is None then `arr` is flattened first. Returns ------- out : ndarray A copy of `arr` with `values` inserted. Note that `insert` does not occur in-place: a new array is returned. If `axis` is None, `out` is a flattened array. Notes ----- - Note that for higher dimensional inserts `obj=0` behaves very different from `obj=[0]` just like `arr[:,0,:] = values` is different from `arr[:,[0],:] = values`. - If obj is a ndarray, it's dtype only supports int64 Examples -------- >>> a = np.array([[1, 1], [2, 2], [3, 3]]) >>> a array([[1., 1.], [2., 2.], [3., 3.]]) >>> np.insert(a, 1, np.array(5)) array([1., 5., 1., 2., 2., 3., 3.]) >>> np.insert(a, 1, np.array(5), axis=1) array([[1., 5., 1.], [2., 5., 2.], [3., 5., 3.]]) Difference between sequence and scalars: >>> np.insert(a, np.array([1], dtype=np.int64), np.array([[1],[2],[3]]), axis=1) array([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]) >>> np.insert(a, 1, np.array([1, 2, 3]), axis=1) array([[1., 1., 1.], [2., 2., 2.], [3., 3., 3.]]) >>> b = a.flatten() >>> b array([1., 1., 2., 2., 3., 3.]) >>> np.insert(b, np.array([2, 2], dtype=np.int64), np.array([5, 6])) array([1., 1., 5., 6., 2., 2., 3., 3.]) >>> np.insert(b, slice(2, 4), np.array([5, 6])) array([1., 1., 5., 2., 6., 2., 3., 3.]) # type casting >>> np.insert(b.astype(np.int32), np.array([2, 2],dtype='int64'), np.array([7.13, False])) array([1, 1, 7, 0, 2, 2, 3, 3], dtype=int32) >>> x = np.arange(8).reshape(2, 4) >>> idx = np.array([1, 3], dtype=np.int64) >>> np.insert(x, idx, np.array([999]), axis=1) array([[ 0., 999., 1., 2., 999., 3.], [ 4., 999., 5., 6., 999., 7.]]) """ return _mx_nd_np.insert(arr, obj, values, axis=axis) @set_module('mxnet.numpy') def nonzero(a): """ Return the indices of the elements that are non-zero. Returns a tuple of arrays, one for each dimension of `a`, containing the indices of the non-zero elements in that dimension. The values in `a` are always returned in row-major, C-style order. To group the indices by element, rather than dimension, use `argwhere`, which returns a row for each non-zero element. Parameters ---------- a : ndarray Input array. Returns ------- tuple_of_arrays : tuple Indices of elements that are non-zero. See Also -------- ndarray.nonzero : Equivalent ndarray method. Notes ----- While the nonzero values can be obtained with ``a[nonzero(a)]``, it is recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which will correctly handle 0-d arrays. Examples -------- >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]]) >>> x array([[3, 0, 0], [0, 4, 0], [5, 6, 0]], dtype=int32) >>> np.nonzero(x) (array([0, 1, 2, 2], dtype=int64), array([0, 1, 0, 1], dtype=int64)) >>> x[np.nonzero(x)] array([3, 4, 5, 6]) >>> np.transpose(np.stack(np.nonzero(x))) array([[0, 0], [1, 1], [2, 0], [2, 1]], dtype=int64) A common use for ``nonzero`` is to find the indices of an array, where a condition is True. Given an array `a`, the condition `a` > 3 is a boolean array and since False is interpreted as 0, np.nonzero(a > 3) yields the indices of the `a` where the condition is true. >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype=np.int32) >>> a > 3 array([[False, False, False], [ True, True, True], [ True, True, True]]) >>> np.nonzero(a > 3) (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64)) Using this result to index `a` is equivalent to using the mask directly: >>> a[np.nonzero(a > 3)] array([4, 5, 6, 7, 8, 9], dtype=int32) >>> a[a > 3] array([4, 5, 6, 7, 8, 9], dtype=int32) ``nonzero`` can also be called as a method of the array. >>> (a > 3).nonzero() (array([1, 1, 1, 2, 2, 2], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64)) """ return _mx_nd_np.nonzero(a) @set_module('mxnet.numpy') def percentile(a, q, axis=None, out=None, overwrite_input=None, interpolation='linear', keepdims=False): # pylint: disable=too-many-arguments """ Compute the q-th percentile of the data along the specified axis. Returns the q-th percentile(s) of the array elements. Parameters ---------- a : array_like Input array q : array_like Percentile or sequence of percentiles to compute. axis : {int, tuple of int, None}, optional Axis or axes along which the percentiles are computed. The default is to compute the percentile(s) along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. overwrite_input : bool, optional (Not supported yet) If True, then allow the input array a to be modified by intermediate calculations, to save memory. In this case, the contents of the input a after this function completes is undefined. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired percentile lies between two data points i < j: 'linear': i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. 'lower': i. 'higher': j. 'nearest': i or j, whichever is nearest. 'midpoint': (i + j) / 2. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a. Returns ------- percentile : scalar or ndarray Output array. Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.percentile(a, np.array(50)) array(3.5) >>> np.percentile(a, np.array(50), axis=0) array([6.5, 4.5, 2.5]) >>> np.percentile(a, np.array(50), axis=1) array([7., 2.]) >>> np.percentile(a, np.array(50), axis=1, keepdims=True) array([[7.], [2.]]) >>> m = np.percentile(a, np.array(50), axis=0) >>> out = np.zeros_like(m) >>> np.percentile(a, np.array(50), axis=0, out=out) array([6.5, 4.5, 2.5]) >>> m array([6.5, 4.5, 2.5]) """ return _mx_nd_np.percentile(a, q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims) @set_module('mxnet.numpy') def median(a, axis=None, out=None, overwrite_input=None, keepdims=False): r""" Compute the median along the specified axis. Returns the median of the array elements. Parameters ---------- a : array_like Input array or object that can be converted to an array. axis : {int, sequence of int, None}, optional Axis or axes along which the medians are computed. The default is to compute the median along a flattened version of the array. A sequence of axes is supported since version 1.9.0. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original `arr`. Returns ------- median : ndarray A new array holding the result. If the input contains integers or floats smaller than ``float32``, then the output data-type is ``np.float32``. Otherwise, the data-type of the output is the same as that of the input. If `out` is specified, that array is returned instead. See Also -------- mean, percentile Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10, 7, 4], [ 3, 2, 1]]) >>> np.median(a) 3.5 >>> np.median(a, axis=0) array([6.5, 4.5, 2.5]) >>> np.median(a, axis=1) array([7., 2.]) """ return _mx_nd_np.median(a, axis=axis, overwrite_input=overwrite_input, keepdims=keepdims, out=out) @set_module('mxnet.numpy') def quantile(a, q, axis=None, out=None, overwrite_input=None, interpolation='linear', keepdims=False): # pylint: disable=too-many-arguments """ Compute the q-th quantile of the data along the specified axis. New in version 1.15.0. Parameters ---------- a : ndarray Input array or object that can be converted to an array. q : ndarray Quantile or sequence of quantiles to compute, which must be between 0 and 1 inclusive. axis : {int, tuple of int, None}, optional Axis or axes along which the quantiles are computed. The default is to compute the quantile(s) along a flattened version of the array. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output, but the type (of the output) will be cast if necessary. interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'} This optional parameter specifies the interpolation method to use when the desired quantile lies between two data points i < j: linear: i + (j - i) * fraction, where fraction is the fractional part of the index surrounded by i and j. lower: i. higher: j. nearest: i or j, whichever is nearest. midpoint: (i + j) / 2. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original array a. Returns ------- quantile : ndarray If q is a single quantile and axis=None, then the result is a scalar. If multiple quantiles are given, first axis of the result corresponds to the quantiles. The other axes are the axes that remain after the reduction of a. If out is specified, that array is returned instead. See also -------- mean Notes ----- Given a vector V of length N, the q-th quantile of V is the value q of the way from the minimum to the maximum in a sorted copy of V. The values and distances of the two nearest neighbors as well as the interpolation parameter will determine the quantile if the normalized ranking does not match the location of q exactly. This function is the same as the median if q=0.5, the same as the minimum if q=0.0 and the same as the maximum if q=1.0. This function differs from the original `numpy.quantile <https://numpy.org/devdocs/reference/generated/numpy.quantile.html>`_ in the following aspects: - q must be ndarray type even if it is a scalar - do not support overwrite_input Examples -------- >>> a = np.array([[10, 7, 4], [3, 2, 1]]) >>> a array([[10., 7., 4.], [3., 2., 1.]]) >>> q = np.array(0.5) >>> q array(0.5) >>> np.quantile(a, q) array(3.5) >>> np.quantile(a, q, axis=0) array([6.5, 4.5, 2.5]) >>> np.quantile(a, q, axis=1) array([7., 2.]) >>> np.quantile(a, q, axis=1, keepdims=True) array([[7.], [2.]]) >>> m = np.quantile(a, q, axis=0) >>> out = np.zeros_like(m) >>> np.quantile(a, q, axis=0, out=out) array([6.5, 4.5, 2.5]) >>> out array([6.5, 4.5, 2.5]) """ return _mx_nd_np.quantile(a, q, axis=axis, out=out, overwrite_input=overwrite_input, interpolation=interpolation, keepdims=keepdims) @set_module('mxnet.numpy') def shares_memory(a, b, max_work=None): """ Determine if two arrays share memory Parameters ---------- a, b : ndarray Input arrays Returns ------- out : bool See Also -------- may_share_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False This function differs from the original `numpy.shares_memory <https://docs.scipy.org/doc/numpy/reference/generated/numpy.shares_memory.html>`_ in the following way(s): - Does not support `max_work`, it is a dummy argument - Actually it is same as `may_share_memory` in MXNet DeepNumPy """ return _mx_nd_np.shares_memory(a, b, max_work) @set_module('mxnet.numpy') def may_share_memory(a, b, max_work=None): """ Determine if two arrays might share memory A return of True does not necessarily mean that the two arrays share any element. It just means that they *might*. Only the memory bounds of a and b are checked by default. Parameters ---------- a, b : ndarray Input arrays Returns ------- out : bool See Also -------- shares_memory Examples -------- >>> np.may_share_memory(np.array([1,2]), np.array([5,8,9])) False >>> x = np.zeros([3, 4]) >>> np.may_share_memory(x[:,0], x[:,1]) True This function differs from the original `numpy.may_share_memory <https://docs.scipy.org/doc/numpy/reference/generated/numpy.may_share_memory.html>`_ in the following way(s): - Does not support `max_work`, it is a dummy argument - Actually it is same as `shares_memory` in MXNet DeepNumPy """ return _mx_nd_np.may_share_memory(a, b, max_work) @set_module('mxnet.numpy') def diff(a, n=1, axis=-1, prepend=None, append=None): # pylint: disable=redefined-outer-name r""" Calculate the n-th discrete difference along the given axis. Parameters ---------- a : ndarray Input array n : int, optional The number of times values are differenced. If zero, the input is returned as-is. axis : int, optional The axis along which the difference is taken, default is the last axis. prepend, append : ndarray, optional Not supported yet Returns ------- diff : ndarray The n-th differences. The shape of the output is the same as a except along axis where the dimension is smaller by n. The type of the output is the same as the type of the difference between any two elements of a. This is the same as the type of a in most cases. Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.diff(x) array([ 1, 2, 3, -7]) >>> np.diff(x, n=2) array([ 1, 1, -10]) >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]]) >>> np.diff(x) array([[2, 3, 4], [5, 1, 2]]) >>> np.diff(x, axis=0) array([[-1, 2, 0, -2]]) Notes ----- Optional inputs `prepend` and `append` are not supported yet """ if (prepend or append): raise NotImplementedError('prepend and append options are not supported yet') return _mx_nd_np.diff(a, n=n, axis=axis) @set_module('mxnet.numpy') def ediff1d(ary, to_end=None, to_begin=None): """ The differences between consecutive elements of an array. Parameters ---------- ary : ndarray If necessary, will be flattened before the differences are taken. to_end : ndarray or scalar, optional Number(s) to append at the end of the returned differences. to_begin : ndarray or scalar, optional Number(s) to prepend at the beginning of the returned differences. Returns ------- ediff1d : ndarray The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``. Examples -------- >>> x = np.array([1, 2, 4, 7, 0]) >>> np.ediff1d(x) array([ 1., 2., 3., -7.]) >>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99])) rray([-99., 1., 2., 3., -7., 88., 99.]) The returned array is always 1D. >>> y = np.array([[1, 2, 4], [1, 6, 24]]) >>> np.ediff1d(y) array([ 1., 2., -3., 5., 18.]) >>> np.ediff1d(x, to_begin=y) array([ 1., 2., 4., 1., 6., 24., 1., 2., 3., -7.]) """ return _mx_nd_np.ediff1d(ary, to_end=to_end, to_begin=to_begin) @set_module('mxnet.numpy') def resize(a, new_shape): """ Return a new array with the specified shape. If the new array is larger than the original array, then the new array is filled with repeated copies of `a`. Note that this behavior is different from a.resize(new_shape) which fills with zeros instead of repeated copies of `a`. Parameters ---------- a : ndarray Array to be resized. new_shape : int or tuple of int Shape of resized array. Returns ------- reshaped_array : ndarray The new array is formed from the data in the old array, repeated if necessary to fill out the required number of elements. The data are repeated in the order that they are stored in memory. See Also -------- ndarray.resize : resize an array in-place. Notes ----- Warning: This functionality does **not** consider axes separately, i.e. it does not apply interpolation/extrapolation. It fills the return array with the required number of elements, taken from `a` as they are laid out in memory, disregarding strides and axes. (This is in case the new shape is smaller. For larger, see above.) This functionality is therefore not suitable to resize images, or data where each axis represents a separate and distinct entity. Examples -------- >>> a = np.array([[0, 1], [2, 3]]) >>> np.resize(a, (2, 3)) array([[0., 1., 2.], [3., 0., 1.]]) >>> np.resize(a, (1, 4)) array([[0., 1., 2., 3.]]) >>> np.resize(a,(2, 4)) array([[0., 1., 2., 3.], [0., 1., 2., 3.]]) """ return _mx_nd_np.resize(a, new_shape) @set_module('mxnet.numpy') def interp(x, xp, fp, left=None, right=None, period=None): # pylint: disable=too-many-arguments """ One-dimensional linear interpolation. Returns the one-dimensional piecewise linear interpolant to a function with given values at discrete data-points. Parameters ---------- x : ndarray The x-coordinates of the interpolated values. xp : 1-D array of floats The x-coordinates of the data points, must be increasing if argument `period` is not specified. Otherwise, `xp` is internally sorted after normalizing the periodic boundaries with ``xp = xp % period``. fp : 1-D array of floats The y-coordinates of the data points, same length as `xp`. left : optional float corresponding to fp Value to return for `x < xp[0]`, default is `fp[0]`. right : optional float corresponding to fp Value to return for `x > xp[-1]`, default is `fp[-1]`. period : None or float, optional A period for the x-coordinates. This parameter allows the proper interpolation of angular x-coordinates. Parameters `left` and `right` are ignored if `period` is specified. .. versionadded:: 1.10.0 Returns ------- y : float (corresponding to fp) or ndarray The interpolated values, same shape as `x`. Raises ------ ValueError If `xp` and `fp` have different length If `xp` or `fp` are not 1-D sequences If `period == 0` Notes ----- Does not check that the x-coordinate sequence `xp` is increasing. If `xp` is not increasing, the results are nonsense. A simple check for increasing is:: np.all(np.diff(xp) > 0) Examples -------- >>> xp = [1, 2, 3] >>> fp = [3, 2, 0] >>> np.interp(2.5, xp, fp) 1.0 >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp) array([ 3. , 3. , 2.5 , 0.56, 0. ]) >>> UNDEF = -99.0 >>> np.interp(3.14, xp, fp, right=UNDEF) -99.0 Plot an interpolant to the sine function: >>> x = np.linspace(0, 2*np.pi, 10) >>> y = np.sin(x) >>> xvals = np.linspace(0, 2*np.pi, 50) >>> yinterp = np.interp(xvals, x, y) >>> import matplotlib.pyplot as plt >>> plt.plot(x, y, 'o') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.plot(xvals, yinterp, '-x') [<matplotlib.lines.Line2D object at 0x...>] >>> plt.show() Interpolation with periodic x-coordinates: >>> x = [-180, -170, -185, 185, -10, -5, 0, 365] >>> xp = [190, -190, 350, -350] >>> fp = [5, 10, 3, 4] >>> np.interp(x, xp, fp, period=360) array([7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75]) """ return _mx_nd_np.interp(x, xp, fp, left=left, right=right, period=period) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def full_like(a, fill_value, dtype=None, order='C', ctx=None, out=None): # pylint: disable=too-many-arguments """ Return a full array with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. fill_value : scalar Fill value. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of `fill_value` with the same shape and type as `a`. See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full : Return a new array of given shape filled with value. Examples -------- >>> x = np.arange(6, dtype=int) >>> np.full_like(x, 1) array([1, 1, 1, 1, 1, 1], dtype=int64) >>> np.full_like(x, 0.1) array([0, 0, 0, 0, 0, 0], dtype=int64) >>> np.full_like(x, 0.1, dtype=np.float64) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1], dtype=float64) >>> np.full_like(x, np.nan, dtype=np.float64) array([nan, nan, nan, nan, nan, nan], dtype=float64) >>> y = np.arange(6, dtype=np.float32) >>> np.full_like(y, 0.1) array([0.1, 0.1, 0.1, 0.1, 0.1, 0.1]) """ return _mx_nd_np.full_like(a, fill_value=fill_value, dtype=dtype, order=order, ctx=ctx, out=out) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def zeros_like(a, dtype=None, order='C', ctx=None, out=None): """ Return an array of zeros with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of zeros with the same shape and type as a. See Also -------- empty_like : Return an empty array with shape and type of input. ones_like : Return an array of ones with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full : Return a new array of given shape filled with value. Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> np.zeros_like(x) array([[0., 0., 0.], [0., 0., 0.]]) >>> np.zeros_like(x, int) array([[0, 0, 0], [0, 0, 0]], dtype=int64) >>> y = np.arange(3, dtype=float) >>> y array([0., 1., 2.], dtype=float64) >>> np.zeros_like(y) array([0., 0., 0.], dtype=float64) """ return _mx_nd_np.full_like(a, fill_value=0, dtype=dtype, order=order, ctx=ctx, out=ctx) # pylint: enable=redefined-outer-name # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def ones_like(a, dtype=None, order='C', ctx=None, out=None): """ Return an array of ones with the same shape and type as a given array. Parameters ---------- a : ndarray The shape and data-type of `a` define these same attributes of the returned array. dtype : data-type, optional Overrides the data type of the result. Temporarily do not support boolean type. order : {'C'}, optional Whether to store multidimensional data in C- or Fortran-contiguous (row- or column-wise) order in memory. Currently only supports C order. ctx: to specify the device, e.g. the i-th GPU. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- out : ndarray Array of ones with the same shape and type as a. See Also -------- empty_like : Return an empty array with shape and type of input. zeros_like : Return an array of zeros with shape and type of input. full_like : Return a new array with shape of input filled with value. ones : Return a new array setting values to one. Examples -------- >>> x = np.arange(6) >>> x = x.reshape((2, 3)) >>> x array([[0., 1., 2.], [3., 4., 5.]]) >>> np.ones_like(x) array([[1., 1., 1.], [1., 1., 1.]]) >>> np.ones_like(x, int) array([[1, 1, 1], [1, 1, 1]], dtype=int64) >>> y = np.arange(3, dtype=float) >>> y array([0., 1., 2.], dtype=float64) >>> np.ones_like(y) array([1., 1., 1.], dtype=float64) """ return _mx_nd_np.full_like(a, fill_value=1, dtype=dtype, order=order, ctx=ctx, out=out) # pylint: enable=redefined-outer-name @set_module('mxnet.numpy') def fill_diagonal(a, val, wrap=False): """ Fill the main diagonal of the given array of any dimensionality. For an array `a` with ``a.ndim >= 2``, the diagonal is the list of locations with indices ``a[i, ..., i]`` all identical. This function modifies the input array in-place, it does not return a value. Parameters ---------- a : array, at least 2-D. Array whose diagonal is to be filled, it gets modified in-place. val : scalar Value to be written on the diagonal, its type must be compatible with that of the array a. wrap : bool For tall matrices in NumPy version up to 1.6.2, the diagonal "wrapped" after N columns. You can have this behavior with this option. This affects only tall matrices. Examples -------- >>> a = np.zeros((3, 3), int) >>> np.fill_diagonal(a, 5) >>> a array([[5, 0, 0], [0, 5, 0], [0, 0, 5]]) The same function can operate on a 4-D array: >>> a = np.zeros((3, 3, 3, 3), int) >>> np.fill_diagonal(a, 4) We only show a few blocks for clarity: >>> a[0, 0] array([[4, 0, 0], [0, 0, 0], [0, 0, 0]]) >>> a[1, 1] array([[0, 0, 0], [0, 4, 0], [0, 0, 0]]) >>> a[2, 2] array([[0, 0, 0], [0, 0, 0], [0, 0, 4]]) The wrap option affects only tall matrices: >>> # tall matrices no wrap >>> a = np.zeros((5, 3), int) >>> np.fill_diagonal(a, 4) >>> a array([[4, 0, 0], [0, 4, 0], [0, 0, 4], [0, 0, 0], [0, 0, 0]]) >>> # tall matrices wrap >>> a = np.zeros((5, 3), int) >>> np.fill_diagonal(a, 4, wrap=True) >>> a array([[4, 0, 0], [0, 4, 0], [0, 0, 4], [0, 0, 0], [4, 0, 0]]) >>> # wide matrices >>> a = np.zeros((3, 5), int) >>> np.fill_diagonal(a, 4, wrap=True) >>> a array([[4, 0, 0, 0, 0], [0, 4, 0, 0, 0], [0, 0, 4, 0, 0]]) The anti-diagonal can be filled by reversing the order of elements using either `numpy.flipud` or `numpy.fliplr`. >>> a = np.zeros((3, 3), int); >>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip >>> a array([[0, 0, 1], [0, 2, 0], [3, 0, 0]]) >>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip >>> a array([[0, 0, 3], [0, 2, 0], [1, 0, 0]]) Note that the order in which the diagonal is filled varies depending on the flip function. """ _mx_nd_np.fill_diagonal(a, val=val, wrap=wrap) @set_module('mxnet.numpy') def nan_to_num(x, copy=True, nan=0.0, posinf=None, neginf=None, **kwargs): """ Replace NaN with zero and infinity with large finite numbers (default behaviour) or with the numbers defined by the user using the `nan`, `posinf` and/or `neginf` keywords. If `x` is inexact, NaN is replaced by zero or by the user defined value in `nan` keyword, infinity is replaced by the largest finite floating point values representable by ``x.dtype`` or by the user defined value in `posinf` keyword and -infinity is replaced by the most negative finite floating point values representable by ``x.dtype`` or by the user defined value in `neginf` keyword. For complex dtypes, the above is applied to each of the real and imaginary components of `x` separately. If `x` is not inexact, then no replacements are made. Parameters ---------- x : scalar ndarray Input data. copy : bool, optional Whether to create a copy of `x` (True) or to replace values in-place (False). The in-place operation only occurs if casting to an array does not require a copy. Default is True. Gluon does not support copy = False. nan : int, float, optional Value to be used to fill NaN values. If no value is passed then NaN values will be replaced with 0.0. posinf : int, float, optional Value to be used to fill positive infinity values. If no value is passed then positive infinity values will be replaced with a very large number. neginf : int, float, optional Value to be used to fill negative infinity values. If no value is passed then negative infinity values will be replaced with a very small (or negative) number. .. versionadded:: 1.13 Returns ------- out : ndarray `x`, with the non-finite values replaced. If `copy` is False, this may be `x` itself. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.nan_to_num(np.inf) 1.7976931348623157e+308 >>> np.nan_to_num(-np.inf) -1.7976931348623157e+308 >>> np.nan_to_num(np.nan) 0.0 >>> x = np.array([np.inf, -np.inf, np.nan, -128, 128]) >>> np.nan_to_num(x) array([ 3.4028235e+38, -3.4028235e+38, 0.0000000e+00, -1.2800000e+02, 1.2800000e+02]) >>> np.nan_to_num(x, nan=-9999, posinf=33333333, neginf=33333333) array([ 3.3333332e+07, 3.3333332e+07, -9.9990000e+03, -1.2800000e+02, 1.2800000e+02]) >>> y = np.array([[-1, 0, 1],[9999,234,-14222]],dtype="float64")/0 array([[-inf, nan, inf], [ inf, inf, -inf]], dtype=float64) >>> np.nan_to_num(y) array([[-1.79769313e+308, 0.00000000e+000, 1.79769313e+308], [ 1.79769313e+308, 1.79769313e+308, -1.79769313e+308]], dtype=float64) >>> np.nan_to_num(y, nan=111111, posinf=222222) array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) >>> y array([[-inf, nan, inf], [ inf, inf, -inf]], dtype=float64) >>> np.nan_to_num(y, copy=False, nan=111111, posinf=222222) array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) >>> y array([[-1.79769313e+308, 1.11111000e+005, 2.22222000e+005], [ 2.22222000e+005, 2.22222000e+005, -1.79769313e+308]], dtype=float64) """ return _mx_nd_np.nan_to_num(x, copy=copy, nan=nan, posinf=posinf, neginf=neginf) @set_module('mxnet.numpy') def squeeze(x, axis=None): """ Remove single-dimensional entries from the shape of an array. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional .. versionadded:: 1.7.0 Selects a subset of the single-dimensional entries in the shape. If an axis is selected with shape entry greater than one, an error is raised. Returns ------- squeezed : ndarray The input array, but with all or a subset of the dimensions of length 1 removed. This is always `a` itself or a view into `a`. Raises ------ ValueError If `axis` is not `None`, and an axis being squeezed is not of length 1 See Also -------- expand_dims : The inverse operation, adding singleton dimensions reshape : Insert, remove, and combine dimensions, and resize existing ones Examples -------- >>> x = np.array([[[0], [1], [2]]]) >>> x.shape (1, 3, 1) >>> np.squeeze(x).shape (3,) >>> np.squeeze(x, axis=0).shape (3, 1) >>> np.squeeze(x, axis=1).shape Traceback (most recent call last): ... ValueError: cannot select an axis to squeeze out which has size not equal to one >>> np.squeeze(x, axis=2).shape (1, 3) """ return _mx_nd_np.squeeze(x, axis=axis) @set_module('mxnet.numpy') @wrap_np_unary_func def isnan(x, out=None, **kwargs): """ Test element-wise for NaN and return result as a boolean array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is NaN, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This function differs from the original `numpy.isinf <https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> np.isnan(np.nan) True >>> np.isnan(np.inf) False >>> np.isnan(np.array([np.log(-1.),1.,np.log(0)])) array([ True, False, False]) """ return _mx_nd_np.isnan(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isinf(x, out=None, **kwargs): """ Test element-wise for positive or negative infinity. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is positive or negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. This function differs from the original `numpy.isnan <https://docs.scipy.org/doc/numpy/reference/generated/numpy.isnan.html>`_ in the following aspects: - Does not support complex number for now - Input type does not support Python native iterables(list, tuple, ...). - ``out`` param: cannot perform auto broadcasting. ``out`` ndarray's shape must be the same as the expected output. - ``out`` param: cannot perform auto type cast. ``out`` ndarray's dtype must be the same as the expected output. - ``out`` param does not support scalar input case. Examples -------- >>> np.isinf(np.inf) True >>> np.isinf(np.nan) False >>> np.isinf(np.array([np.inf, -np.inf, 1.0, np.nan])) array([ True, True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool_) >>> np.isinf(x, y) array([ True, False, True]) >>> y array([ True, False, True]) """ return _mx_nd_np.isinf(x, out=out, **kwargs) @set_module('mxnet.ndarray.numpy') @wrap_np_unary_func def isposinf(x, out=None, **kwargs): """ Test element-wise for positive infinity, return result as bool array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is positive infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isposinf(np.inf) True >>> np.isposinf(-np.inf) False >>> np.isposinf(np.nan) False >>> np.isposinf(np.array([-np.inf, 0., np.inf])) array([False, False, True]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isposinf(x, y) array([False, False, True]) >>> y array([False, False, True]) """ return _mx_nd_np.isposinf(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isneginf(x, out=None, **kwargs): """ Test element-wise for negative infinity, return result as bool array. Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Examples -------- >>> np.isneginf(-np.inf) True >>> np.isneginf(np.inf) False >>> np.isneginf(float('-inf')) True >>> np.isneginf(np.array([-np.inf, 0., np.inf])) array([ True, False, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isneginf(x, y) array([ True, False, False]) >>> y array([ True, False, False]) """ return _mx_nd_np.isneginf(x, out=out, **kwargs) @set_module('mxnet.numpy') @wrap_np_unary_func def isfinite(x, out=None, **kwargs): """ Test element-wise for finiteness (not infinity or not Not a Number). Parameters ---------- x : ndarray Input array. out : ndarray or None, optional A location into which the result is stored. If provided, it must have the same shape and dtype as input ndarray. If not provided or `None`, a freshly-allocated array is returned. Returns ------- y : ndarray or bool True where x is negative infinity, false otherwise. This is a scalar if x is a scalar. Notes ----- Not a Number, positive infinity and negative infinity are considered to be non-finite. NumPy uses the IEEE Standard for Binary Floating-Point for Arithmetic (IEEE 754). This means that Not a Number is not equivalent to infinity. Also that positive infinity is not equivalent to negative infinity. But infinity is equivalent to positive infinity. Errors result if the second argument is also supplied when x is a scalar input, or if first and second arguments have different shapes. Examples -------- >>> np.isfinite(1) True >>> np.isfinite(0) True >>> np.isfinite(np.nan) False >>> np.isfinite(np.inf) False >>> np.isfinite(-np.inf) False >>> np.isfinite(np.array([np.log(-1.),1.,np.log(0)])) array([False, True, False]) >>> x = np.array([-np.inf, 0., np.inf]) >>> y = np.array([True, True, True], dtype=np.bool) >>> np.isfinite(x, y) array([False, True, False]) >>> y array([False, True, False]) """ return _mx_nd_np.isfinite(x, out=out, **kwargs) @set_module('mxnet.numpy') def where(condition, x=None, y=None): """where(condition, [x, y]) Return elements chosen from `x` or `y` depending on `condition`. .. note:: When only `condition` is provided, this function is a shorthand for ``np.asarray(condition).nonzero()``. The rest of this documentation covers only the case where all three arguments are provided. Parameters ---------- condition : ndarray Where True, yield `x`, otherwise yield `y`. x, y : ndarray Values from which to choose. `x`, `y` and `condition` need to be broadcastable to some shape. `x` and `y` must have the same dtype. Returns ------- out : ndarray An array with elements from `x` where `condition` is True, and elements from `y` elsewhere. Notes ----- If all the arrays are 1-D, `where` is equivalent to:: [xv if c else yv for c, xv, yv in zip(condition, x, y)] Examples -------- >>> a = np.arange(10) >>> a array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) >>> np.where(a < 5, a, 10*a) array([ 0., 1., 2., 3., 4., 50., 60., 70., 80., 90.]) This can be used on multidimensional arrays too: >>> cond = np.array([[True, False], [True, True]]) >>> x = np.array([[1, 2], [3, 4]]) >>> y = np.array([[9, 8], [7, 6]]) >>> np.where(cond, x, y) array([[1., 8.], [3., 4.]]) The shapes of x, y, and the condition are broadcast together: >>> x, y = onp.ogrid[:3, :4] >>> x = np.array(x) >>> y = np.array(y) >>> np.where(x < y, x, 10 + y) # both x and 10+y are broadcast array([[10, 0, 0, 0], [10, 11, 1, 1], [10, 11, 12, 2]], dtype=int64) >>> a = np.array([[0, 1, 2], ... [0, 2, 4], ... [0, 3, 6]]) >>> np.where(a < 4, a, -1) # -1 is broadcast array([[ 0., 1., 2.], [ 0., 2., -1.], [ 0., 3., -1.]]) """ return _mx_nd_np.where(condition, x, y) @set_module('mxnet.numpy') def polyval(p, x): """ Evaluate a polynomial at specific values. If p is of length N, this function returns the value: p[0]*x**(N-1) + p[1]*x**(N-2) + ... + p[N-2]*x + p[N-1] If x is a sequence, then p(x) is returned for each element of x. If x is another polynomial then the composite polynomial p(x(t)) is returned. Parameters ---------- p : ndarray 1D array of polynomial coefficients (including coefficients equal to zero) from highest degree to the constant term. x : ndarray An array of numbers, at which to evaluate p. Returns ------- values : ndarray Result array of polynomials Notes ----- This function differs from the original `numpy.polyval <https://numpy.org/devdocs/reference/generated/numpy.polyval.html>`_ in the following way(s): - Does not support poly1d. - X should be ndarray type even if it contains only one element. Examples -------- >>> p = np.array([3, 0, 1]) array([3., 0., 1.]) >>> x = np.array([5]) array([5.]) >>> np.polyval(p, x) # 3 * 5**2 + 0 * 5**1 + 1 array([76.]) >>> x = np.array([5, 4]) array([5., 4.]) >>> np.polyval(p, x) array([76., 49.]) """ return _mx_nd_np.polyval(p, x) @set_module('mxnet.numpy') def bincount(x, weights=None, minlength=0): """ Count number of occurrences of each value in array of non-negative ints. Parameters ---------- x : ndarray input array, 1 dimension, nonnegative ints. weights: ndarray input weigths same shape as x. (Optional) minlength: int A minimum number of bins for the output. (Optional) Returns -------- out : ndarray the result of binning the input array. The length of out is equal to amax(x)+1. Raises -------- Value Error If the input is not 1-dimensional, or contains elements with negative values, or if minlength is negative TypeError If the type of the input is float or complex. Examples -------- >>> np.bincount(np.arange(5)) array([1, 1, 1, 1, 1]) >>> np.bincount(np.array([0, 1, 1, 3, 2, 1, 7])) array([1, 3, 1, 1, 0, 0, 0, 1]) >>> x = np.array([0, 1, 1, 3, 2, 1, 7, 23]) >>> np.bincount(x).size == np.amax(x)+1 True >>> np.bincount(np.arange(5, dtype=float)) Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: array cannot be safely cast to required type >>> w = np.array([0.3, 0.5, 0.2, 0.7, 1., -0.6]) # weights >>> x = np.array([0, 1, 1, 2, 2, 2]) >>> np.bincount(x, weights=w) array([ 0.3, 0.7, 1.1]) """ return _mx_nd_np.bincount(x, weights=weights, minlength=minlength) @set_module('mxnet.numpy') def atleast_1d(*arys): """ Convert inputs to arrays with at least one dimension. Scalar inputs are converted to 1-dimensional arrays, whilst higher-dimensional inputs are preserved. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 1. Copies are made only if necessary. See also -------- atleast_2d, atleast_3d Examples -------- >>> np.atleast_1d(1.0) array([1.]) >>> x = np.arange(9.0).reshape(3,3) >>> np.atleast_1d(x) array([[0., 1., 2.], [3., 4., 5.], [6., 7., 8.]]) >>> np.atleast_1d(np.array(1), np.array([3, 4])) [array([1.]), array([3., 4.])] """ return _mx_nd_np.atleast_1d(*arys) @set_module('mxnet.numpy') def atleast_2d(*arys): """ Convert inputs to arrays with at least two dimensions. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 2. Copies are made only if necessary. See also -------- atleast_1d, atleast_3d Examples -------- >>> np.atleast_2d(3.0) array([[3.]]) >>> x = np.arange(3.0) >>> np.atleast_2d(x) array([[0., 1., 2.]]) >>> np.atleast_2d(np.array(1), np.array([1, 2]), np.array([[1, 2]])) [array([[1.]]), array([[1., 2.]]), array([[1., 2.]])] """ return _mx_nd_np.atleast_2d(*arys) @set_module('mxnet.numpy') def atleast_3d(*arys): """ Convert inputs to arrays with at least three dimension. Parameters ---------- arys1, arys2, ... : ndarray One or more input arrays. Returns ------- ret : ndarray An array, or list of arrays, each with a.ndim >= 3. For example, a 1-D array of shape (N,) becomes a view of shape (1, N, 1), and a 2-D array of shape (M, N) becomes a view of shape (M, N, 1). See also -------- atleast_1d, atleast_2d Examples -------- >>> np.atleast_3d(3.0) array([[[3.]]]) >>> x = np.arange(3.0) >>> np.atleast_3d(x).shape (1, 3, 1) >>> x = np.arange(12.0).reshape(4,3) >>> np.atleast_3d(x).shape (4, 3, 1) >>> for arr in np.atleast_3d(np.array([1, 2]), np.array([[1, 2]]), np.array([[[1, 2]]])): ... print(arr, arr.shape) ... [[[1.] [2.]]] (1, 2, 1) [[[1.] [2.]]] (1, 2, 1) [[[1. 2.]]] (1, 1, 2) """ return _mx_nd_np.atleast_3d(*arys) @set_module('mxnet.numpy') def pad(x, pad_width=None, mode="constant", **kwargs): # pylint: disable=too-many-arguments # pylint: disable=too-many-return-statements """ Pad an array. Parameters ---------- array : array_like of rank N The array to pad. pad_width : {sequence, array_like, int} Number of values padded to the edges of each axis. ((before_1, after_1), ... (before_N, after_N)) unique pad widths for each axis. ((before, after),) yields same before and after pad for each axis. (pad,) or int is a shortcut for before = after = pad width for all axes. mode : str or function, optional One of the following string values or a user supplied function. 'constant' (default) Pads with a constant value. 'edge' Pads with the edge values of array. 'linear_ramp' not supported yet 'maximum' Pads with the maximum value of all of the vector along each axis. 'mean' not supported yet 'median' not supported yet 'minimum' Pads with the minimum value of all of the vector along each axis. 'reflect' Pads with the reflection of the vector mirrored on the first and last values of the vector along each axis. 'symmetric' Pads with the reflection of the vector mirrored along the edge of the array. 'wrap' not supported yet. 'empty' not supported yet. <function> not supported yet. stat_length : not supported yet constant_values : scalar, optional Used in 'constant'. The values to set the padded values for each axis. Default is 0. end_values : not supported yet reflect_type : {'even', 'odd'}, optional only support even now Returns ------- pad : ndarray Padded array of rank equal to `array` with shape increased according to `pad_width`. Examples -------- >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2, 3), 'edge') array([1, 1, 1, ..., 5, 5, 5]) >>> np.pad(a, (2, 2), 'maximum') array([5, 5, 1, 2, 3, 4, 5, 5, 5]) >>> np.pad(a, (2, 2), 'mean') array([3, 3, 1, 2, 3, 4, 5, 3, 3]) >>> a = [[1, 2], [3, 4]] >>> np.pad(a, ((3, 2), (2, 3)), 'minimum') array([[1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1], [3, 3, 3, 4, 3, 3, 3], [1, 1, 1, 2, 1, 1, 1], [1, 1, 1, 2, 1, 1, 1]]) >>> a = [1, 2, 3, 4, 5] >>> np.pad(a, (2, 3), 'reflect') array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2]) >>> np.pad(a, (2, 3), 'symmetric') array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3]) >>> a = np.arange(6) >>> a = a.reshape((2, 3)) >>> np.pad(a, ((2, 2), (2, 2)), pad_with) array([[10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 0, 1, 2, 10, 10], [10, 10, 3, 4, 5, 10, 10], [10, 10, 10, 10, 10, 10, 10], [10, 10, 10, 10, 10, 10, 10]]) """ return _mx_nd_np.pad(x, pad_width=pad_width, mode=mode, **kwargs) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def prod(a, axis=None, dtype=None, out=None, keepdims=False, initial=None): # pylint: disable=too-many-arguments """ Return the product of array elements over a given axis. Parameters ---------- a : array_like Input data. axis : None or int or tuple of ints, optional Axis or axes along which a product is performed. The default, axis=None, will calculate the product of all the elements in the input array. If axis is negative it counts from the last to the first axis. .. versionadded:: 1.7.0 If axis is a tuple of ints, a product is performed on all of the axes specified in the tuple instead of a single axis or all the axes as before. dtype : dtype, optional The type of the returned array, as well as of the accumulator in which the elements are multiplied. The dtype of `a` is used by default unless `a` has an integer dtype of less precision than the default platform integer. In that case, if `a` is signed then the platform integer is used while if `a` is unsigned then an unsigned integer of the same precision as the platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape as the expected output, but the type of the output values will be cast if necessary. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `prod` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-class' method does not implement `keepdims` any exceptions will be raised. initial : scalar, optional The starting value for this product. See `~numpy.ufunc.reduce` for details. where : not supported Returns ------- product_along_axis : ndarray, see `dtype` parameter above. An array shaped as `a` but with the specified axis removed. Returns a reference to `out` if specified. Examples -------- By default, calculate the product of all elements: >>> np.prod([1.,2.]) 2.0 Even when the input array is two-dimensional: >>> np.prod([[1.,2.],[3.,4.]]) 24.0 But we can also specify the axis over which to multiply: >>> np.prod([[1.,2.],[3.,4.]], axis=1) array([ 2., 12.]) Or select specific elements to include: >>> np.prod([1., np.nan, 3.], where=[True, False, True]) 3.0 If the type of `x` is unsigned, then the output type is the unsigned platform integer: >>> x = np.array([1, 2, 3], dtype=np.uint8) >>> np.prod(x).dtype == np.uint True If `x` is of a signed integer type, then the output type is the default platform integer: >>> x = np.array([1, 2, 3], dtype=np.int8) >>> np.prod(x).dtype == int True You can also start the product with a value other than one: >>> np.prod([1, 2], initial=5) 10 """ return _mx_nd_np.prod(a, axis=axis, dtype=dtype, keepdims=keepdims, initial=initial, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def cumsum(a, axis=None, dtype=None, out=None): """ Return the cumulative sum of the elements along a given axis. Parameters ---------- a : array_like Input array. axis : int, optional Axis along which the cumulative sum is computed. The default (None) is to compute the cumsum over the flattened array. dtype : dtype, optional Type of the returned array and of the accumulator in which the elements are summed. If `dtype` is not specified, it defaults to the dtype of `a`, unless `a` has an integer dtype with a precision less than that of the default platform integer. In that case, the default platform integer is used. out : ndarray, optional Alternative output array in which to place the result. It must have the same shape and buffer length as the expected output but the type will be cast if necessary. See `doc.ufuncs` (Section "Output arguments") for more details. Returns ------- cumsum_along_axis : ndarray. A new array holding the result is returned unless `out` is specified, in which case a reference to `out` is returned. The result has the same size as `a`, and the same shape as `a` if `axis` is not None or `a` is a 1-d array. Examples -------- >>> a = np.array([[1,2,3], [4,5,6]]) >>> a array([[1, 2, 3], [4, 5, 6]]) >>> np.cumsum(a) array([ 1, 3, 6, 10, 15, 21]) >>> np.cumsum(a, dtype=float) # specifies type of output value(s) array([ 1., 3., 6., 10., 15., 21.]) >>> np.cumsum(a,axis=0) # sum over rows for each of the 3 columns array([[1, 2, 3], [5, 7, 9]]) >>> np.cumsum(a,axis=1) # sum over columns for each of the 2 rows array([[ 1, 3, 6], [ 4, 9, 15]]) """ return _mx_nd_np.cumsum(a, axis=axis, dtype=dtype, out=out) # pylint: disable=redefined-outer-name @set_module('mxnet.numpy') def rollaxis(a, axis, start=0): """ Roll the specified axis backwards, until it lies in a given position. Parameters ---------- a : ndarray Input array. axis : integer The axis to roll backwards. The positions of the other axes do not change relative to one another. start: int, optional The axis is rolled until it lies before this position. The default, 0, results in a “complete” roll. Returns ------- res : ndarray A view after applying rollaxis to `a` is returned. ----- Examples -------- >>> a = np.ones((3,4,5,6)) >>> np.rollaxis(a, 3, 1).shape (3, 6, 4, 5) >>> np.rollaxis(a, 2).shape (5, 3, 4, 6) >>> np.rollaxis(a, 1, 4).shape (3, 5, 6, 4) """ return _mx_nd_np.rollaxis(a, axis, start) @set_module('mxnet.numpy') def diag(v, k=0): """ Extracts a diagonal or constructs a diagonal array. - 1-D arrays: constructs a 2-D array with the input as its diagonal, all other elements are zero. - 2-D arrays: extracts the k-th Diagonal Parameters ---------- array : ndarray The array to apply diag method. k : offset extracts or constructs kth diagonal given input array Returns ---------- out : ndarray The extracted diagonal or constructed diagonal array. Examples -------- >>> x = np.arange(9).reshape((3,3)) >>> x array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> np.diag(x) array([0, 4, 8]) >>> np.diag(x, k=1) array([1, 5]) >>> np.diag(x, k=-1) array([3, 7]) >>> np.diag(np.diag(x)) array([[0, 0, 0], [0, 4, 0], [0, 0, 8]]) """ return _mx_nd_np.diag(v, k=k) @set_module('mxnet.numpy') def diagflat(v, k=0): """ Create a two-dimensional array with the flattened input as a diagonal. Parameters ---------- v : array_like Input data, which is flattened and set as the `k`-th diagonal of the output. k : int, optional Diagonal to set; 0, the default, corresponds to the "main" diagonal, a positive (negative) `k` giving the number of the diagonal above (below) the main. Returns ------- out : ndarray The 2-D output array. See Also -------- diag : MATLAB work-alike for 1-D and 2-D arrays. diagonal : Return specified diagonals. trace : Sum along diagonals. Examples -------- >>> np.diagflat([[1,2], [3,4]]) array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]]) >>> np.diagflat([1,2], 1) array([[0, 1, 0], [0, 0, 2], [0, 0, 0]]) """ return _mx_nd_np.diagflat(v, k=k) @set_module('mxnet.numpy') def diagonal(a, offset=0, axis1=0, axis2=1): """ If a is 2-D, returns the diagonal of a with the given offset, i.e., the collection of elements of the form a[i, i+offset]. If a has more than two dimensions, then the axes specified by axis1 and axis2 are used to determine the 2-D sub-array whose diagonal is returned. The shape of the resulting array can be determined by removing axis1 and axis2 and appending an index to the right equal to the size of the resulting diagonals. Parameters ---------- a : ndarray Input data from which diagonal are taken. offset: int, Optional Offset of the diagonal from the main diagonal axis1: int, Optional Axis to be used as the first axis of the 2-D sub-arrays axis2: int, Optional Axis to be used as the second axis of the 2-D sub-arrays Returns ------- out : ndarray Output result Raises ------- ValueError: If the dimension of a is less than 2. Examples -------- >>> a = np.arange(4).reshape(2,2) >>> a array([[0, 1], [2, 3]]) >>> np.diagonal(a) array([0, 3]) >>> np.diagonal(a, 1) array([1]) >>> a = np.arange(8).reshape(2,2,2) >>>a array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]) >>> np.diagonal(a, 0, 0, 1) array([[0, 6], [1, 7]]) """ return _mx_nd_np.diagonal(a, offset=offset, axis1=axis1, axis2=axis2) # pylint: disable=redefined-outer-name, too-many-arguments @set_module('mxnet.numpy') def sum(a, axis=None, dtype=None, out=None, keepdims=None, initial=None, where=None): r""" Sum of array elements over a given axis. Parameters ---------- a : ndarray Input data. axis : None or int, optional Axis or axes along which a sum is performed. The default, axis=None, will sum all of the elements of the input array. If axis is negative it counts from the last to the first axis. dtype : dtype, optional The type of the returned array and of the accumulator in which the elements are summed. The default type is float32. keepdims : bool, optional If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the input array. If the default value is passed, then `keepdims` will not be passed through to the `sum` method of sub-classes of `ndarray`, however any non-default value will be. If the sub-classes `sum` method does not implement `keepdims` any exceptions will be raised. initial: Currently only supports None as input, optional Starting value for the sum. Currently not implemented. Please use ``None`` as input or skip this argument. out : ndarray or None, optional Alternative output array in which to place the result. It must have the same shape and dtype as the expected output. Returns ------- sum_along_axis : ndarray An ndarray with the same shape as `a`, with the specified axis removed. If an output array is specified, a reference to `out` is returned. Notes ----- - Input type does not support Python native iterables. - "out" param: cannot perform auto type change. out ndarray's dtype must be the same as the expected output. - "initial" param is not supported yet. Please use None as input. - Arithmetic is modular when using integer types, and no error is raised on overflow. - The sum of an empty array is the neutral element 0: >>> a = np.empty(1) >>> np.sum(a) array(0.) This function differs from the original `numpy.sum <https://docs.scipy.org/doc/numpy/reference/generated/numpy.sum.html>`_ in the following aspects: - Input type does not support Python native iterables(list, tuple, ...). - "out" param: cannot perform auto type cast. out ndarray's dtype must be the same as the expected output. - "initial" param is not supported yet. Please use ``None`` as input or skip it. - The default type is float32. Examples -------- >>> a = np.array([0.5, 1.5]) >>> np.sum(a) array(2.) >>> a = np.array([0.5, 0.7, 0.2, 1.5]) >>> np.sum(a, dtype=np.int32) array(2, dtype=int32) >>> a = np.array([[0, 1], [0, 5]]) >>> np.sum(a) array(6.) >>> np.sum(a, axis=0) array([0., 6.]) >>> np.sum(a, axis=1) array([1., 5.]) With output ndarray: >>> a = np.array([[0, 1], [0, 5]]) >>> b = np.ones((2,), dtype=np.float32) >>> np.sum(a, axis = 0, out=b) array([0., 6.]) >>> b array([0., 6.]) If the accumulator is too small, overflow occurs: >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8) array(-128, dtype=int8) """ return _mx_nd_np.sum(a, axis=axis, dtype=dtype, out=out, keepdims=keepdims, initial=initial, where=where) # pylint: enable=redefined-outer-name, too-many-arguments
apache-2.0
568,628,752,666,648,770
32.522831
152
0.5828
false
Azure/azure-sdk-for-python
sdk/servicefabric/azure-mgmt-servicefabric/azure/mgmt/servicefabric/aio/operations/_managed_cluster_versions_operations.py
1
4986
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, Callable, Dict, Generic, List, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ManagedClusterVersionsOperations: """ManagedClusterVersionsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.servicefabric.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def list_by_os( self, location: str, os_type: Union[str, "_models.Enum23"], **kwargs: Any ) -> List["_models.ManagedClusterVersionDetails"]: """Gets the list of Service Fabric cluster code versions available for the specified OS type. Gets all available code versions for Service Fabric cluster resources by OS type. :param location: The location for the cluster code versions. This is different from cluster location. :type location: str :param os_type: The operating system of the cluster. :type os_type: str or ~azure.mgmt.servicefabric.models.Enum23 :keyword callable cls: A custom type or function that will be passed the direct response :return: list of ManagedClusterVersionDetails, or the result of cls(response) :rtype: list[~azure.mgmt.servicefabric.models.ManagedClusterVersionDetails] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[List["_models.ManagedClusterVersionDetails"]] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-01-01-preview" accept = "application/json" # Construct URL url = self.list_by_os.metadata['url'] # type: ignore path_format_arguments = { 'location': self._serialize.url("location", location, 'str'), 'osType': self._serialize.url("os_type", os_type, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorModel, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('[ManagedClusterVersionDetails]', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized list_by_os.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.ServiceFabric/managedclusters/locations/{location}/osType/{osType}/clusterVersions'} # type: ignore
mit
6,898,372,519,886,849,000
47.407767
187
0.67509
false
Luxapodular/processing.py
examples.py/3D/Form/CubicGrid.py
7
1157
""" Cubic Grid by Ira Greenberg. 3D translucent colored grid uses nested pushMatrix() and popMatrix() functions. """ boxSize = 40 margin = boxSize*2 depth = 400 def setup(): size(640, 360, P3D) noStroke() def draw(): background(255) # Center and spin grid translate(width/2, height/2, -depth) rotateY(frameCount * 0.01) rotateX(frameCount * 0.01) # Build grid using multiple translations i = -depth/2+margin while i <= depth/2-margin: pushMatrix() j = -height+margin while j <= height-margin: pushMatrix() k = -width + margin while k <= width-margin: # Base fill color on counter values, abs function # ensures values stay within legal range boxFill = color(abs(i), abs(j), abs(k), 50) pushMatrix() translate(k, j, i) fill(boxFill) box(boxSize, boxSize, boxSize) popMatrix() k += boxSize popMatrix() j += boxSize popMatrix() i += boxSize
apache-2.0
3,391,533,236,897,459,700
24.711111
66
0.521175
false
Acehaidrey/incubator-airflow
airflow/contrib/operators/s3_to_sftp_operator.py
7
1179
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module is deprecated. Please use `airflow.providers.amazon.aws.transfers.s3_to_sftp`.""" import warnings # pylint: disable=unused-import from airflow.providers.amazon.aws.transfers.s3_to_sftp import S3ToSFTPOperator # noqa warnings.warn( "This module is deprecated. Please use `airflow.providers.amazon.aws.transfers.s3_to_sftp`.", DeprecationWarning, stacklevel=2, )
apache-2.0
2,654,155,200,695,928,000
39.655172
97
0.7676
false
googleinterns/ddsp-docker
mvp/trainer/ddsp_run_hypertune.py
1
7760
# Copyright 2020 The DDSP Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 r"""Train, evaluate, or sample (from) a ddsp model. Usage: ================================================================================ For training, you need to specify --gin_file for both the model and the dataset. You can optionally specify additional params with --gin_param. The pip install installs a `ddsp_run` script that can be called directly. ================================================================================ ddsp_run \ --mode=train \ --alsologtostderr \ --save_dir=~/tmp/$USER-ddsp-0 \ --gin_file=models/ae.gin \ --gin_file=datasets/nsynth.gin \ --gin_param=batch_size=16 ================================================================================ For evaluation and sampling, only the dataset file is required. ================================================================================ ddsp_run \ --mode=eval \ --alsologtostderr \ --save_dir=~/tmp/$USER-ddsp-0 \ --gin_file=datasets/nsynth.gin ddsp_run \ --mode=sample \ --alsologtostderr \ --save_dir=~/tmp/$USER-ddsp-0 \ --gin_file=datasets/nsynth.gin ================================================================================ The directory `gin/papers/` stores configs that give the specific models and datasets used for a paper's experiments, so only require one gin file to train. ================================================================================ ddsp_run \ --mode=train \ --alsologtostderr \ --save_dir=~/tmp/$USER-ddsp-0 \ --gin_file=papers/iclr2020/nsynth_ae.gin """ import os import time from absl import app from absl import flags from absl import logging from ddsp.training import eval_util from ddsp.training import models import gin import pkg_resources import tensorflow.compat.v2 as tf import helper_functions import magenta_ddsp_internals.train_util as train_util import magenta_ddsp_internals.trainers as trainers FLAGS = flags.FLAGS # Program flags. flags.DEFINE_enum('mode', 'train', ['train', 'eval', 'sample'], 'Whether to train, evaluate, or sample from the model.') flags.DEFINE_string('save_dir', '~/tmp/ddsp', 'Path where checkpoints and summary events will be saved ' 'during training and evaluation.') flags.DEFINE_string('restore_dir', '', 'Path from which checkpoints will be restored before ' 'training. Can be different than the save_dir.') flags.DEFINE_string('tpu', '', 'Address of the TPU. No TPU if left blank.') flags.DEFINE_multi_string('gpu', [], 'Addresses of GPUs for sync data-parallel training.' 'Only needs to be specified for using multiple GPUs.') flags.DEFINE_boolean('allow_memory_growth', False, 'Whether to grow the GPU memory usage as is needed by the ' 'process. Prevents crashes on GPUs with smaller memory.') # Gin config flags. flags.DEFINE_multi_string('gin_search_path', [], 'Additional gin file search paths.') flags.DEFINE_multi_string('gin_file', [], 'List of paths to the config files.') flags.DEFINE_multi_string('gin_param', [], 'Newline separated list of Gin parameter bindings.') # Evaluation/sampling specific flags. flags.DEFINE_boolean('run_once', False, 'Whether evaluation will run once.') flags.DEFINE_integer('initial_delay_secs', None, 'Time to wait before evaluation starts') GIN_PATH = pkg_resources.resource_filename(__name__, 'gin') LAST_OPERATIVE_CONFIG_PATH = '/root/trainer/gin/last_config.gin' def delay_start(): """Optionally delay the start of the run.""" delay_time = FLAGS.initial_delay_secs if delay_time: logging.info('Waiting for %i second(s)', delay_time) time.sleep(delay_time) def parse_gin(restore_dir): """Parse gin config from --gin_file, --gin_param, and the model directory.""" # Add user folders to the gin search path. for gin_search_path in [GIN_PATH] + FLAGS.gin_search_path: gin.add_config_file_search_path(gin_search_path) # Parse gin configs, later calls override earlier ones. with gin.unlock_config(): # Optimization defaults. use_tpu = bool(FLAGS.tpu) opt_default = 'base.gin' if not use_tpu else 'base_tpu.gin' gin.parse_config_file(os.path.join('optimization', opt_default)) # Load operative_config if it exists (model has already trained). # operative_config = train_util.get_latest_operative_config(restore_dir) # if tf.io.gfile.exists(operative_config): # # Copy the config file from gstorage # helper_functions.copy_config_file_from_gstorage(operative_config, LAST_OPERATIVE_CONFIG_PATH) # logging.info('Using operative config: %s', operative_config) # gin.parse_config_file(LAST_OPERATIVE_CONFIG_PATH, skip_unknown=True) # gin.parse_config_file(operative_config, skip_unknown=True) # User gin config and user hyperparameters from flags. gin.parse_config_files_and_bindings( FLAGS.gin_file, FLAGS.gin_param, skip_unknown=True) def allow_memory_growth(): """Sets the GPUs to grow the memory usage as is needed by the process.""" gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs. for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) except RuntimeError as e: # Memory growth must be set before GPUs have been initialized. print(e) def main(unused_argv): """Parse gin config and run ddsp training, evaluation, or sampling.""" restore_dir = os.path.expanduser(FLAGS.restore_dir) save_dir = os.path.expanduser(FLAGS.save_dir) # If no separate restore directory is given, use the save directory. restore_dir = save_dir if not restore_dir else restore_dir logging.info('Restore Dir: %s', restore_dir) logging.info('Save Dir: %s', save_dir) parse_gin(restore_dir) if FLAGS.allow_memory_growth: allow_memory_growth() # Training. if FLAGS.mode == 'train': strategy = train_util.get_strategy(tpu=FLAGS.tpu, gpus=FLAGS.gpu) with strategy.scope(): model = models.get_model() trainer = trainers.Trainer(model, strategy) train_util.train(data_provider=gin.REQUIRED, trainer=trainer, save_dir=save_dir, restore_dir=restore_dir) # Evaluation. elif FLAGS.mode == 'eval': model = models.get_model() delay_start() eval_util.evaluate(data_provider=gin.REQUIRED, model=model, save_dir=save_dir, restore_dir=restore_dir, run_once=FLAGS.run_once) # Sampling. elif FLAGS.mode == 'sample': model = models.get_model() delay_start() eval_util.sample(data_provider=gin.REQUIRED, model=model, save_dir=save_dir, restore_dir=restore_dir, run_once=FLAGS.run_once) def console_entry_point(): """From pip installed script.""" app.run(main) if __name__ == '__main__': console_entry_point()
apache-2.0
150,508,015,260,629,540
35.261682
101
0.628737
false
jhajek/euca2ools
euca2ools/commands/autoscaling/deleteautoscalinggroup.py
6
2065
# Copyright 2013 Eucalyptus Systems, Inc. # # Redistribution and use of this software in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse from euca2ools.commands.autoscaling import AutoScalingRequest from requestbuilder import Arg class DeleteAutoScalingGroup(AutoScalingRequest): DESCRIPTION = 'Delete an auto-scaling group' ARGS = [Arg('AutoScalingGroupName', metavar='ASGROUP', help='name of the auto-scaling group to delete (required)'), Arg('-d', '--force-delete', dest='ForceDelete', action='store_const', const='true', help='''delete the group and all of its instances without waiting for all instances to terminate'''), Arg('-f', '--force', action='store_true', route_to=None, help=argparse.SUPPRESS)] # for compatibility
bsd-2-clause
1,306,719,623,280,529,700
50.625
76
0.73753
false
faush01/plugin.video.embycon
resources/lib/menu_functions.py
1
46090
# coding=utf-8 # Gnu General Public License - see LICENSE.TXT import os import sys import json import urllib import base64 import xbmcplugin import xbmcaddon import xbmc from .downloadutils import DownloadUtils from .kodi_utils import add_menu_directory_item, HomeWindow from .simple_logging import SimpleLogging from .translation import string_load from .datamanager import DataManager from .utils import get_art, get_emby_url from .custom_nodes import CustomNode, load_custom_nodes log = SimpleLogging(__name__) downloadUtils = DownloadUtils() __addon__ = xbmcaddon.Addon() def show_movie_tags(menu_params): log.debug("show_movie_tags: {0}", menu_params) parent_id = menu_params.get("parent_id") url_params = {} url_params["UserId"] = "{userid}" url_params["SortBy"] = "SortName" url_params["SortOrder"] = "Ascending" url_params["CollapseBoxSetItems"] = False url_params["GroupItemsIntoCollections"] = False url_params["Recursive"] = True url_params["IsMissing"] = False url_params["EnableTotalRecordCount"] = False url_params["EnableUserData"] = False url_params["IncludeItemTypes"] = "Movie" if parent_id: url_params["ParentId"] = parent_id url = get_emby_url("{server}/emby/Tags", url_params) data_manager = DataManager() result = data_manager.get_content(url) if not result: return tags = result.get("Items") log.debug("Tags : {0}", result) for tag in tags: name = tag["Name"] tag_id = tag["Id"] url_params = {} url_params["IncludeItemTypes"] = "Movie" url_params["CollapseBoxSetItems"] = False url_params["GroupItemsIntoCollections"] = False url_params["Recursive"] = True url_params["IsMissing"] = False url_params["ImageTypeLimit"] = 1 url_params["SortBy"] = "Name" url_params["SortOrder"] = "Ascending" url_params["Fields"] = "{field_filters}" url_params["TagIds"] = tag_id if parent_id: menu_params["ParentId"] = parent_id item_url = get_emby_url("{server}/emby/Users/{userid}/Items", url_params) art = {"thumb": "http://localhost:24276/" + base64.b64encode(item_url)} content_url = urllib.quote(item_url) url = sys.argv[0] + ("?url=" + content_url + "&mode=GET_CONTENT" + "&media_type=movies") log.debug("addMenuDirectoryItem: {0} - {1}", name, url) add_menu_directory_item(name, url, art=art) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_movie_years(menu_params): log.debug("show_movie_years: {0}", menu_params) parent_id = menu_params.get("parent_id") group_into_decades = menu_params.get("group") == "true" url_params = {} url_params["UserId"] = "{userid}" url_params["SortBy"] = "SortName" url_params["SortOrder"] = "Ascending" url_params["CollapseBoxSetItems"] = False url_params["GroupItemsIntoCollections"] = False url_params["Recursive"] = True url_params["IsMissing"] = False url_params["EnableTotalRecordCount"] = False url_params["EnableUserData"] = False url_params["IncludeItemTypes"] = "Movie" if parent_id: url_params["ParentId"] = parent_id url = get_emby_url("{server}/emby/Years", url_params) data_manager = DataManager() result = data_manager.get_content(url) if not result: return years_list = result.get("Items") result_names = {} for year in years_list: name = year.get("Name") if group_into_decades: year_int = int(name) decade = str(year_int - year_int % 10) decade_end = str((year_int - year_int % 10) + 9) decade_name = decade + "-" + decade_end result_names[decade_name] = year_int - year_int % 10 else: result_names[name] = [name] keys = list(result_names.keys()) keys.sort() if group_into_decades: for decade_key in keys: year_list = [] decade_start = result_names[decade_key] for include_year in range(decade_start, decade_start + 10): year_list.append(str(include_year)) result_names[decade_key] = year_list for year in keys: name = year value = ",".join(result_names[year]) params = {} params["IncludeItemTypes"] = "Movie" params["CollapseBoxSetItems"] = False params["GroupItemsIntoCollections"] = False params["Recursive"] = True params["IsMissing"] = False params["ImageTypeLimit"] = 1 params["SortBy"] = "Name" params["SortOrder"] = "Ascending" params["Fields"] = "{field_filters}" params["Years"] = value if parent_id: params["ParentId"] = parent_id item_url = get_emby_url("{server}/emby/Users/{userid}/Items", params) art = {"thumb": "http://localhost:24276/" + base64.b64encode(item_url)} content_url = urllib.quote(item_url) url = sys.argv[0] + ("?url=" + content_url + "&mode=GET_CONTENT" + "&media_type=movies") log.debug("addMenuDirectoryItem: {0} - {1}", name, url) add_menu_directory_item(name, url, art=art) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_movie_pages(menu_params): log.debug("showMoviePages: {0}", menu_params) parent_id = menu_params.get("parent_id") settings = xbmcaddon.Addon() group_movies = settings.getSetting('group_movies') == "true" params = {} params["IncludeItemTypes"] = "Movie" params["CollapseBoxSetItems"] = str(group_movies) params["GroupItemsIntoCollections"] = str(group_movies) params["Recursive"] = True params["IsMissing"] = False params["ImageTypeLimit"] = 0 if parent_id: params["ParentId"] = parent_id url = get_emby_url("{server}/emby/Users/{userid}/Items", params) data_manager = DataManager() result = data_manager.get_content(url) if result is None: return total_results = result.get("TotalRecordCount", 0) log.debug("showMoviePages TotalRecordCount {0}", total_results) if result == 0: return page_limit = int(settings.getSetting('moviePageSize')) if page_limit == 0: page_limit = 20 start_index = 0 collections = [] while start_index < total_results: params = {} params["IncludeItemTypes"] = "Movie" params["CollapseBoxSetItems"] = str(group_movies) params["GroupItemsIntoCollections"] = str(group_movies) params["Recursive"] = True params["IsMissing"] = False params["ImageTypeLimit"] = 1 params["SortBy"] = "Name" params["SortOrder"] = "Ascending" params["Fields"] = "{field_filters}" params["StartIndex"] = start_index params["Limit"] = page_limit if parent_id: params["ParentId"] = parent_id item_url = get_emby_url("{server}/emby/Users/{userid}/Items", params) page_upper = start_index + page_limit if page_upper > total_results: page_upper = total_results item_data = {} item_data['title'] = "Page (" + str(start_index + 1) + " - " + str(page_upper) + ")" item_data['path'] = item_url item_data['media_type'] = 'movies' item_data["art"] = {"thumb": "http://localhost:24276/" + base64.b64encode(item_url)} collections.append(item_data) start_index = start_index + page_limit for collection in collections: content_url = urllib.quote(collection['path']) url = sys.argv[0] + ("?url=" + content_url + "&mode=GET_CONTENT" + "&media_type=" + collection["media_type"]) log.debug("addMenuDirectoryItem: {0} - {1} - {2}", collection.get('title'), url, collection.get("art")) add_menu_directory_item(collection.get('title', string_load(30250)), url, art=collection.get("art")) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_genre_list(menu_params): log.debug("showGenreList: {0}", menu_params) server = downloadUtils.get_server() if server is None: return parent_id = menu_params.get("parent_id") item_type = menu_params.get("item_type") kodi_type = "Movies" emby_type = "Movie" if item_type is not None and item_type == "tvshow": emby_type = "Series" kodi_type = "tvshows" params = {} params["IncludeItemTypes"] = emby_type params["UserId"] = "{userid}" params["Recursive"] = True params["SortBy"] = "Name" params["SortOrder"] = "Ascending" params["ImageTypeLimit"] = 1 if parent_id is not None: params["ParentId"] = parent_id url = get_emby_url("{server}/emby/Genres", params) data_manager = DataManager() result = data_manager.get_content(url) if result is not None: result = result.get("Items") else: result = [] settings = xbmcaddon.Addon() group_movies = settings.getSetting('group_movies') == "true" collections = [] xbmcplugin.setContent(int(sys.argv[1]), 'genres') for genre in result: item_data = {} item_data['title'] = genre.get("Name") item_data['media_type'] = kodi_type # art = getArt(item=genre, server=server) # item_data['art'] = art params = {} params["Recursive"] = True params["CollapseBoxSetItems"] = str(group_movies) params["GroupItemsIntoCollections"] = str(group_movies) params["GenreIds"] = genre.get("Id") params["IncludeItemTypes"] = emby_type params["ImageTypeLimit"] = 1 params["Fields"] = "{field_filters}" if parent_id is not None: params["ParentId"] = parent_id url = get_emby_url("{server}/emby/Users/{userid}/Items", params) art = {"thumb": "http://localhost:24276/" + base64.b64encode(url)} item_data['art'] = art item_data['path'] = url collections.append(item_data) for collection in collections: url = sys.argv[0] + ("?url=" + urllib.quote(collection['path']) + "&mode=GET_CONTENT" + "&media_type=" + collection["media_type"]) log.debug("addMenuDirectoryItem: {0} - {1} - {2}", collection.get('title'), url, collection.get("art")) add_menu_directory_item(collection.get('title', string_load(30250)), url, art=collection.get("art")) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_movie_alpha_list(menu_params): log.debug("== ENTER: showMovieAlphaList() ==") xbmcplugin.setContent(int(sys.argv[1]), 'movies') settings = xbmcaddon.Addon() server = downloadUtils.get_server() if server is None: return group_movies = settings.getSetting('group_movies') == "true" parent_id = menu_params.get("parent_id") url_params = {} url_params["IncludeItemTypes"] = "Movie" url_params["Recursive"] = True url_params["GroupItemsIntoCollections"] = group_movies url_params["UserId"] = "{userid}" url_params["SortBy"] = "Name" url_params["SortOrder"] = "Ascending" if parent_id is not None: url_params["ParentId"] = parent_id prefix_url = get_emby_url("{server}/emby/Items/Prefixes", url_params) data_manager = DataManager() result = data_manager.get_content(prefix_url) if not result: return alpha_list = [] for prefix in result: alpha_list.append(prefix.get("Name")) collections = [] for alphaName in alpha_list: item_data = {} item_data['title'] = alphaName item_data['media_type'] = "Movies" params = {} params["Fields"] = "{field_filters}" params["CollapseBoxSetItems"] = group_movies params["GroupItemsIntoCollections"] = group_movies params["Recursive"] = True params["IncludeItemTypes"] = "Movie" params["SortBy"] = "Name" params["SortOrder"] = "Ascending" params["ImageTypeLimit"] = 1 if parent_id is not None: params["ParentId"] = parent_id if alphaName == "#": params["NameLessThan"] = "A" else: params["NameStartsWith"] = alphaName url = get_emby_url("{server}/emby/Users/{userid}/Items", params) item_data['path'] = url art = {"thumb": "http://localhost:24276/" + base64.b64encode(url)} item_data['art'] = art collections.append(item_data) for collection in collections: url = (sys.argv[0] + "?url=" + urllib.quote(collection['path']) + "&mode=GET_CONTENT&media_type=" + collection["media_type"]) log.debug("addMenuDirectoryItem: {0} ({1})", collection.get('title'), url) add_menu_directory_item(collection.get('title', string_load(30250)), url, art=collection.get("art")) xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_tvshow_alpha_list(menu_params): log.debug("== ENTER: showTvShowAlphaList() ==") server = downloadUtils.get_server() if server is None: return parent_id = menu_params.get("parent_id") url_params = {} url_params["IncludeItemTypes"] = "Series" url_params["Recursive"] = True url_params["UserId"] = "{userid}" url_params["SortBy"] = "Name" url_params["SortOrder"] = "Ascending" if parent_id is not None: menu_params["ParentId"] = parent_id prefix_url = get_emby_url("{server}/emby/Items/Prefixes", url_params) data_manager = DataManager() result = data_manager.get_content(prefix_url) if not result: return alpha_list = [] for prefix in result: alpha_list.append(prefix.get("Name")) collections = [] for alpha_name in alpha_list: item_data = {} item_data['title'] = alpha_name item_data['media_type'] = "tvshows" params = {} params["Fields"] = "{field_filters}" params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Series" params["SortBy"] = "Name" params["SortOrder"] = "Ascending" params["Recursive"] = True params["IsMissing"] = False if parent_id is not None: params["ParentId"] = parent_id if alpha_name == "#": params["NameLessThan"] = "A" else: params["NameStartsWith"] = alpha_name path = get_emby_url("{server}/emby/Users/{userid}/Items", params) item_data['path'] = path art = {"thumb": "http://localhost:24276/" + base64.b64encode(path)} item_data['art'] = art collections.append(item_data) for collection in collections: url = (sys.argv[0] + "?url=" + urllib.quote(collection['path']) + "&mode=GET_CONTENT&media_type=" + collection["media_type"]) log.debug("addMenuDirectoryItem: {0} ({1})", collection.get('title'), url) add_menu_directory_item(collection.get('title', string_load(30250)), url, art=collection.get("art")) xbmcplugin.endOfDirectory(int(sys.argv[1])) def display_main_menu(): handle = int(sys.argv[1]) xbmcplugin.setContent(handle, 'files') add_menu_directory_item(string_load(30406), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=library") add_menu_directory_item(string_load(30407), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=show_global_types") add_menu_directory_item(string_load(30408), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=show_custom_widgets") add_menu_directory_item(string_load(30409), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=addon_items") add_menu_directory_item("Custom Nodes", "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=custom_nodes") xbmcplugin.endOfDirectory(handle) def display_menu(params): menu_type = params.get("type") if menu_type == "library": display_library_views(params) elif menu_type == "library_item": display_library_view(params) elif menu_type == "show_global_types": show_global_types(params) elif menu_type == "global_list_movies": display_movies_type(params, None) elif menu_type == "global_list_tvshows": display_tvshow_type(params, None) elif menu_type == "show_custom_widgets": show_widgets() elif menu_type == "addon_items": display_addon_menu(params) elif menu_type == "show_movie_years": show_movie_years(params) elif menu_type == "show_movie_tags": show_movie_tags(params) elif menu_type == "custom_nodes": show_custom_nodes(params) elif menu_type == "create_new_node": create_new_node(params) def create_new_node(params): log.debug("Create New Custom Node") addon = xbmcaddon.Addon() addon_path = addon.getAddonInfo('path') skin_path = xbmc.translatePath(os.path.join(addon_path)) custom_node = CustomNode("CustomNode.xml", skin_path, "default", "720p") #custom_node.setActionItems(action_items) custom_node.doModal() def get_node_url(node_info): log.debug("get_node_url : {0}", node_info) base_params = {} base_params["Fields"] = "{field_filters}" base_params["ImageTypeLimit"] = 1 base_params["IsMissing"] = False if "item_parent" in node_info and node_info["item_parent"]: base_params["ParentId"] = node_info["item_parent"] if "recursive" in node_info and node_info["recursive"]: base_params["Recursive"] = node_info["recursive"] if "item_type" in node_info and node_info["item_type"]: base_params["IncludeItemTypes"] = node_info["item_type"] if "item_limit" in node_info and node_info["item_limit"]: base_params["Limit"] = node_info["item_limit"] if "group" in node_info and node_info["group"]: base_params["GroupItemsIntoCollections"] = node_info["group"] base_params["CollapseBoxSetItems"] = node_info["group"] if "watched" in node_info and node_info["watched"]: base_params["IsPlayed"] = node_info["watched"] if "inprogress" in node_info and node_info["inprogress"] == "True": base_params["Filters"] = "IsResumable" if "sortby" in node_info and node_info["sortby"]: base_params["SortBy"] = node_info["sortby"] if "sortorder" in node_info and node_info["sortorder"]: base_params["SortOrder"] = node_info["sortorder"] path = get_emby_url("{server}/emby/Users/{userid}/Items", base_params) return path def show_custom_nodes(params): log.debug("Show Custom Nodes") add_menu_directory_item("[Edit Nodes]", "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=create_new_node") # show custom nodes custom_nodes = load_custom_nodes() node_names = [] for node_name in custom_nodes: node_names.append(node_name) node_names.sort() for node_name in node_names: encoded_name = urllib.quote_plus(node_name) add_menu_directory_item(node_name, "plugin://plugin.video.embycon/?mode=SHOW_NODE_CONTENT&node_name=" + encoded_name) handle = int(sys.argv[1]) xbmcplugin.endOfDirectory(handle) def show_global_types(params): handle = int(sys.argv[1]) add_menu_directory_item(string_load(30256), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=global_list_movies") add_menu_directory_item(string_load(30261), "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=global_list_tvshows") xbmcplugin.endOfDirectory(handle) def display_homevideos_type(menu_params, view): handle = int(sys.argv[1]) view_name = view.get("Name") settings = xbmcaddon.Addon() show_x_filtered_items = settings.getSetting("show_x_filtered_items") hide_watched = settings.getSetting("hide_watched") == "true" # All Home Movies base_params = {} base_params["ParentId"] = view.get("Id") base_params["Recursive"] = False base_params["IsMissing"] = False base_params["Fields"] = "{field_filters}" base_params["ImageTypeLimit"] = 1 path = get_emby_url("{server}/emby/Users/{userid}/Items", base_params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=homevideos" add_menu_directory_item(view_name + string_load(30405), url) # In progress home movies params = {} params.update(base_params) params["Filters"] = "IsResumable" params["Recursive"] = True params["Limit"] = "{ItemLimit}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=homevideos" add_menu_directory_item(view_name + string_load(30267) + " (" + show_x_filtered_items + ")", url) # Recently added params = {} params.update(base_params) params["Recursive"] = True params["SortBy"] = "DateCreated" params["SortOrder"] = "Descending" params["Filters"] = "IsNotFolder" if hide_watched: params["IsPlayed"] = False params["Limit"] = "{ItemLimit}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=homevideos" add_menu_directory_item(view_name + string_load(30268) + " (" + show_x_filtered_items + ")", url) xbmcplugin.endOfDirectory(handle) def display_addon_menu(params): add_menu_directory_item(string_load(30246), "plugin://plugin.video.embycon/?mode=SEARCH") add_menu_directory_item(string_load(30017), "plugin://plugin.video.embycon/?mode=SHOW_SERVER_SESSIONS") add_menu_directory_item(string_load(30012), "plugin://plugin.video.embycon/?mode=CHANGE_USER") add_menu_directory_item(string_load(30011), "plugin://plugin.video.embycon/?mode=DETECT_SERVER_USER") add_menu_directory_item(string_load(30435), "plugin://plugin.video.embycon/?mode=DETECT_CONNECTION_SPEED") add_menu_directory_item(string_load(30254), "plugin://plugin.video.embycon/?mode=SHOW_SETTINGS") add_menu_directory_item(string_load(30395), "plugin://plugin.video.embycon/?mode=CLEAR_CACHE") add_menu_directory_item(string_load(30293), "plugin://plugin.video.embycon/?mode=CACHE_ARTWORK") # add_menu_directory_item("Clone default skin", "plugin://plugin.video.embycon/?mode=CLONE_SKIN") handle = int(sys.argv[1]) xbmcplugin.endOfDirectory(handle) def display_tvshow_type(menu_params, view): handle = int(sys.argv[1]) view_name = string_load(30261) if view is not None: view_name = view.get("Name") settings = xbmcaddon.Addon() show_x_filtered_items = settings.getSetting("show_x_filtered_items") # All TV Shows base_params = {} if view is not None: base_params["ParentId"] = view.get("Id") base_params["Fields"] = "{field_filters}" base_params["ImageTypeLimit"] = 1 base_params["IsMissing"] = False base_params["IncludeItemTypes"] = "Series" base_params["Recursive"] = True path = get_emby_url("{server}/emby/Users/{userid}/Items", base_params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=tvshows" add_menu_directory_item(view_name + string_load(30405), url) # Favorite TV Shows params = {} params.update(base_params) params["Filters"] = "IsFavorite" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=tvshows" add_menu_directory_item(view_name + string_load(30414), url) # Tv Shows with unplayed params = {} params.update(base_params) params["IsPlayed"] = False path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=tvshows" add_menu_directory_item(view_name + string_load(30285), url) # In progress episodes params = {} params.update(base_params) params["Limit"] = "{ItemLimit}" params["SortBy"] = "DatePlayed" params["SortOrder"] = "Descending" params["Filters"] = "IsResumable" params["IncludeItemTypes"] = "Episode" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=Episodes&sort=none" url += "&name_format=" + urllib.quote('Episode|episode_name_format') add_menu_directory_item(view_name + string_load(30267) + " (" + show_x_filtered_items + ")", url) # Latest Episodes params = {} params.update(base_params) params["Limit"] = "{ItemLimit}" params["SortBy"] = "DateCreated" params["SortOrder"] = "Descending" params["IncludeItemTypes"] = "Episode" path = get_emby_url("{server}/emby/Users/{userid}/Items/Latest", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=tvshows&sort=none" add_menu_directory_item(view_name + string_load(30288) + " (" + show_x_filtered_items + ")", url) # Recently Added params = {} params.update(base_params) params["Limit"] = "{ItemLimit}" params["SortBy"] = "DateCreated" params["SortOrder"] = "Descending" params["Filters"] = "IsNotFolder" params["IncludeItemTypes"] = "Episode" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=Episodes&sort=none" url += "&name_format=" + urllib.quote('Episode|episode_name_format') add_menu_directory_item(view_name + string_load(30268) + " (" + show_x_filtered_items + ")", url) # Next Up Episodes params = {} params.update(base_params) params["Limit"] = "{ItemLimit}" params["Userid"] = "{userid}" params["SortBy"] = "DateCreated" params["SortOrder"] = "Descending" params["Filters"] = "IsNotFolder" params["IncludeItemTypes"] = "Episode" params["Legacynextup"] = "true" path = get_emby_url("{server}/emby/Shows/NextUp", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=Episodes&sort=none" url += "&name_format=" + urllib.quote('Episode|episode_name_format') add_menu_directory_item(view_name + string_load(30278) + " (" + show_x_filtered_items + ")", url) # TV Show Genres path = "plugin://plugin.video.embycon/?mode=GENRES&item_type=tvshow" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30325), path) # TV Show Alpha picker path = "plugin://plugin.video.embycon/?mode=TVSHOW_ALPHA" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30404), path) xbmcplugin.endOfDirectory(handle) def display_music_type(menu_params, view): handle = int(sys.argv[1]) view_name = view.get("Name") settings = xbmcaddon.Addon() show_x_filtered_items = settings.getSetting("show_x_filtered_items") # all albums params = {} params["ParentId"] = view.get("Id") params["Recursive"] = True params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "MusicAlbum" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=MusicAlbums" add_menu_directory_item(view_name + string_load(30320), url) # recently added params = {} params["ParentId"] = view.get("Id") params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Audio" params["Limit"] = "{ItemLimit}" path = get_emby_url("{server}/emby/Users/{userid}/Items/Latest", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=MusicAlbums" add_menu_directory_item(view_name + string_load(30268) + " (" + show_x_filtered_items + ")", url) # recently played params = {} params["ParentId"] = view.get("Id") params["Recursive"] = True params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Audio" params["Limit"] = "{ItemLimit}" params["IsPlayed"] = True params["SortBy"] = "DatePlayed" params["SortOrder"] = "Descending" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=MusicAlbum" add_menu_directory_item(view_name + string_load(30349) + " (" + show_x_filtered_items + ")", url) # most played params = {} params["ParentId"] = view.get("Id") params["Recursive"] = True params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Audio" params["Limit"] = "{ItemLimit}" params["IsPlayed"] = True params["SortBy"] = "PlayCount" params["SortOrder"] = "Descending" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=MusicAlbum" add_menu_directory_item(view_name + string_load(30353) + " (" + show_x_filtered_items + ")", url) # artists params = {} params["ParentId"] = view.get("Id") params["Recursive"] = True params["ImageTypeLimit"] = 1 path = get_emby_url("{server}/emby/Artists/AlbumArtists", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=MusicArtists" add_menu_directory_item(view_name + string_load(30321), url) xbmcplugin.endOfDirectory(handle) def display_musicvideos_type(params, view): handle = int(sys.argv[1]) xbmcplugin.setContent(handle, 'files') view_name = view.get("Name") # artists params = {} params["ParentId"] = view.get("Id") params["Recursive"] = False params["ImageTypeLimit"] = 1 params["IsMissing"] = False params["Fields"] = "{field_filters}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=musicvideos" add_menu_directory_item(view_name + string_load(30405), url) xbmcplugin.endOfDirectory(handle) def display_livetv_type(menu_params, view): handle = int(sys.argv[1]) xbmcplugin.setContent(handle, 'files') view_name = view.get("Name") # channels params = {} params["UserId"] = "{userid}" params["Recursive"] = False params["ImageTypeLimit"] = 1 params["Fields"] = "{field_filters}" path = get_emby_url("{server}/emby/LiveTv/Channels", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=livetv" add_menu_directory_item(view_name + string_load(30360), url) # programs params = {} params["UserId"] = "{userid}" params["IsAiring"] = True params["ImageTypeLimit"] = 1 params["Fields"] = "ChannelInfo,{field_filters}" params["EnableTotalRecordCount"] = False path = get_emby_url("{server}/emby/LiveTv/Programs/Recommended", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=livetv" add_menu_directory_item(view_name + string_load(30361), url) # recordings params = {} params["UserId"] = "{userid}" params["Recursive"] = False params["ImageTypeLimit"] = 1 params["Fields"] = "{field_filters}" params["EnableTotalRecordCount"] = False path = get_emby_url("{server}/emby/LiveTv/Recordings", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=livetv" add_menu_directory_item(view_name + string_load(30362), url) xbmcplugin.endOfDirectory(handle) def display_movies_type(menu_params, view): handle = int(sys.argv[1]) xbmcplugin.setContent(handle, 'files') view_name = string_load(30256) if view is not None: view_name = view.get("Name") settings = xbmcaddon.Addon() show_x_filtered_items = settings.getSetting("show_x_filtered_items") group_movies = settings.getSetting('group_movies') == "true" hide_watched = settings.getSetting("hide_watched") == "true" base_params = {} if view is not None: base_params["ParentId"] = view.get("Id") base_params["IncludeItemTypes"] = "Movie" base_params["CollapseBoxSetItems"] = str(group_movies) base_params["GroupItemsIntoCollections"] = str(group_movies) base_params["Recursive"] = True base_params["IsMissing"] = False base_params["Fields"] = "{field_filters}" base_params["ImageTypeLimit"] = 1 # All Movies path = get_emby_url("{server}/emby/Users/{userid}/Items", base_params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies" add_menu_directory_item(view_name + string_load(30405), url) # Favorite Movies params = {} params.update(base_params) params["CollapseBoxSetItems"] = False params["GroupItemsIntoCollections"] = False params["Filters"] = "IsFavorite" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies" add_menu_directory_item(view_name + string_load(30414), url) # Unwatched Movies params = {} params.update(base_params) params["CollapseBoxSetItems"] = False params["GroupItemsIntoCollections"] = False params["IsPlayed"] = False path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies" add_menu_directory_item(view_name + string_load(30285), url) # Recently Watched Movies params = {} params.update(base_params) params["IsPlayed"] = True params["SortBy"] = "DatePlayed" params["SortOrder"] = "Descending" params["CollapseBoxSetItems"] = False params["GroupItemsIntoCollections"] = False params["Limit"] = "{ItemLimit}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies&sort=none" add_menu_directory_item(view_name + string_load(30349) + " (" + show_x_filtered_items + ")", url) # Resumable Movies params = {} params.update(base_params) params["Filters"] = "IsResumable" params["SortBy"] = "DatePlayed" params["SortOrder"] = "Descending" params["Limit"] = "{ItemLimit}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies&sort=none" add_menu_directory_item(view_name + string_load(30267) + " (" + show_x_filtered_items + ")", url) # Recently Added Movies params = {} params.update(base_params) if hide_watched: params["IsPlayed"] = False params["SortBy"] = "DateCreated" params["SortOrder"] = "Descending" params["Filters"] = "IsNotFolder" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=movies&sort=none" add_menu_directory_item(view_name + string_load(30268) + " (" + show_x_filtered_items + ")", url) # Collections params = {} if view is not None: params["ParentId"] = view.get("Id") params["Fields"] = "{field_filters}" params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Boxset" params["Recursive"] = True path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=boxsets" add_menu_directory_item(view_name + string_load(30410), url) # Favorite Collections params["Filters"] = "IsFavorite" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=boxsets" add_menu_directory_item(view_name + string_load(30415), url) # Genres path = "plugin://plugin.video.embycon/?mode=GENRES&item_type=movie" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30325), path) # Pages path = "plugin://plugin.video.embycon/?mode=MOVIE_PAGES" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30397), path) # Alpha Picker path = "plugin://plugin.video.embycon/?mode=MOVIE_ALPHA" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30404), path) # Years path = "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=show_movie_years" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30411), path) # Decades path = "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=show_movie_years&group=true" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30412), path) # Tags path = "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=show_movie_tags" if view is not None: path += "&parent_id=" + view.get("Id") add_menu_directory_item(view_name + string_load(30413), path) xbmcplugin.endOfDirectory(handle) def display_library_views(params): handle = int(sys.argv[1]) xbmcplugin.setContent(handle, 'files') server = downloadUtils.get_server() if server is None: return data_manager = DataManager() views_url = "{server}/emby/Users/{userid}/Views?format=json" views = data_manager.get_content(views_url) if not views: return [] views = views.get("Items") view_types = ["movies", "tvshows", "homevideos", "boxsets", "playlists", "music", "musicvideos", "livetv", "Channel"] for view in views: collection_type = view.get('CollectionType', None) item_type = view.get('Type', None) if collection_type in view_types or item_type == "Channel": view_name = view.get("Name") art = get_art(item=view, server=server) art['landscape'] = downloadUtils.get_artwork(view, "Primary", server=server) plugin_path = "plugin://plugin.video.embycon/?mode=SHOW_ADDON_MENU&type=library_item&view_id=" + view.get("Id") if collection_type == "playlists": plugin_path = get_playlist_path(view) elif collection_type == "boxsets": plugin_path = get_collection_path(view) elif collection_type is None and view.get('Type', None) == "Channel": plugin_path = get_channel_path(view) add_menu_directory_item(view_name, plugin_path, art=art) xbmcplugin.endOfDirectory(handle) def get_playlist_path(view_info): params = {} params["ParentId"] = view_info.get("Id") params["Fields"] = "{field_filters}" params["ImageTypeLimit"] = 1 path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=playlists" return url def get_collection_path(view_info): params = {} params["ParentId"] = view_info.get("Id") params["Fields"] = "{field_filters}" params["ImageTypeLimit"] = 1 params["IncludeItemTypes"] = "Boxset" params["CollapseBoxSetItems"] = True params["GroupItemsIntoCollections"] = True params["Recursive"] = True params["IsMissing"] = False path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=boxsets" return url def get_channel_path(view): params = {} params["ParentId"] = view.get("Id") params["IsMissing"] = False params["ImageTypeLimit"] = 1 params["Fields"] = "{field_filters}" path = get_emby_url("{server}/emby/Users/{userid}/Items", params) url = sys.argv[0] + "?url=" + urllib.quote(path) + "&mode=GET_CONTENT&media_type=files" return url def display_library_view(params): node_id = params.get("view_id") view_info_url = "{server}/emby/Users/{userid}/Items/" + node_id data_manager = DataManager() view_info = data_manager.get_content(view_info_url) log.debug("VIEW_INFO : {0}", view_info) collection_type = view_info.get("CollectionType", None) if collection_type == "movies": display_movies_type(params, view_info) elif collection_type == "tvshows": display_tvshow_type(params, view_info) elif collection_type == "homevideos": display_homevideos_type(params, view_info) elif collection_type == "music": display_music_type(params, view_info) elif collection_type == "musicvideos": display_musicvideos_type(params, view_info) elif collection_type == "livetv": display_livetv_type(params, view_info) def show_widgets(): settings = xbmcaddon.Addon() show_x_filtered_items = settings.getSetting("show_x_filtered_items") add_menu_directory_item("All Movies", 'plugin://plugin.video.embycon/library/movies') add_menu_directory_item(string_load(30257) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=recent_movies') add_menu_directory_item(string_load(30258) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=inprogress_movies') add_menu_directory_item(string_load(30269) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=random_movies') add_menu_directory_item(string_load(30403) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=movie_recommendations') add_menu_directory_item(string_load(30287) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=recent_tvshows') add_menu_directory_item(string_load(30263) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=recent_episodes') add_menu_directory_item(string_load(30264) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=inprogress_episodes') add_menu_directory_item(string_load(30265) + " (" + show_x_filtered_items + ")", 'plugin://plugin.video.embycon/?mode=WIDGET_CONTENT&type=nextup_episodes') xbmcplugin.endOfDirectory(int(sys.argv[1])) def show_search(): add_menu_directory_item(string_load(30231), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=Movie') add_menu_directory_item(string_load(30229), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=Series') add_menu_directory_item(string_load(30235), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=Episode') add_menu_directory_item(string_load(30337), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=Audio') add_menu_directory_item(string_load(30338), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=MusicAlbum') add_menu_directory_item(string_load(30339), 'plugin://plugin.video.embycon/?mode=NEW_SEARCH&item_type=Person') xbmcplugin.endOfDirectory(int(sys.argv[1])) def set_library_window_values(force=False): log.debug("set_library_window_values Called forced={0}", force) home_window = HomeWindow() already_set = home_window.get_property("view_item.0.name") if not force and already_set: return for index in range(0, 20): home_window.clear_property("view_item.%i.name" % index) home_window.clear_property("view_item.%i.id" % index) home_window.clear_property("view_item.%i.type" % index) home_window.clear_property("view_item.%i.thumb" % index) data_manager = DataManager() url = "{server}/emby/Users/{userid}/Views" result = data_manager.get_content(url) if result is None: return result = result.get("Items") server = downloadUtils.get_server() index = 0 for item in result: collection_type = item.get("CollectionType") if collection_type in ["movies", "boxsets", "music", "tvshows"]: name = item.get("Name") item_id = item.get("Id") # plugin.video.embycon- prop_name = "view_item.%i.name" % index home_window.set_property(prop_name, name) log.debug("set_library_window_values: plugin.video.embycon-{0}={1}", prop_name, name) prop_name = "view_item.%i.id" % index home_window.set_property(prop_name, item_id) log.debug("set_library_window_values: plugin.video.embycon-{0}={1}", prop_name, item_id) prop_name = "view_item.%i.type" % index home_window.set_property(prop_name, collection_type) log.debug("set_library_window_values: plugin.video.embycon-{0}={1}", prop_name, collection_type) thumb = downloadUtils.get_artwork(item, "Primary", server=server) prop_name = "view_item.%i.thumb" % index home_window.set_property(prop_name, thumb) log.debug("set_library_window_values: plugin.video.embycon-{0}={1}", prop_name, thumb) index += 1
gpl-2.0
-4,794,939,632,383,615,000
36.199354
123
0.62263
false
bzero/bitex
apps/pyblinktrade/pyblinktrade/project_options.py
2
1297
class ProjectOptions(object): def __init__(self, config, section): self.config = config self.section = section def make_getters(tag): @property def _getter(self): raw_str = self.config.get(self.section, tag) try: return self.config.getint(self.section, tag) except Exception: pass try: return self.config.getfloat(self.section, tag) except Exception: pass try: return self.config.getboolean(self.section, tag) except Exception: pass return raw_str return _getter for k,v in self.items(): _getter = make_getters(k) setattr(ProjectOptions, k ,_getter) def has_option(self, attribute): return self.config.has_option(self.section, attribute) def get(self, attribute): return self.config.get(self.section, attribute) def getint(self, attribute): return self.config.getint(self.section, attribute) def getfloat(self, attribute): return self.config.getfloat(self.section, attribute) def getboolean(self, attribute): return self.config.getboolean(self.section, attribute) def items(self): return self.config.items(self.section) def options(self): return self.config.options(self.section)
gpl-3.0
8,143,751,695,777,203,000
29.186047
58
0.650732
false
phil-lopreiato/the-blue-alliance
tests/test_match_suggestion_accepter.py
5
2158
import unittest2 from google.appengine.ext import ndb from google.appengine.ext import testbed from consts.event_type import EventType from helpers.suggestions.match_suggestion_accepter import MatchSuggestionAccepter from models.account import Account from models.event import Event from models.match import Match from models.suggestion import Suggestion class TestMatchSuggestionAccepter(unittest2.TestCase): def setUp(self): self.testbed = testbed.Testbed() self.testbed.activate() self.testbed.init_datastore_v3_stub() self.testbed.init_memcache_stub() ndb.get_context().clear_cache() # Prevent data from leaking between tests self.testbed.init_taskqueue_stub(root_path=".") self.account = Account( email="[email protected]", ) self.account.put() self.suggestion = Suggestion( author=self.account.key, contents_json="{\"youtube_videos\":[\"123456\"]}", target_key="2012ct_qm1", target_model="match" ) self.suggestion.put() self.event = Event( id="2012ct", event_short="ct", year=2012, event_type_enum=EventType.REGIONAL ) self.event.put() self.match = Match( id="2012ct_qm1", alliances_json="""{"blue": {"score": -1, "teams": ["frc3464", "frc20", "frc1073"]}, "red": {"score": -1, "teams": ["frc69", "frc571", "frc176"]}}""", comp_level="qm", event=self.event.key, year=2012, set_number=1, match_number=1, team_key_names=[u'frc69', u'frc571', u'frc176', u'frc3464', u'frc20', u'frc1073'], youtube_videos=["abcdef"] ) self.match.put() def tearDown(self): self.testbed.deactivate() def test_accept_suggestions(self): MatchSuggestionAccepter.accept_suggestion(self.match, self.suggestion) match = Match.get_by_id("2012ct_qm1") self.assertTrue("abcdef" in match.youtube_videos) self.assertTrue("123456" in match.youtube_videos)
mit
347,125,214,505,883,700
31.69697
161
0.606117
false
lalinsky/picard
picard/ui/sortablecheckboxlist.py
2
4958
# -*- coding: utf-8 -*- # # Picard, the next-generation MusicBrainz tagger # Copyright (C) 2015 Laurent Monin # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. import sys from functools import partial from PyQt4 import QtGui, QtCore from PyQt4.QtCore import pyqtSignal class SortableCheckboxListWidget(QtGui.QWidget): _CHECKBOX_POS = 0 _BUTTON_UP = 1 _BUTTON_DOWN = 2 __no_emit = False changed = pyqtSignal(list) def __init__(self, parent=None): super(SortableCheckboxListWidget, self).__init__(parent) layout = QtGui.QGridLayout() layout.setHorizontalSpacing(5) layout.setVerticalSpacing(2) layout.setContentsMargins(0, 0, 0, 0) self.setLayout(layout) self.__items = [] def addItems(self, items): for item in items: self.addItem(item) def setSignals(self, row): layout = self.layout() checkbox = layout.itemAtPosition(row, self._CHECKBOX_POS).widget() up = layout.itemAtPosition(row, self._BUTTON_UP).widget() down = layout.itemAtPosition(row, self._BUTTON_DOWN).widget() checkbox.stateChanged.connect(partial(self.checkbox_toggled, row)) up.clicked.connect(partial(self.move_button_clicked, row, up=True)) down.clicked.connect(partial(self.move_button_clicked, row, up=False)) def moveItem(self, from_row, to_row): to_row = to_row % len(self.__items) self.__items[to_row], self.__items[from_row] = \ self.__items[from_row], self.__items[to_row] self.updateRow(to_row) self.updateRow(from_row) self._emit_changed() def checkbox_toggled(self, row, state): self.__items[row].setChecked(state == QtCore.Qt.Checked) self._emit_changed() def move_button_clicked(self, row, up): if up: to = row - 1 else: to = row + 1 self.moveItem(row, to) def updateRow(self, row): self.__no_emit = True item = self.__items[row] layout = self.layout() checkbox = layout.itemAtPosition(row, self._CHECKBOX_POS).widget() checkbox.setText(item.text) checkbox.setChecked(item.checked) self.__no_emit = False def addItem(self, item): self.__items.append(item) row = len(self.__items) - 1 layout = self.layout() layout.addWidget(QtGui.QCheckBox(), row, self._CHECKBOX_POS) self.updateRow(row) up_button = QtGui.QToolButton() up_button.setArrowType(QtCore.Qt.UpArrow) up_button.setMaximumSize(QtCore.QSize(16, 16)) down_button = QtGui.QToolButton() down_button.setArrowType(QtCore.Qt.DownArrow) down_button.setMaximumSize(QtCore.QSize(16, 16)) layout.addWidget(up_button, row, self._BUTTON_UP) layout.addWidget(down_button, row, self._BUTTON_DOWN) self.setSignals(row) def _emit_changed(self): if not self.__no_emit: self.changed.emit(self.__items) def clear(self): for i in reversed(range(len(self.__items))): self._remove(i) self.__items = [] def _remove(self, row): self.layout().itemAtPosition(row, self._CHECKBOX_POS).widget().setParent(None) self.layout().itemAtPosition(row, self._BUTTON_UP).widget().setParent(None) self.layout().itemAtPosition(row, self._BUTTON_DOWN).widget().setParent(None) class SortableCheckboxListItem(object): def __init__(self, text=u'', checked=False, data=None): self._checked = checked self._text = text self._data = data @property def text(self): return self._text def setText(self, text): self._text = text @property def checked(self): return self._checked def setChecked(self, state): self._checked = state @property def data(self): return self._data def setData(self, data): self._data = data def __repr__(self): params = [] params.append('text=' + repr(self.text)) params.append('checked=' + repr(self.checked)) if self.data is not None: params.append('data=' + repr(self.data)) return "%s(%s)" % (self.__class__.__name__, ", ".join(params))
gpl-2.0
-1,136,673,766,724,476,900
32.275168
86
0.629689
false
bh107/bohrium
bridge/npbackend/bohrium/blas.py
6
3140
""" Basic Linear Algebra Subprograms (BLAS) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Utilize BLAS directly from Python """ import bohrium as np from sys import stderr from . import ufuncs def __blas(name, a, b, alpha=1.0, c=None, beta=0.0, shape_matters=True): if not b is None: if not (a.ndim == 2 and b.ndim == 2): stderr.write("[ext] Matrices need to be two-dimensional.\n") return None if a.shape[1] != b.shape[0] and shape_matters: stderr.write( "[ext] Wrong shape of matrices: first argument has shape {} and second has shape {}.\n".format(a.shape, b.shape)) return None if not b.flags['C_CONTIGUOUS']: b = b.copy() else: b = np.empty(shape=(a.shape[0], a.shape[1]), dtype=a.dtype) if not a.flags['C_CONTIGUOUS']: a = a.copy() if c is None: c = np.empty(shape=(a.shape[0], b.shape[1]), dtype=a.dtype) elif not c.flags['C_CONTIGUOUS']: c = c.copy() if alpha != 1.0: a = a * alpha if beta != 0.0: c = c * beta ufuncs.extmethod(name, c, a, b) # modifies 'c' return c # All of A, B, and C are used def gemm(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * B + beta * C """ return __blas("blas_gemm", a, b, alpha, c, beta) def gemmt(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A^T * B + beta * C """ return __blas("blas_gemmt", a, b, alpha, c, beta, shape_matters=False) def symm(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * B + beta * C """ """ Notes: A is a symmetric matrix """ return __blas("blas_symm", a, b, alpha, c, beta) def hemm(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * B + beta * C """ """ Notes: A is a hermitian matrix """ return __blas("blas_hemm", a, b, alpha, c, beta) def syr2k(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * B**T + alpha * B * A**T + beta * C """ """ Notes: C is a symmetric matrix """ return __blas("blas_syr2k", a, b, alpha, c, beta) def her2k(a, b, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * B**H + conjg(alpha) * B * A**H + beta * C """ """ Notes: C is a hermitian matrix """ return __blas("blas_her2k", a, b, alpha, c, beta) # Only A and C are used def syrk(a, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * A**T + beta * C """ """ Notes: C is a symmetric matrix """ return __blas("blas_syrk", a, None, alpha, c, beta) def herk(a, alpha=1.0, c=None, beta=0.0): """ C := alpha * A * A**H + beta * C """ """ Notes: C is a hermitian matrix """ return __blas("blas_herk", a, None, alpha, c, beta) # Only A and B are used def trmm(a, b, alpha=1.0): """ B := alpha * A * B """ """ Notes: A is unit upper triangular matrix """ __blas("blas_trmm", a, b, alpha) return b def trsm(a, b): """ Solves: A * X = B """ """ Notes: A is unit upper triangular matrix """ __blas("blas_trsm", a, b) return b
apache-2.0
5,975,971,097,379,497,000
28.345794
120
0.504777
false
xian123/azure-linux-automation
remote-scripts/ConfigureDnsServer.py
3
1357
#!/usr/bin/python import argparse import sys from azuremodules import * import paramiko parser = argparse.ArgumentParser() parser.add_argument('-D', '--vnetDomain_db_filepath', help='VNET Domain db filepath', required=True) parser.add_argument('-r', '--vnetDomain_rev_filepath', help='VNET rev filepath',required=True) parser.add_argument('-v', '--HostnameDIP', help='hosts filepath',required = True) args = parser.parse_args() vnetDomain_db_filepath = str(args.vnetDomain_db_filepath) vnetDomain_rev_filepath = str(args.vnetDomain_rev_filepath) HostnameDIP=str(args.HostnameDIP) vnetDomain=(vnetDomain_db_filepath.split("/"))[len((vnetDomain_db_filepath.split("/")))-1].replace(".db","") #SAMPLE INPUT FOR --vms #HostnameDIP = 'ICA-VNETVM-Ubuntu1210PL-4-16-2013-1-2-0-role-0:192.168.4.196^ICA-VNETVM-Ubuntu1210PL-4-16-2013-1-2-0-role-1:192.168.4.132^ICA-VNETVM-Ubuntu1210PL-4-16-2013-1-2-1-role-0:192.168.4.133^ICA-VNETVM-Ubuntu1210PL-4-16-2013-1-2-1-role-1:192.168.4.197' #SETTING THE GLOBAL PARAMS.. #SetVnetGlobalParameters() #CONFIGURIG DNS SERVER CONFIGURATIONS FILES.. DNSServerStatus = AddICAVMsToDnsServer(HostnameDIP,vnetDomain_db_filepath,vnetDomain_rev_filepath) #RESTARTING BIND9 SERVICE.. output = JustRun('service bind9 restart') if DNSServerStatus == 0: print("CONFIGURATION_SUCCESSFUL") else: print("CONFIGURATION_FAILED")
apache-2.0
5,368,585,750,515,196,000
49.296296
260
0.757553
false
UnoYakshi/DebtCollector
app/modules/auth/forms.py
1
4398
#! ~DebtCollector/app/modules/auth/forms.py from flask_wtf import FlaskForm from wtforms import StringField, PasswordField, DateField from wtforms.validators import DataRequired, Length, Email, EqualTo, Regexp, ValidationError from wtforms.fields.html5 import DateField from wtforms_components import DateRange from datetime import datetime, date, timedelta from .models import Users from app import db # Validator that checks if the field is not in the model yet... class Unique(object): def __init__(self, model, field, message='Is taken already.'): self.model = model self.field = field self.message = message def __call__(self, form, field): check = self.model.query.filter(self.field == field.data).first() if check: raise ValidationError(self.message) class NContains(object): def __init__(self, model, field, message='Is taken already.'): self.model = model self.field = field self.message = message def __call__(self, form, field): check = self.model.query.filter(self.field == field.data).first() if check: raise ValidationError(self.message) class LoginForm(FlaskForm): login = StringField('Login', validators=[DataRequired()]) password = PasswordField('Password', validators=[DataRequired()]) def get_user(self): return db.session.query(Users).filter_by(login=self.login.data).first() class SignUpForm(LoginForm): login = StringField('Login', validators=[DataRequired(), Unique(Users, Users.login), Length(max=32)], render_kw={"placeholder": "JoDo316"}) first_name = StringField('First Name', validators=[DataRequired(), Regexp('((^[A-Z][a-z]+$)|(^[А-Я][а-я]+$))', message='Either cyrrilic, or latin. Start with the capital.'), Length(min=2, max=32)], render_kw={"placeholder": "John"}) last_name = StringField('Last Name', validators=[DataRequired(), Regexp('((^[A-Z][a-z]+$)|(^[А-Я][а-я]+$))', message='Either cyrrilic, or latin. Start with the capital.'), Length(min=2, max=32)], render_kw={"placeholder": "Doe"}) email = StringField('Email', validators=[DataRequired(), Email(), Unique(Users, Users.email), Length(min=3, max=40)], render_kw={"placeholder": "[email protected]"}) password = PasswordField('Password', validators=[DataRequired(), Regexp('((?=.*\d)(?=.*[a-z])(?=.*[A-Z])(?=.*[@#$%])(^((?!' + str(login) + ').)*$).{8,32})', message='Use at least once: a-z, A-Z, 0-9, [@#$%]. Don\'t use login somehow.'), EqualTo('confirm', message='Passwords must match!')]) confirm = PasswordField('Confirm') birthdate = DateField('Birthdate', format='%d.%m.%Y', validators=[DataRequired(), DateRange(max=date.today() - 18*timedelta(days=365)) #, DateRange(min=date.today() - timedelta(years=18),max=date.today()) ], render_kw={"placeholder": "14.02.1990"}) def validate(self): if not FlaskForm.validate(self): return False # Check for email... user = db.session.query(Users).filter_by(email=self.email.data).first() if user: self.email.errors.append('That email is already taken.') return False # Check for login/username... user = db.session.query(Users).filter_by(email=self.login.data).first() if user: self.login.errors.append('That login/username is already taken.') return False return True
mit
6,308,245,974,784,622,000
42.465347
132
0.5082
false
sergiohgz/incubator-airflow
tests/www/test_views.py
3
27962
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import io import copy import logging.config import os import shutil import tempfile import unittest import sys import json from urllib.parse import quote_plus from werkzeug.test import Client from airflow import models, configuration, settings from airflow.config_templates.airflow_local_settings import DEFAULT_LOGGING_CONFIG from airflow.models import DAG, DagRun, TaskInstance from airflow.operators.dummy_operator import DummyOperator from airflow.settings import Session from airflow.utils.timezone import datetime from airflow.www import app as application from airflow import configuration as conf class TestChartModelView(unittest.TestCase): CREATE_ENDPOINT = '/admin/chart/new/?url=/admin/chart/' @classmethod def setUpClass(cls): super(TestChartModelView, cls).setUpClass() session = Session() session.query(models.Chart).delete() session.query(models.User).delete() session.commit() user = models.User(username='airflow') session.add(user) session.commit() session.close() def setUp(self): super(TestChartModelView, self).setUp() configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() self.session = Session() self.chart = { 'label': 'chart', 'owner': 'airflow', 'conn_id': 'airflow_ci', } def tearDown(self): self.session.query(models.Chart).delete() self.session.commit() self.session.close() super(TestChartModelView, self).tearDown() @classmethod def tearDownClass(cls): session = Session() session.query(models.User).delete() session.commit() session.close() super(TestChartModelView, cls).tearDownClass() def test_create_chart(self): response = self.app.post( self.CREATE_ENDPOINT, data=self.chart, follow_redirects=True, ) self.assertEqual(response.status_code, 200) self.assertEqual(self.session.query(models.Chart).count(), 1) def test_get_chart(self): response = self.app.get( '/admin/chart?sort=3', follow_redirects=True, ) self.assertEqual(response.status_code, 200) self.assertIn('Sort by Owner', response.data.decode('utf-8')) class TestVariableView(unittest.TestCase): CREATE_ENDPOINT = '/admin/variable/new/?url=/admin/variable/' @classmethod def setUpClass(cls): super(TestVariableView, cls).setUpClass() session = Session() session.query(models.Variable).delete() session.commit() session.close() def setUp(self): super(TestVariableView, self).setUp() configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() self.session = Session() self.variable = { 'key': 'test_key', 'val': 'text_val', 'is_encrypted': True } def tearDown(self): self.session.query(models.Variable).delete() self.session.commit() self.session.close() super(TestVariableView, self).tearDown() def test_can_handle_error_on_decrypt(self): # create valid variable response = self.app.post( self.CREATE_ENDPOINT, data=self.variable, follow_redirects=True, ) self.assertEqual(response.status_code, 200) # update the variable with a wrong value, given that is encrypted Var = models.Variable (self.session.query(Var) .filter(Var.key == self.variable['key']) .update({ 'val': 'failed_value_not_encrypted' }, synchronize_session=False)) self.session.commit() # retrieve Variables page, should not fail and contain the Invalid # label for the variable response = self.app.get('/admin/variable', follow_redirects=True) self.assertEqual(response.status_code, 200) self.assertEqual(self.session.query(models.Variable).count(), 1) def test_xss_prevention(self): xss = "/admin/airflow/variables/asdf<img%20src=''%20onerror='alert(1);'>" response = self.app.get( xss, follow_redirects=True, ) self.assertEqual(response.status_code, 404) self.assertNotIn("<img src='' onerror='alert(1);'>", response.data.decode("utf-8")) class TestKnownEventView(unittest.TestCase): CREATE_ENDPOINT = '/admin/knownevent/new/?url=/admin/knownevent/' @classmethod def setUpClass(cls): super(TestKnownEventView, cls).setUpClass() session = Session() session.query(models.KnownEvent).delete() session.query(models.User).delete() session.commit() user = models.User(username='airflow') session.add(user) session.commit() cls.user_id = user.id session.close() def setUp(self): super(TestKnownEventView, self).setUp() configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() self.session = Session() self.known_event = { 'label': 'event-label', 'event_type': '1', 'start_date': '2017-06-05 12:00:00', 'end_date': '2017-06-05 13:00:00', 'reported_by': self.user_id, 'description': '', } def tearDown(self): self.session.query(models.KnownEvent).delete() self.session.commit() self.session.close() super(TestKnownEventView, self).tearDown() @classmethod def tearDownClass(cls): session = Session() session.query(models.User).delete() session.commit() session.close() super(TestKnownEventView, cls).tearDownClass() def test_create_known_event(self): response = self.app.post( self.CREATE_ENDPOINT, data=self.known_event, follow_redirects=True, ) self.assertEqual(response.status_code, 200) self.assertEqual(self.session.query(models.KnownEvent).count(), 1) def test_create_known_event_with_end_data_earlier_than_start_date(self): self.known_event['end_date'] = '2017-06-05 11:00:00' response = self.app.post( self.CREATE_ENDPOINT, data=self.known_event, follow_redirects=True, ) self.assertIn( 'Field must be greater than or equal to Start Date.', response.data.decode('utf-8'), ) self.assertEqual(self.session.query(models.KnownEvent).count(), 0) class TestPoolModelView(unittest.TestCase): CREATE_ENDPOINT = '/admin/pool/new/?url=/admin/pool/' @classmethod def setUpClass(cls): super(TestPoolModelView, cls).setUpClass() session = Session() session.query(models.Pool).delete() session.commit() session.close() def setUp(self): super(TestPoolModelView, self).setUp() configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() self.session = Session() self.pool = { 'pool': 'test-pool', 'slots': 777, 'description': 'test-pool-description', } def tearDown(self): self.session.query(models.Pool).delete() self.session.commit() self.session.close() super(TestPoolModelView, self).tearDown() def test_create_pool(self): response = self.app.post( self.CREATE_ENDPOINT, data=self.pool, follow_redirects=True, ) self.assertEqual(response.status_code, 200) self.assertEqual(self.session.query(models.Pool).count(), 1) def test_create_pool_with_same_name(self): # create test pool self.app.post( self.CREATE_ENDPOINT, data=self.pool, follow_redirects=True, ) # create pool with the same name response = self.app.post( self.CREATE_ENDPOINT, data=self.pool, follow_redirects=True, ) self.assertIn('Already exists.', response.data.decode('utf-8')) self.assertEqual(self.session.query(models.Pool).count(), 1) def test_create_pool_with_empty_name(self): self.pool['pool'] = '' response = self.app.post( self.CREATE_ENDPOINT, data=self.pool, follow_redirects=True, ) self.assertIn('This field is required.', response.data.decode('utf-8')) self.assertEqual(self.session.query(models.Pool).count(), 0) class TestLogView(unittest.TestCase): DAG_ID = 'dag_for_testing_log_view' TASK_ID = 'task_for_testing_log_view' DEFAULT_DATE = datetime(2017, 9, 1) ENDPOINT = '/admin/airflow/log?dag_id={dag_id}&task_id={task_id}&execution_date={execution_date}'.format( dag_id=DAG_ID, task_id=TASK_ID, execution_date=DEFAULT_DATE, ) @classmethod def setUpClass(cls): super(TestLogView, cls).setUpClass() session = Session() session.query(TaskInstance).filter( TaskInstance.dag_id == cls.DAG_ID and TaskInstance.task_id == cls.TASK_ID and TaskInstance.execution_date == cls.DEFAULT_DATE).delete() session.commit() session.close() def setUp(self): super(TestLogView, self).setUp() # Create a custom logging configuration configuration.load_test_config() logging_config = copy.deepcopy(DEFAULT_LOGGING_CONFIG) current_dir = os.path.dirname(os.path.abspath(__file__)) logging_config['handlers']['task']['base_log_folder'] = os.path.normpath( os.path.join(current_dir, 'test_logs')) logging_config['handlers']['task']['filename_template'] = \ '{{ ti.dag_id }}/{{ ti.task_id }}/{{ ts | replace(":", ".") }}/{{ try_number }}.log' # Write the custom logging configuration to a file self.settings_folder = tempfile.mkdtemp() settings_file = os.path.join(self.settings_folder, "airflow_local_settings.py") new_logging_file = "LOGGING_CONFIG = {}".format(logging_config) with open(settings_file, 'w') as handle: handle.writelines(new_logging_file) sys.path.append(self.settings_folder) conf.set('core', 'logging_config_class', 'airflow_local_settings.LOGGING_CONFIG') app = application.create_app(testing=True) self.app = app.test_client() self.session = Session() from airflow.www.views import dagbag dag = DAG(self.DAG_ID, start_date=self.DEFAULT_DATE) task = DummyOperator(task_id=self.TASK_ID, dag=dag) dagbag.bag_dag(dag, parent_dag=dag, root_dag=dag) ti = TaskInstance(task=task, execution_date=self.DEFAULT_DATE) ti.try_number = 1 self.session.merge(ti) self.session.commit() def tearDown(self): logging.config.dictConfig(DEFAULT_LOGGING_CONFIG) self.session.query(TaskInstance).filter( TaskInstance.dag_id == self.DAG_ID and TaskInstance.task_id == self.TASK_ID and TaskInstance.execution_date == self.DEFAULT_DATE).delete() self.session.commit() self.session.close() sys.path.remove(self.settings_folder) shutil.rmtree(self.settings_folder) conf.set('core', 'logging_config_class', '') super(TestLogView, self).tearDown() def test_get_file_task_log(self): response = self.app.get( TestLogView.ENDPOINT, follow_redirects=True, ) self.assertEqual(response.status_code, 200) self.assertIn('Log by attempts', response.data.decode('utf-8')) def test_get_logs_with_metadata(self): url_template = "/admin/airflow/get_logs_with_metadata?dag_id={}&" \ "task_id={}&execution_date={}&" \ "try_number={}&metadata={}" response = \ self.app.get(url_template.format(self.DAG_ID, self.TASK_ID, quote_plus(self.DEFAULT_DATE.isoformat()), 1, json.dumps({}))) self.assertIn('"message":', response.data.decode('utf-8')) self.assertIn('"metadata":', response.data.decode('utf-8')) self.assertIn('Log for testing.', response.data.decode('utf-8')) self.assertEqual(200, response.status_code) def test_get_logs_with_null_metadata(self): url_template = "/admin/airflow/get_logs_with_metadata?dag_id={}&" \ "task_id={}&execution_date={}&" \ "try_number={}&metadata=null" response = \ self.app.get(url_template.format(self.DAG_ID, self.TASK_ID, quote_plus(self.DEFAULT_DATE.isoformat()), 1)) self.assertIn('"message":', response.data.decode('utf-8')) self.assertIn('"metadata":', response.data.decode('utf-8')) self.assertIn('Log for testing.', response.data.decode('utf-8')) self.assertEqual(200, response.status_code) class TestVarImportView(unittest.TestCase): IMPORT_ENDPOINT = '/admin/airflow/varimport' @classmethod def setUpClass(cls): super(TestVarImportView, cls).setUpClass() session = Session() session.query(models.User).delete() session.commit() user = models.User(username='airflow') session.add(user) session.commit() session.close() def setUp(self): super(TestVarImportView, self).setUp() configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() def tearDown(self): super(TestVarImportView, self).tearDown() @classmethod def tearDownClass(cls): session = Session() session.query(models.User).delete() session.commit() session.close() super(TestVarImportView, cls).tearDownClass() def test_import_variables(self): content = ('{"str_key": "str_value", "int_key": 60,' '"list_key": [1, 2], "dict_key": {"k_a": 2, "k_b": 3}}') try: # python 3+ bytes_content = io.BytesIO(bytes(content, encoding='utf-8')) except TypeError: # python 2.7 bytes_content = io.BytesIO(bytes(content)) response = self.app.post( self.IMPORT_ENDPOINT, data={'file': (bytes_content, 'test.json')}, follow_redirects=True ) self.assertEqual(response.status_code, 200) body = response.data.decode('utf-8') self.assertIn('str_key', body) self.assertIn('int_key', body) self.assertIn('list_key', body) self.assertIn('dict_key', body) self.assertIn('str_value', body) self.assertIn('60', body) self.assertIn('[1, 2]', body) # As dicts are not ordered, we may get any of the following cases. case_a_dict = '{&#34;k_a&#34;: 2, &#34;k_b&#34;: 3}' case_b_dict = '{&#34;k_b&#34;: 3, &#34;k_a&#34;: 2}' try: self.assertIn(case_a_dict, body) except AssertionError: self.assertIn(case_b_dict, body) class TestMountPoint(unittest.TestCase): def setUp(self): super(TestMountPoint, self).setUp() configuration.load_test_config() configuration.conf.set("webserver", "base_url", "http://localhost:8080/test") config = dict() config['WTF_CSRF_METHODS'] = [] # Clear cached app to remount base_url forcefully application.app = None app = application.cached_app(config=config, testing=True) self.client = Client(app) def test_mount(self): response, _, _ = self.client.get('/', follow_redirects=True) txt = b''.join(response) self.assertEqual(b"Apache Airflow is not at this location", txt) response, _, _ = self.client.get('/test', follow_redirects=True) resp_html = b''.join(response) self.assertIn(b"DAGs", resp_html) class ViewWithDateTimeAndNumRunsAndDagRunsFormTester: DAG_ID = 'dag_for_testing_dt_nr_dr_form' DEFAULT_DATE = datetime(2017, 9, 1) RUNS_DATA = [ ('dag_run_for_testing_dt_nr_dr_form_4', datetime(2018, 4, 4)), ('dag_run_for_testing_dt_nr_dr_form_3', datetime(2018, 3, 3)), ('dag_run_for_testing_dt_nr_dr_form_2', datetime(2018, 2, 2)), ('dag_run_for_testing_dt_nr_dr_form_1', datetime(2018, 1, 1)), ] def __init__(self, test, endpoint): self.test = test self.endpoint = endpoint def setUp(self): configuration.load_test_config() app = application.create_app(testing=True) app.config['WTF_CSRF_METHODS'] = [] self.app = app.test_client() self.session = Session() from airflow.www.views import dagbag from airflow.utils.state import State dag = DAG(self.DAG_ID, start_date=self.DEFAULT_DATE) dagbag.bag_dag(dag, parent_dag=dag, root_dag=dag) self.runs = [] for rd in self.RUNS_DATA: run = dag.create_dagrun( run_id=rd[0], execution_date=rd[1], state=State.SUCCESS, external_trigger=True ) self.runs.append(run) def tearDown(self): self.session.query(DagRun).filter( DagRun.dag_id == self.DAG_ID).delete() self.session.commit() self.session.close() def assertBaseDateAndNumRuns(self, base_date, num_runs, data): self.test.assertNotIn('name="base_date" value="{}"'.format(base_date), data) self.test.assertNotIn('<option selected="" value="{}">{}</option>'.format( num_runs, num_runs), data) def assertRunIsNotInDropdown(self, run, data): self.test.assertNotIn(run.execution_date.isoformat(), data) self.test.assertNotIn(run.run_id, data) def assertRunIsInDropdownNotSelected(self, run, data): self.test.assertIn('<option value="{}">{}</option>'.format( run.execution_date.isoformat(), run.run_id), data) def assertRunIsSelected(self, run, data): self.test.assertIn('<option selected value="{}">{}</option>'.format( run.execution_date.isoformat(), run.run_id), data) def test_with_default_parameters(self): """ Tests graph view with no URL parameter. Should show all dag runs in the drop down. Should select the latest dag run. Should set base date to current date (not asserted) """ response = self.app.get( self.endpoint ) self.test.assertEqual(response.status_code, 200) data = response.data.decode('utf-8') self.test.assertIn('Base date:', data) self.test.assertIn('Number of runs:', data) self.assertRunIsSelected(self.runs[0], data) self.assertRunIsInDropdownNotSelected(self.runs[1], data) self.assertRunIsInDropdownNotSelected(self.runs[2], data) self.assertRunIsInDropdownNotSelected(self.runs[3], data) def test_with_execution_date_parameter_only(self): """ Tests graph view with execution_date URL parameter. Scenario: click link from dag runs view. Should only show dag runs older than execution_date in the drop down. Should select the particular dag run. Should set base date to execution date. """ response = self.app.get( self.endpoint + '&execution_date={}'.format( self.runs[1].execution_date.isoformat()) ) self.test.assertEqual(response.status_code, 200) data = response.data.decode('utf-8') self.assertBaseDateAndNumRuns( self.runs[1].execution_date, configuration.getint('webserver', 'default_dag_run_display_number'), data) self.assertRunIsNotInDropdown(self.runs[0], data) self.assertRunIsSelected(self.runs[1], data) self.assertRunIsInDropdownNotSelected(self.runs[2], data) self.assertRunIsInDropdownNotSelected(self.runs[3], data) def test_with_base_date_and_num_runs_parmeters_only(self): """ Tests graph view with base_date and num_runs URL parameters. Should only show dag runs older than base_date in the drop down, limited to num_runs. Should select the latest dag run. Should set base date and num runs to submitted values. """ response = self.app.get( self.endpoint + '&base_date={}&num_runs=2'.format( self.runs[1].execution_date.isoformat()) ) self.test.assertEqual(response.status_code, 200) data = response.data.decode('utf-8') self.assertBaseDateAndNumRuns(self.runs[1].execution_date, 2, data) self.assertRunIsNotInDropdown(self.runs[0], data) self.assertRunIsSelected(self.runs[1], data) self.assertRunIsInDropdownNotSelected(self.runs[2], data) self.assertRunIsNotInDropdown(self.runs[3], data) def test_with_base_date_and_num_runs_and_execution_date_outside(self): """ Tests graph view with base_date and num_runs and execution-date URL parameters. Scenario: change the base date and num runs and press "Go", the selected execution date is outside the new range. Should only show dag runs older than base_date in the drop down. Should select the latest dag run within the range. Should set base date and num runs to submitted values. """ response = self.app.get( self.endpoint + '&base_date={}&num_runs=42&execution_date={}'.format( self.runs[1].execution_date.isoformat(), self.runs[0].execution_date.isoformat()) ) self.test.assertEqual(response.status_code, 200) data = response.data.decode('utf-8') self.assertBaseDateAndNumRuns(self.runs[1].execution_date, 42, data) self.assertRunIsNotInDropdown(self.runs[0], data) self.assertRunIsSelected(self.runs[1], data) self.assertRunIsInDropdownNotSelected(self.runs[2], data) self.assertRunIsInDropdownNotSelected(self.runs[3], data) def test_with_base_date_and_num_runs_and_execution_date_within(self): """ Tests graph view with base_date and num_runs and execution-date URL parameters. Scenario: change the base date and num runs and press "Go", the selected execution date is within the new range. Should only show dag runs older than base_date in the drop down. Should select the dag run with the execution date. Should set base date and num runs to submitted values. """ response = self.app.get( self.endpoint + '&base_date={}&num_runs=5&execution_date={}'.format( self.runs[2].execution_date.isoformat(), self.runs[3].execution_date.isoformat()) ) self.test.assertEqual(response.status_code, 200) data = response.data.decode('utf-8') self.assertBaseDateAndNumRuns(self.runs[2].execution_date, 5, data) self.assertRunIsNotInDropdown(self.runs[0], data) self.assertRunIsNotInDropdown(self.runs[1], data) self.assertRunIsInDropdownNotSelected(self.runs[2], data) self.assertRunIsSelected(self.runs[3], data) class TestGraphView(unittest.TestCase): GRAPH_ENDPOINT = '/admin/airflow/graph?dag_id={dag_id}'.format( dag_id=ViewWithDateTimeAndNumRunsAndDagRunsFormTester.DAG_ID ) @classmethod def setUpClass(cls): super(TestGraphView, cls).setUpClass() def setUp(self): super(TestGraphView, self).setUp() self.tester = ViewWithDateTimeAndNumRunsAndDagRunsFormTester( self, self.GRAPH_ENDPOINT) self.tester.setUp() def tearDown(self): self.tester.tearDown() super(TestGraphView, self).tearDown() @classmethod def tearDownClass(cls): super(TestGraphView, cls).tearDownClass() def test_dt_nr_dr_form_default_parameters(self): self.tester.test_with_default_parameters() def test_dt_nr_dr_form_with_execution_date_parameter_only(self): self.tester.test_with_execution_date_parameter_only() def test_dt_nr_dr_form_with_base_date_and_num_runs_parmeters_only(self): self.tester.test_with_base_date_and_num_runs_parmeters_only() def test_dt_nr_dr_form_with_base_date_and_num_runs_and_execution_date_outside(self): self.tester.test_with_base_date_and_num_runs_and_execution_date_outside() def test_dt_nr_dr_form_with_base_date_and_num_runs_and_execution_date_within(self): self.tester.test_with_base_date_and_num_runs_and_execution_date_within() class TestGanttView(unittest.TestCase): GANTT_ENDPOINT = '/admin/airflow/gantt?dag_id={dag_id}'.format( dag_id=ViewWithDateTimeAndNumRunsAndDagRunsFormTester.DAG_ID ) @classmethod def setUpClass(cls): super(TestGanttView, cls).setUpClass() def setUp(self): super(TestGanttView, self).setUp() self.tester = ViewWithDateTimeAndNumRunsAndDagRunsFormTester( self, self.GANTT_ENDPOINT) self.tester.setUp() def tearDown(self): self.tester.tearDown() super(TestGanttView, self).tearDown() @classmethod def tearDownClass(cls): super(TestGanttView, cls).tearDownClass() def test_dt_nr_dr_form_default_parameters(self): self.tester.test_with_default_parameters() def test_dt_nr_dr_form_with_execution_date_parameter_only(self): self.tester.test_with_execution_date_parameter_only() def test_dt_nr_dr_form_with_base_date_and_num_runs_parmeters_only(self): self.tester.test_with_base_date_and_num_runs_parmeters_only() def test_dt_nr_dr_form_with_base_date_and_num_runs_and_execution_date_outside(self): self.tester.test_with_base_date_and_num_runs_and_execution_date_outside() def test_dt_nr_dr_form_with_base_date_and_num_runs_and_execution_date_within(self): self.tester.test_with_base_date_and_num_runs_and_execution_date_within() if __name__ == '__main__': unittest.main()
apache-2.0
-7,816,191,596,842,511,000
36.382353
109
0.615049
false
deokwooj/DDEA
webgui/data_preprocess.py
1
20388
#!/usr/bin/python # To force float point division from __future__ import division """ Created on Fri Mar 14 01:34:41 2014 Author : Deokwoo Jung E-mail : [email protected] """ import numpy as np from numpy.linalg import norm from scipy.interpolate import interp1d from shared_constants import * from data_tools import * from scipy.stats import stats import time import multiprocessing as mp from log_util import log import traceback def pp_verify_sensor_data_format(tup): (key, data_list, time_slots, q) = tup log.info(' checking ' + key + '...') try: for i, samples in enumerate(data_list): for j, each_sample in enumerate(samples): if each_sample == []: q.put([key, i, j]) log.info(str(each_sample) + ' at ' + str(time_slots[i]) + ' in ' + str(key)) elif not isinstance(each_sample, int) and not isinstance(each_sample, float): q.put([key, i, j]) log.info(str(each_sample) + ' at ' + str(time_slots[i]) + ' in ' + str(key)) except Exception as e: log.error(traceback.print_exc()) log.error(str(e)) def verify_data_format(data_dict, PARALLEL=False): # Verify there is no [] or N/A in the list # Only FLoat or Int format is allowed log.info('Checking any inconsisent data format...') log.info('-' * 40) list_of_wrong_data_format = list() time_slots = data_dict['time_slots'] weather_list_used = [data_dict['weather_list'][i] for i in [1, 2, 3, 10, 11]] key_list = weather_list_used+ data_dict['sensor_list'] if not PARALLEL: for key in key_list: log.info('checking ' + str(key) + '...') for i, samples in enumerate(data_dict[key][1]): for j, each_sample in enumerate(samples): if each_sample == []: list_of_wrong_data_format.append([key, i, j]) log.info(str(each_sample) + ' at ' + str(time_slots[i]) + ' in ' + str(key)) elif not isinstance(each_sample, int) and not isinstance(each_sample, float): list_of_wrong_data_format.append([key, i, j]) log.info(str(each_sample) + ' at ' + str(time_slots[i]) + ' in ' + str(key)) log.info('-' * 40) # PARALLEL else: manager = mp.Manager() q = manager.Queue() p = mp.Pool(CPU_CORE_NUM) param_list = [(key, data_dict[key][1], time_slots, q) for key in key_list] p.map(pp_verify_sensor_data_format, param_list) p.close() p.join() while not q.empty(): item = q.get() log.warn('queue item: ' + str(item)) list_of_wrong_data_format.append(item) if len(list_of_wrong_data_format) > 0: log.critical('Inconsistent data format in the list of data_used') raise NameError('Inconsistent data format in the list of data_used') return list_of_wrong_data_format def verify_data_mat(X): num_err_temp = np.array([[len(np.nonzero(np.isnan(sample))[0]),len(np.nonzero(sample==np.inf)[0]),len(np.nonzero(np.var(sample)==0)[0])] for sample in X]) num_err = np.sum(num_err_temp, axis=0) for err_idx in np.argwhere( num_err > 0): if err_idx == 0: NameError('nan entry found') if err_idx == 1: NameError('inf entry found') if err_idx == 2: NameError('zero var found') log.info('all entry values of data matrix are verifed ok') def normalize_data(data_input): y_pred = data_input.copy() y_temp = np.delete(y_pred, np.nonzero(y_pred == np.infty), axis=0) y_temp_sort = np.sort(y_temp)[int(np.ceil(len(y_temp)*0.05)):int(np.floor(len(y_temp)*0.95))] var_temp = np.var(y_temp_sort) # At least 2 non-infty elements in y_pred if var_temp > 0: no_inf_idx = np.nonzero(y_pred != np.infty) y_pred[no_inf_idx] = y_pred[no_inf_idx] - np.mean(y_pred[no_inf_idx]) temp_val = y_pred/norm(y_pred[no_inf_idx]) temp_status = 0 else: temp_val = list(set(y_temp_sort)) temp_status = -1 return temp_val, temp_status def interploate_data(x_temp, num_type, max_num_succ_idx_for_itpl): num_of_samples = x_temp.shape[0] inf_idx = np.nonzero(x_temp == np.inf)[0] noinf_idx = np.nonzero(x_temp != np.inf)[0] # Dont interploate the values on bondary. inter_idx = np.delete(inf_idx, np.nonzero(inf_idx == 0)) inter_idx = np.delete(inter_idx, np.nonzero(inter_idx == num_of_samples-1)) ############################################################################################# # Dont interploate the values unknown successively more than num_succ_idx_no_interploate # Then deletea any index that meet the condition above, # inter_idx=np.delete(inter_idx,those index) # Need to be completed ..... ############################################################################################# # Find successive inf indices succ_inf_idx = [] for i in range(0, len(noinf_idx) - 1): # number of successive inf between two non-inf indices num_succ_inf = noinf_idx[i+1] - noinf_idx[i] - 1 if num_succ_inf > max_num_succ_idx_for_itpl: succ_inf_idx = succ_inf_idx + range(noinf_idx[i]+1, noinf_idx[i+1]) # Remove successive inf indices inter_idx = list(set(inter_idx) - set(succ_inf_idx)) if num_type == FLOAT_TYPE: #f = interp1d(noinf_idx,x_temp[noinf_idx,0],'linear') val_new = np.interp(inter_idx,noinf_idx, x_temp[noinf_idx,0]) #val_new = np.interp(t_new, t_,val_) elif num_type == INT_TYPE: #f = interp1d(noinf_idx,x_temp[noinf_idx,0],'nearest') val_new = fast_nearest_interp(inter_idx, noinf_idx, x_temp[noinf_idx, 0]) else: raise NameError('Sample type must either INT or FLOAT type') #x_temp[inter_idx,0]=f(inter_idx) x_temp[inter_idx, 0] = val_new log.warn('No sample in time slot ' + str(inf_idx)) log.warn(str(len(inter_idx)) + ' / ' + str(len(inf_idx)) + ' time slots are interplated') return x_temp def get_feature(data_dict_samples,num_type): x_temp = [] for i, sample in enumerate(data_dict_samples): # If sample=[], np.std returns 0. Avoid zero std, add a infitestimal number # Set infty if no sample is availble if len(sample) == 0: x_temp.append(np.inf) else: if num_type == INT_TYPE: x_temp.append(int(stats.mode(sample)[0])) elif num_type == FLOAT_TYPE: x_temp.append(np.mean(sample)) else: raise NameError('Sample type must either INT or FLOAT type') x_temp = np.array(x_temp)[:, np.newaxis] return x_temp # Mean value measure def build_feature_matrix(data_dict, sensor_list, weather_list, time_slots, interpolation=1, max_num_succ_idx_for_itpl=4): data_used = sensor_list + weather_list log.info('Build data feature matrix now.....') if interpolation == 1: log.info('Missing samples will be interpolated upto ' + str(max_num_succ_idx_for_itpl) + 'successive time slots') else: log.info('All time slots with any missing sample will be removed without interpolatoin ') num_of_data = len(data_used) num_of_samples = len(time_slots) # Declare as 2-d list for exception. X = list() INT_type_list = list() FLOAT_type_list = list() input_names = list() weather_type_idx = list() sensor_type_idx = list() INT_type_idx = list() FLOAT_type_idx = list() zero_var_list = list() zero_var_val = list() # whose variance is zero, hence carry no information, # Constrcut X matrix by summerizing hourly samples for j, key in enumerate(data_used): log.info('-' * 40) log.info('building for ' + str(key)) try: num_type = check_data_type(data_dict[key][2][1]) # Avg. value feature x_temp = get_feature(data_dict[key][1], num_type) non_inf_idx = np.nonzero(x_temp < np.inf)[0] #if non_inf_idx <len(time_slots):measurement_point_set # Outlier removal, different parameters for sensors and weather data if len(sensor_list) <= j: # weather data is_weather_data = True outlier_idx = outlier_detect(x_temp[non_inf_idx], 5, 10) else: is_weather_data = False outlier_idx = outlier_detect(x_temp[non_inf_idx], 1, 20) if len(outlier_idx) > 0: log.info('outlier samples are detected: outlier_idx:' + str(outlier_idx)) x_temp[non_inf_idx[outlier_idx]] = np.inf # interplolation data, use nearest for int type, use linear for float type if interpolation == 1: x_temp = interploate_data(x_temp, num_type, max_num_succ_idx_for_itpl) norm_data_vec, output_status = normalize_data(x_temp[:, 0]) if len(np.nonzero(norm_data_vec == np.inf)[0]) > num_of_samples/5: raise except Exception as e: log.error(traceback.print_exc()) log.error(' Error in processing data feature, excluded from analysis ' + str(e)) output_status = -1 norm_data_vec = None if output_status == -1: zero_var_list.append(key) zero_var_val.append(norm_data_vec) log.info('too small variance for float type, added to zero var list') else: input_names.append(key) log.info(str(j)+'th sensor update') if (num_type == FLOAT_TYPE) and (is_weather_data == False): X.append(norm_data_vec) FLOAT_type_idx.append(len(X)-1) FLOAT_type_list.append(key) elif (num_type == INT_TYPE) or (is_weather_data == True): X.append(x_temp[:, 0]) INT_type_idx.append(len(X)-1) INT_type_list.append(key) else: log.error('Sample type must either INT or FLOAT type') raise NameError('Sample type must either INT or FLOAT type') if key in weather_list: weather_type_idx.append(len(X)-1) elif key in sensor_list: sensor_type_idx.append(len(X)-1) else: log.error('Sample type must either Weather or Sensor type') raise NameError('Sample type must either Weather or Sensor type') # Linear Interpolate X = np.array(X).T if X.shape[0] != num_of_samples: log.error('The numeber of rows in feature matrix and the number of the time slots are different ') raise NameError('The numeber of rows in feature matrix and the number of the time slots are different ') if X.shape[1]+len(zero_var_list) != num_of_data: log.error('The sume of the numeber of column in feature matrix and the number of zero var column are different from the number of input measurements ') raise NameError('The sume of the numeber of column in feature matrix and the number of zero var column are different from the number of input measurements ') deleted_timeslot_idx=[] log.info('-' * 20) log.info('removing time slots having no sample...') inf_idx_set = [] for col_vec in X.T: inf_idx = np.nonzero(col_vec ==np.infty)[0] inf_idx_set = np.r_[inf_idx_set, inf_idx] inf_col_idx = list(set(list(inf_idx_set))) deleted_timeslot_idx = np.array([int(x) for x in inf_col_idx]) log.info('time slots ' + str(deleted_timeslot_idx) + ' removed...') log.info('-' * 20) X = np.delete(X, deleted_timeslot_idx, axis=0) new_time_slot = np.delete(time_slots, deleted_timeslot_idx) # Checking whether it has any ill entry value verify_data_mat(X) return X, new_time_slot, input_names, zero_var_list, zero_var_val, INT_type_list, INT_type_idx, FLOAT_type_list, FLOAT_type_idx, weather_type_idx, sensor_type_idx # Abs Diff value measure def build_diff(args): (k, time_slots, conf_lev, set_val, set_name, num_type) = args log.info(set_name) try: diff_mean = get_diff(set_val, time_slots, num_type, conf_lev) if num_type == FLOAT_TYPE: #norm_diff_mean,output_status=normalize_data(diff_mean[:,0]) norm_diff_mean,output_status=normalize_data(diff_mean) elif num_type == INT_TYPE: #num_discrete_vals=len(set(list(diff_mean[:,0]))) num_discrete_vals=len(set(list(diff_mean))) log.info('num_discrete_vals :' + str(num_discrete_vals)) if num_discrete_vals>1: output_status = 0 norm_diff_mean = diff_mean else: output_status = -1 norm_diff_mean = list(set(diff_mean)) #norm_diff_mean=list(set(diff_mean[:,0])) else: pass except Exception as e: log.error(traceback.print_exc()) log.error('Error in processing data feature, excluded from analysis ' + str(e)) output_status = -1 norm_diff_mean = None return (k,[output_status, norm_diff_mean]) return (k, [output_status, norm_diff_mean]) def get_diff(set_val,time_slots,num_type,conf_lev): time_slots_utc = dtime_to_unix(time_slots) TIMELET_INV_seconds = (time_slots[1]-time_slots[0]).seconds diff_mean = list() for r, utc_t in enumerate(time_slots_utc): utc_t_s = utc_t utc_t_e = utc_t + TIMELET_INV_seconds idx = np.nonzero((set_val[0] >= utc_t_s) & (set_val[0] < utc_t_e))[0] if len(idx) < 2: diff_val = np.inf else: temp_val = abs(np.diff(set_val[1][idx])) upper_val = np.sort(temp_val)[int(np.floor(len(temp_val)*conf_lev)):] if len(upper_val) == 0: diff_val = np.inf else: if num_type == FLOAT_TYPE: diff_val = np.mean(upper_val) elif num_type == INT_TYPE: diff_val = int(stats.mode(upper_val)[0]) else: log.error('Sample type must either INT or FLOAT type') raise NameError('Sample type must either INT or FLOAT type') #diff_val=max(abs(diff(set_val[1][idx]))) #sort(abs(diff(set_val[1][idx])))[::-1] diff_mean.append(diff_val) #diff_mean=np.array(diff_mean)[:,np.newaxis] diff_mean = np.array(diff_mean) return diff_mean # Abs Diff value measure def build_diff_matrix(measurement_point_set, time_slots, num_type_set, irr_data_name, conf_lev=0.5, PARALLEL=False): #time_slots_utc = dtime_to_unix(time_slots) Xdiff = list() input_names = list() INT_type_list = list() FLOAT_type_list = list() INT_type_idx = list() FLOAT_type_idx = list() zero_var_list = list() # whose variance is zero, hence carry no information, zero_var_val = list() num_of_samples = len(time_slots) #TIMELET_INV_seconds = (time_slots[1]-time_slots[0]).seconds log.info('=' * 40) if not PARALLEL: for k, (set_val, set_name) in enumerate(zip(measurement_point_set, irr_data_name)): log.info(str(irr_data_name[k])) try: num_type = num_type_set[k] diff_mean = get_diff(set_val, time_slots, num_type, conf_lev) if num_type == FLOAT_TYPE: #norm_diff_mean,output_status=normalize_data(diff_mean[:,0]) norm_diff_mean, output_status = normalize_data(diff_mean) elif num_type == INT_TYPE: #num_discrete_vals=len(set(list(diff_mean[:,0]))) num_discrete_vals = len(set(list(diff_mean))) log.info('num_discrete_vals : ' + str(num_discrete_vals)) if num_discrete_vals > 1: output_status = 0 norm_diff_mean = diff_mean else: output_status = -1 #norm_diff_mean = list(set(diff_mean[:,0])) norm_diff_mean = list(set(diff_mean)) else: pass if len(np.nonzero(norm_diff_mean == np.inf)[0])>num_of_samples/5: raise except Exception as e: log.error(traceback.print_exc()) log.error('Error in processing data feature, excluded from analysis ' + str(e)) output_status = -1 norm_diff_mean = None if output_status == -1: #zero_var_flag=1 zero_var_list.append(set_name) zero_var_val.append(norm_diff_mean) log.warn('too small variance for float type or a single value for int type, added to zero var list') else: input_names.append(set_name) Xdiff.append(norm_diff_mean) if num_type == FLOAT_TYPE: FLOAT_type_list.append(set_name) FLOAT_type_idx.append(len(Xdiff)-1) elif num_type == INT_TYPE: INT_type_list.append(set_name) INT_type_idx.append(len(Xdiff)-1) log.info('-' * 20) log.info('-' * 40) # PARALLEL ENABLED else: log.info('Build diff matrix: Parallel enabled...') # Construct param list for workers param_list = list() for k, (set_val, set_name) in enumerate(zip(measurement_point_set, irr_data_name)): param_list.append((k, time_slots, conf_lev, set_val, set_name, num_type_set[k])) p = mp.Pool(CPU_CORE_NUM) ret_dict = dict(p.map(build_diff, param_list)) p.close() p.join() for k in sorted(ret_dict.keys()): """ v = ret_dict[k] output_status = v[0] norm_diff_mean = v[1] """ output_status, norm_diff_mean = ret_dict[k] set_name = irr_data_name[k] num_type = num_type_set[k] if output_status == -1: zero_var_list.append(set_name) #zero_var_flag=1 zero_var_val.append(norm_diff_mean) log.warn("too small variance for float type or a single value for int type, added to zero var list") else: input_names.append(set_name) try: Xdiff.append(norm_diff_mean) except Exception as e: log.error(traceback.print_exc()) log.error(str(e)) if num_type == FLOAT_TYPE: FLOAT_type_list.append(set_name) FLOAT_type_idx.append(len(Xdiff)-1) elif num_type == INT_TYPE: INT_type_list.append(set_name) INT_type_idx.append(len(Xdiff)-1) log.info('-' * 20) Xdiff = np.array(Xdiff).T deleted_timeslot_idx = list() log.info('-' * 20) log.info('removing time slots having no sample...') inf_idx_set = list() for col_vec in Xdiff.T: inf_idx = np.nonzero(col_vec == np.infty)[0] inf_idx_set=np.r_[inf_idx_set, inf_idx] inf_col_idx = list(set(list(inf_idx_set))) deleted_timeslot_idx = np.array([int(x) for x in inf_col_idx]).astype(int) log.info('time slots ' + str(deleted_timeslot_idx) + ' removed...') log.info('-' * 20) Xdiff = np.delete(Xdiff, deleted_timeslot_idx, axis=0) new_time_slot = np.delete(time_slots, deleted_timeslot_idx) # Checking whether it has any ill entry value verify_data_mat(Xdiff) log.info('*-' * 20) log.info("* deleted_timeslot_idx : " + str(deleted_timeslot_idx)) log.info('*-' * 20) return Xdiff,\ new_time_slot,\ input_names,\ zero_var_list,\ zero_var_val, \ INT_type_list,\ INT_type_idx,\ FLOAT_type_list,\ FLOAT_type_idx
gpl-2.0
8,925,207,994,300,018,000
36.070909
167
0.555425
false
zenieldanaku/DyDCreature_Editor
backend/data.py
1
1579
from azoe.engine import Resources RAZAS = None CLASES = None IDIOMAS = None ESCUELAS = None CONJUROS = None HABS = None DOTES = None ARMAS = None ARMDS = None APTS = None DOMINIOS = None OBJMAG = None CHARS = None ALINI = None TAM = None def load_language(lang): root = 'database/' + lang + '/' global CHARS, RAZAS, TAM, CLASES, ALINI, IDIOMAS, HABS, DOTES, ESCUELAS, DOMINIOS, CONJUROS, ARMAS, ARMDS, OBJMAG CHARS = Resources.abrir_json(root + 'basicos' + ".json")['caracteristicas'] TAM = Resources.abrir_json(root + 'basicos' + ".json")['tamanios'] ALINI = Resources.abrir_json(root + 'basicos' + ".json")['alineamientos'] RAZAS = Resources.abrir_json(root + 'razas' + ".json") CLASES = Resources.abrir_json(root + 'clases' + ".json") IDIOMAS = Resources.abrir_json(root + 'idiomas' + ".json") HABS = Resources.abrir_json(root + 'habilidades' + ".json") DOTES = Resources.abrir_json(root + 'dotes' + ".json") ESCUELAS = Resources.abrir_json(root + 'escuelas' + ".json") DOMINIOS = Resources.abrir_json(root + 'dominios' + ".json") CONJUROS = Resources.abrir_json(root + 'conjuros' + ".json") ARMAS = Resources.abrir_json(root + 'armas' + ".json") ARMDS = Resources.abrir_json(root + 'armaduras' + ".json") OBJMAG = Resources.abrir_json(root + 'objetos_magicos' + ".json") lengua = Resources.abrir_json('config.json')['lengua'] load_language(lengua) __all__ = "CHARS,RAZAS,TAM,CLASES,ALINI,IDIOMAS,HABS,DOTES,ESCUELAS,DOMINIOS,CONJUROS,ARMAS,ARMDS,OBJMAG".split(',')
mit
2,461,572,856,888,210,400
36.512195
117
0.650412
false
SDSG-Invenio/invenio
invenio/modules/formatter/__init__.py
6
21654
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015 CERN. # # Invenio is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 2 of the # License, or (at your option) any later version. # # Invenio is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Invenio; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. """Format records using chosen format. The main APIs are: - format_record - format_records - create_excel - get_output_format_content_type This module wraps the BibFormat engine and its associated functions. This is also where special formatting functions of multiple records (that the engine does not handle, as it works on a single record basis) should be defined, with name C{def create_*}. .. seealso:: bibformat_utils.py """ from __future__ import print_function import getopt import sys import zlib from invenio.base.globals import cfg # Functions to format a single record # def format_record(recID, of, ln=None, verbose=0, search_pattern=None, xml_record=None, user_info=None, on_the_fly=False, save_missing=True, force_2nd_pass=False, **kwargs): """Format a record in given output format. Return a formatted version of the record in the specified language, search pattern, and with the specified output format. The function will define which format template must be applied. The record to be formatted can be specified with its ID (with 'recID' parameter) or given as XML representation (with 'xml_record' parameter). If 'xml_record' is specified 'recID' is ignored (but should still be given for reference. A dummy recid 0 or -1 could be used). 'user_info' allows to grant access to some functionalities on a page depending on the user's priviledges. The 'user_info' object makes sense only in the case of on-the-fly formatting. 'user_info' is the same object as the one returned by 'webuser.collect_user_info(req)' :param recID: the ID of record to format. :type recID: int :param of: an output format code (or short identifier for the output format) :type of: string :param ln: the language to use to format the record :type ln: string :param verbose: the level of verbosity from 0 to 9. - O: silent - 5: errors - 7: errors and warnings, stop if error in format elements - 9: errors and warnings, stop if error (debug mode) :type verbose: int :param search_pattern: list of strings representing the user request in web interface :type search_pattern: list(string) :param xml_record: an xml string represention of the record to format :type xml_record: string or None :param user_info: the information of the user who will view the formatted page (if applicable) :param on_the_fly: if False, try to return an already preformatted version of the record in the database :type on_the_fly: boolean :return: formatted record :rtype: string """ ln = ln or cfg['CFG_SITE_LANG'] from . import engine as bibformat_engine out, needs_2nd_pass = bibformat_engine.format_record_1st_pass( recID=recID, of=of, ln=ln, verbose=verbose, search_pattern=search_pattern, xml_record=xml_record, user_info=user_info, on_the_fly=on_the_fly, save_missing=save_missing, **kwargs) if needs_2nd_pass or force_2nd_pass: out = bibformat_engine.format_record_2nd_pass( recID=recID, of=of, template=out, ln=ln, verbose=verbose, search_pattern=search_pattern, xml_record=xml_record, user_info=user_info, **kwargs) return out def record_get_xml(recID, format='xm', decompress=zlib.decompress): """Return an XML string of the record given by recID. The function builds the XML directly from the database, without using the standard formatting process. 'format' allows to define the flavour of XML: - 'xm' for standard XML - 'marcxml' for MARC XML - 'oai_dc' for OAI Dublin Core - 'xd' for XML Dublin Core If record does not exist, returns empty string. :param recID: the id of the record to retrieve :param format: the format to use :param decompress: the library to use to decompress cache from DB :return: the xml string of the record """ from . import utils as bibformat_utils return bibformat_utils.record_get_xml(recID=recID, format=format, decompress=decompress) # Helper functions to do complex formatting of multiple records # # You should not modify format_records when adding a complex # formatting of multiple records, but add a create_* method # that relies on format_records to do the formatting. # def format_records(recIDs, of, ln=None, verbose=0, search_pattern=None, xml_records=None, user_info=None, record_prefix=None, record_separator=None, record_suffix=None, prologue="", epilogue="", req=None, on_the_fly=False, extra_context=None): """Format records given by a list of record IDs or a list of records as xml. Add a prefix before each record, a suffix after each record, plus a separator between records. Also add optional prologue and epilogue to the complete formatted list. You can either specify a list of record IDs to format, or a list of xml records, but not both (if both are specified recIDs is ignored). 'record_separator' is a function that returns a string as separator between records. The function must take an integer as unique parameter, which is the index in recIDs (or xml_records) of the record that has just been formatted. For example separator(i) must return the separator between recID[i] and recID[i+1]. Alternatively separator can be a single string, which will be used to separate all formatted records. The same applies to 'record_prefix' and 'record_suffix'. 'req' is an optional parameter on which the result of the function are printed lively (prints records after records) if it is given. Note that you should set 'req' content-type by yourself, and send http header before calling this function as it will not do it. This function takes the same parameters as :meth:`format_record` except for: :param recIDs: a list of record IDs :type recIDs: list(int) :param of: an output format code (or short identifier for the output format) :type of: string :param ln: the language to use to format the record :type ln: string :param verbose: the level of verbosity from 0 to 9. - 0: silent - 5: errors - 7: errors and warnings, stop if error in format elements - 9: errors and warnings, stop if error (debug mode) :type verbose: int :param search_pattern: list of strings representing the user request in web interface :type search_pattern: list(string) :param user_info: the information of the user who will view the formatted page (if applicable) :param xml_records: a list of xml string representions of the records to format :type xml_records: list(string) :param record_prefix: a string printed before B{each} formatted records (n times) :type record_prefix: string :param record_suffix: a string printed after B{each} formatted records (n times) :type record_suffix: string :param prologue: a string printed at the beginning of the complete formatted records (1x) :type prologue: string :param epilogue: a string printed at the end of the complete formatted output (1x) :type epilogue: string :param record_separator: either a string or a function that returns string to join formatted records :param record_separator: string or function :param req: an optional request object where to print records :param on_the_fly: if False, try to return an already preformatted version of the record in the database :type on_the_fly: boolean :rtype: string """ if req is not None: req.write(prologue) formatted_records = '' # Fill one of the lists with Nones if xml_records is not None: recIDs = map(lambda x: None, xml_records) else: xml_records = map(lambda x: None, recIDs) total_rec = len(recIDs) last_iteration = False for i in range(total_rec): if i == total_rec - 1: last_iteration = True # Print prefix if record_prefix is not None: if isinstance(record_prefix, str): formatted_records += record_prefix if req is not None: req.write(record_prefix) else: string_prefix = record_prefix(i) formatted_records += string_prefix if req is not None: req.write(string_prefix) # Print formatted record ln = ln or cfg['CFG_SITE_LANG'] formatted_record = format_record(recIDs[i], of, ln, verbose, search_pattern, xml_records[i], user_info, on_the_fly, extra_context) formatted_records += formatted_record if req is not None: req.write(formatted_record) # Print suffix if record_suffix is not None: if isinstance(record_suffix, str): formatted_records += record_suffix if req is not None: req.write(record_suffix) else: string_suffix = record_suffix(i) formatted_records += string_suffix if req is not None: req.write(string_suffix) # Print separator if needed if record_separator is not None and not last_iteration: if isinstance(record_separator, str): formatted_records += record_separator if req is not None: req.write(record_separator) else: string_separator = record_separator(i) formatted_records += string_separator if req is not None: req.write(string_separator) if req is not None: req.write(epilogue) return prologue + formatted_records + epilogue def format_with_format_template(format_template_filename, bfo, verbose=0, format_template_code=None): """Wrapper around format template.""" from . import engine as bibformat_engine evaluated_format, dummy = bibformat_engine.format_with_format_template( format_template_filename=format_template_filename, bfo=bfo, verbose=verbose, format_template_code=format_template_code) return evaluated_format def create_excel(recIDs, req=None, ln=None, ot=None, ot_sep="; ", user_info=None): """Return an Excel readable format containing the given recIDs. If 'req' is given, also prints the output in 'req' while individual records are being formatted. This method shows how to create a custom formatting of multiple records. The excel format is a basic HTML table that most spreadsheets applications can parse. If 'ot' is given, the BibFormat engine is overridden and the output is produced on the basis of the fields that 'ot' defines (see search_engine.perform_request_search(..) 'ot' param). :param req: the request object :param recIDs: a list of record IDs :param ln: language :param ot: a list of fields that should be included in the excel output as columns(see perform_request_search 'ot' param) :param ot_sep: a separator used to separate values for the same record, in the same columns, if any :param user_info: the user_info dictionary :return: a string in Excel format """ from . import utils as bibformat_utils # Prepare the column headers to display in the Excel file column_headers_list = ['Title', 'Authors', 'Addresses', 'Affiliation', 'Date', 'Publisher', 'Place', 'Abstract', 'Keywords', 'Notes'] # Prepare Content column_headers = '</b></td><td style="border-color:black; ' \ 'border-style:solid; border-width:thin; ' \ 'background-color:black;color:white"><b>' \ .join(column_headers_list) + '' column_headers = '<table style="border-collapse: collapse;">\n' \ '<td style="border-color:black; border-style:solid; ' \ 'border-width:thin; background-color:black;color:white">'\ '<b>' + column_headers + '</b></td>' footer = '</table>' # Apply content_type and print column headers if req is not None: req.content_type = get_output_format_content_type('excel') req.headers_out["Content-Disposition"] = "inline; filename=results.xls" req.send_http_header() if ot is not None and len(ot) > 0: # Skip BibFormat engine, produce our own output based on # specified fields. Each field will be a column of the # output. If a field has multiple values, then they are joined # into the same cell. out = "<table>" if req: req.write("<table>") for recID in recIDs: row = '<tr>' row += '<td><a href="%(CFG_SITE_URL)s/%(CFG_SITE_RECORD)s/' \ '%(recID)i">%(recID)i</a></td>' % \ {'recID': recID, 'CFG_SITE_RECORD': cfg['CFG_SITE_RECORD'], 'CFG_SITE_URL': cfg['CFG_SITE_URL']} for field in ot: row += '<td>%s</td>' % \ ot_sep.join(bibformat_utils.get_all_fieldvalues( recID, field)) row += '</tr>' out += row if req: req.write(row) out += '</table>' if req: req.write('</table>') return out # Format the records prologue = '<meta http-equiv="Content-Type" content="text/html; ' \ 'charset=utf-8"><table>' excel_formatted_records = format_records(recIDs, 'excel', ln=ln or cfg['CFG_SITE_LANG'], record_separator='\n', prologue=prologue, epilogue=footer, req=req, user_info=user_info) return excel_formatted_records def get_output_format_content_type(of, default_content_type="text/html"): """ Return the content type of the given output format. For example `text/html` or `application/ms-excel`. :param of: the code of output format for which we want to get the content type :param default_content_type: default content-type when content-type was not set up :return: the content-type to use for this output format """ from . import api content_type = api.get_output_format_content_type(of) if content_type == '': content_type = default_content_type return content_type def print_records(recIDs, of='hb', ln=None, verbose=0, search_pattern='', on_the_fly=False, **ctx): """Return records using Jinja template.""" import time from math import ceil from flask import request from invenio.base.i18n import wash_language from invenio.ext.template import render_template_to_string from invenio.modules.search.models import Format from invenio.utils.pagination import Pagination from invenio.modules.formatter.engine import \ TEMPLATE_CONTEXT_FUNCTIONS_CACHE of = of.lower() jrec = request.values.get('jrec', ctx.get('jrec', 1), type=int) rg = request.values.get('rg', ctx.get('rg', 10), type=int) ln = ln or wash_language(request.values.get('ln', cfg['CFG_SITE_LANG'])) ot = (request.values.get('ot', ctx.get('ot')) or '').split(',') records = ctx.get('records', len(recIDs)) if jrec > records: jrec = rg * (records // rg) + 1 pages = int(ceil(jrec / float(rg))) if rg > 0 else 1 context = dict( of=of, jrec=jrec, rg=rg, ln=ln, ot=ot, facets={}, time=time, recids=recIDs, pagination=Pagination(pages, rg, records), verbose=verbose, export_formats=Format.get_export_formats(), format_record=format_record, **TEMPLATE_CONTEXT_FUNCTIONS_CACHE.template_context_functions ) context.update(ctx) return render_template_to_string( ['format/records/%s.tpl' % of, 'format/records/%s.tpl' % of[0], 'format/records/%s.tpl' % get_output_format_content_type(of). replace('/', '_')], **context) def usage(exitcode=1, msg=""): """ Print usage info. :param exitcode: exit code to use (eg. 1 for error, 0 for okay) :param msg: message to print :return: exit the process """ if msg: sys.stderr.write("Error: %s.\n" % msg) print("""BibFormat: outputs the result of the formatting of a record. Usage: bibformat required [options] Examples: $ bibformat -i 10 -o HB $ bibformat -i 10,11,13 -o HB $ bibformat -i 10:13 $ bibformat -i 10 -o HB -v 9 Required: -i, --id=ID[ID2,ID3:ID5] ID (or range of IDs) of the record(s) to be formatted. Options: -o, --output=CODE short code of the output format used for formatting (default HB). -l, --lang=LN language used for formatting. -y, --onthefly on-the-fly formatting, avoiding caches created by BibReformat. General options: -h, --help print this help and exit -v, --verbose=LEVEL verbose level (from 0 to 9, default 0) """) sys.exit(exitcode) def main(): """ Main entry point for biformat via command line. :return: formatted record(s) as specified by options, or help/errors """ options = {} # will hold command-line options options["verbose"] = 0 options["onthefly"] = False options["lang"] = cfg['CFG_SITE_LANG'] options["output"] = "HB" options["recID"] = None try: opts, args = getopt.getopt(sys.argv[1:], "hVv:yl:i:o:", ["help", "version", "verbose=", "onthefly", "lang=", "id=", "output="]) except getopt.GetoptError as err: usage(1, err) pass try: for opt in opts: if opt[0] in ["-h", "--help"]: usage(0) elif opt[0] in ["-v", "--verbose"]: options["verbose"] = int(opt[1]) elif opt[0] in ["-y", "--onthefly"]: options["onthefly"] = True elif opt[0] in ["-l", "--lang"]: options["lang"] = opt[1] elif opt[0] in ["-i", "--id"]: recIDs = [] for recID in opt[1].split(','): if ":" in recID: start = int(recID.split(':')[0]) end = int(recID.split(':')[1]) recIDs.extend(range(start, end)) else: recIDs.append(int(recID)) options["recID"] = recIDs elif opt[0] in ["-o", "--output"]: options["output"] = opt[1] if options["recID"] is None: usage(1, "-i argument is needed") except StandardError as e: usage(e) print(format_records(recIDs=options["recID"], of=options["output"], ln=options["lang"], verbose=options["verbose"], on_the_fly=options["onthefly"])) return if __name__ == "__main__": main()
gpl-2.0
6,459,642,641,651,026,000
36.856643
80
0.579708
false
Sixshaman/networkx
networkx/generators/random_clustered.py
10
4534
# -*- coding: utf-8 -*- """Generate graphs with given degree and triangle sequence. """ # Copyright (C) 2004-2016 by # Aric Hagberg <[email protected]> # Dan Schult <[email protected]> # Pieter Swart <[email protected]> # All rights reserved. # BSD license. import random import networkx as nx __author__ = "\n".join(['Aric Hagberg ([email protected])', 'Joel Miller ([email protected])']) __all__ = ['random_clustered_graph'] def random_clustered_graph(joint_degree_sequence, create_using=None, seed=None): """Generate a random graph with the given joint independent edge degree and triangle degree sequence. This uses a configuration model-like approach to generate a random graph (with parallel edges and self-loops) by randomly assigning edges to match the given joint degree sequence. The joint degree sequence is a list of pairs of integers of the form `[(d_{1,i}, d_{1,t}), \dotsc, (d_{n,i}, d_{n,t})]`. According to this list, vertex `u` is a member of `d_{u,t}` triangles and has `d_{u, i}` other edges. The number `d_{u,t}` is the *triangle degree* of `u` and the number `d_{u,i}` is the *independent edge degree*. Parameters ---------- joint_degree_sequence : list of integer pairs Each list entry corresponds to the independent edge degree and triangle degree of a node. create_using : graph, optional (default MultiGraph) Return graph of this type. The instance will be cleared. seed : hashable object, optional The seed for the random number generator. Returns ------- G : MultiGraph A graph with the specified degree sequence. Nodes are labeled starting at 0 with an index corresponding to the position in deg_sequence. Raises ------ NetworkXError If the independent edge degree sequence sum is not even or the triangle degree sequence sum is not divisible by 3. Notes ----- As described by Miller [1]_ (see also Newman [2]_ for an equivalent description). A non-graphical degree sequence (not realizable by some simple graph) is allowed since this function returns graphs with self loops and parallel edges. An exception is raised if the independent degree sequence does not have an even sum or the triangle degree sequence sum is not divisible by 3. This configuration model-like construction process can lead to duplicate edges and loops. You can remove the self-loops and parallel edges (see below) which will likely result in a graph that doesn't have the exact degree sequence specified. This "finite-size effect" decreases as the size of the graph increases. References ---------- .. [1] Joel C. Miller. "Percolation and epidemics in random clustered networks". In: Physical review. E, Statistical, nonlinear, and soft matter physics 80 (2 Part 1 August 2009). .. [2] M. E. J. Newman. "Random Graphs with Clustering". In: Physical Review Letters 103 (5 July 2009) Examples -------- >>> deg = [(1, 0), (1, 0), (1, 0), (2, 0), (1, 0), (2, 1), (0, 1), (0, 1)] >>> G = nx.random_clustered_graph(deg) To remove parallel edges: >>> G = nx.Graph(G) To remove self loops: >>> G.remove_edges_from(G.selfloop_edges()) """ if create_using is None: create_using = nx.MultiGraph() elif create_using.is_directed(): raise nx.NetworkXError("Directed Graph not supported") if not seed is None: random.seed(seed) # In Python 3, zip() returns an iterator. Make this into a list. joint_degree_sequence = list(joint_degree_sequence) N = len(joint_degree_sequence) G = nx.empty_graph(N,create_using) ilist = [] tlist = [] for n in G: degrees = joint_degree_sequence[n] for icount in range(degrees[0]): ilist.append(n) for tcount in range(degrees[1]): tlist.append(n) if len(ilist)%2 != 0 or len(tlist)%3 != 0: raise nx.NetworkXError('Invalid degree sequence') random.shuffle(ilist) random.shuffle(tlist) while ilist: G.add_edge(ilist.pop(),ilist.pop()) while tlist: n1 = tlist.pop() n2 = tlist.pop() n3 = tlist.pop() G.add_edges_from([(n1,n2),(n1,n3),(n2,n3)]) G.name = "random_clustered %d nodes %d edges"%(G.order(),G.size()) return G
bsd-3-clause
-6,916,573,096,786,098,000
33.348485
79
0.634098
false
alexforencich/python-ivi
ivi/rigol/rigolDSSource.py
1
19204
""" Python Interchangeable Virtual Instrument Library Copyright (c) 2017 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import numpy as np import struct from .. import ivi from .. import fgen OutputMode = set(['function', 'arbitrary']) OperationMode = set(['continuous']) StandardWaveformMapping = { 'sine': 'sin', 'square': 'squ', 'triangle': 'ramp', 'ramp_up': 'ramp', 'ramp_down': 'ramp', 'dc': 'dc', 'pulse': 'puls', 'noise': 'nois', 'sinc': 'sinc', 'exprise': 'expr', 'expfall': 'expf', 'cardiac': 'ecg', 'gaussian': 'gaus', 'lorentz': 'lor', 'haversine': 'hav' } class rigolDSSource(fgen.Base, fgen.StdFunc, fgen.ArbWfm, fgen.ArbFrequency, fgen.ArbChannelWfm): "Rigol DSO internal source IVI function generator driver" def __init__(self, *args, **kwargs): self.__dict__.setdefault('_instrument_id', '') self._output_standard_waveform_symmetry = list() super(rigolDSSource, self).__init__(*args, **kwargs) # Internal source self._output_count = 2 self._arbitrary_sample_rate = 0 self._arbitrary_waveform_number_waveforms_max = 0 self._arbitrary_waveform_size_max = 16384 self._arbitrary_waveform_size_min = 2 self._arbitrary_waveform_quantum = 1 self._add_property('outputs[].standard_waveform.symmetry', self._get_output_standard_waveform_symmetry, self._set_output_standard_waveform_symmetry, None, """ Specifies the symmetry for a ramp or triangle waveform. This attribute affects function generator behavior only when the Waveform attribute is set to Waveform Triangle, Ramp Up, or Ramp Down. The value is expressed as a percentage. """) self._identity_description = "Rigol DSO internal source IVI function generator driver" self._identity_supported_instrument_models = [] self._init_outputs() def _init_outputs(self): try: super(rigolDSSource, self)._init_outputs() except AttributeError: pass self._output_name = list() self._output_operation_mode = list() self._output_enabled = list() self._output_impedance = list() self._output_mode = list() self._output_reference_clock_source = list() self._output_standard_waveform_ramp_symmetry = list() for i in range(self._output_count): self._output_name.append("source%d" % (i+1)) self._output_operation_mode.append('continuous') self._output_enabled.append(False) self._output_impedance.append(50) self._output_mode.append('function') self._output_reference_clock_source.append('internal') self._output_standard_waveform_symmetry.append(50.0) self.outputs._set_list(self._output_name) # AFG option def _get_output_operation_mode(self, index): index = ivi.get_index(self._output_name, index) return self._output_operation_mode[index] def _set_output_operation_mode(self, index, value): index = ivi.get_index(self._output_name, index) if value not in OperationMode: raise ivi.ValueNotSupportedException() self._output_operation_mode[index] = value def _get_output_enabled(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:output:state?" % self._output_name[index]) self._output_enabled[index] = resp == 'ON' self._set_cache_valid(index=index) return self._output_enabled[index] def _set_output_enabled(self, index, value): index = ivi.get_index(self._output_name, index) value = bool(value) if not self._driver_operation_simulate: self._write(":%s:output:state %d" % (self._output_name[index], value)) self._output_enabled[index] = value self._set_cache_valid(index=index) def _get_output_impedance(self, index): index = ivi.get_index(self._analog_channel_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): val = self._ask(":%s:output:impedance?" % self._output_name[index]) if val == 'HIGHZ': self._output_impedance[index] = 1000000 elif val == 'FIF': self._output_impedance[index] = 50 self._set_cache_valid(index=index) return self._output_impedance[index] def _set_output_impedance(self, index, value): value = float(value) index = ivi.get_index(self._analog_channel_name, index) if value != 50 and value != 1000000: raise Exception('Invalid impedance selection') if not self._driver_operation_simulate: if value == 1000000: self._write(":%s:output:impedance highz" % self._output_name[index]) elif value == 50: self._write(":%s:output:impedance fifty" % self._output_name[index]) self._output_impedance[index] = value self._set_cache_valid(index=index) self._set_cache_valid(False, 'output_standard_waveform_amplitude', index) def _get_output_mode(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:function?" % self._output_name[index]).lower() if resp == 'ext': self._output_mode[index] = 'arbitrary' else: self._output_mode[index] = 'function' self._set_cache_valid(index=index) return self._output_mode[index] def _set_output_mode(self, index, value): index = ivi.get_index(self._output_name, index) if value not in OutputMode: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: if value == 'arbitrary': self._write(":%s:function ext" % self._output_name[index]) else: if self._get_cache_valid('output_standard_waveform_waveform', index=index): self._set_output_standard_waveform_waveform(index, self._output_standard_waveform_waveform[index]) else: self._set_output_standard_waveform_waveform(index, 'sine') self._output_mode[index] = value self._set_cache_valid(index=index) def _get_output_reference_clock_source(self, index): index = ivi.get_index(self._output_name, index) return self._output_reference_clock_source[index] def _set_output_reference_clock_source(self, index, value): index = ivi.get_index(self._output_name, index) value = 'internal' self._output_reference_clock_source[index] = value def abort_generation(self): pass def initiate_generation(self): pass def _get_output_standard_waveform_amplitude(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:voltage:amplitude?" % self._output_name[index]) self._output_standard_waveform_amplitude[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_amplitude[index] def _set_output_standard_waveform_amplitude(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) if value < 0.01 or value > 5.0: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":%s:voltage:amplitude %e" % (self._output_name[index], value)) self._output_standard_waveform_amplitude[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_dc_offset(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:voltage:offset?" % self._output_name[index]) self._output_standard_waveform_dc_offset[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_dc_offset[index] def _set_output_standard_waveform_dc_offset(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) if not self._driver_operation_simulate: self._write(":%s:voltage:offset %e" % (self._output_name[index], value)) self._output_standard_waveform_dc_offset[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_duty_cycle_high(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:pulse:dcycle?" % self._output_name[index]) self._output_standard_waveform_duty_cycle_high[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_duty_cycle_high[index] def _set_output_standard_waveform_duty_cycle_high(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) if value < 10.0 or value > 90.0: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":%s:pulse:dcycle %e" % (self._output_name[index], value)) self._output_standard_waveform_duty_cycle_high[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_symmetry(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:function:ramp:symmetry?" % self._output_name[index]) self._output_standard_waveform_symmetry[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_symmetry[index] def _set_output_standard_waveform_symmetry(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) if value < 0.0 or value > 100.0: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":%s:function:ramp:symmetry %e" % (self._output_name[index], value)) self._output_standard_waveform_symmetry[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_start_phase(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:phase?" % self._output_name[index]) self._output_standard_waveform_start_phase[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_start_phase[index] def _set_output_standard_waveform_start_phase(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) % 360 if value < 0 or value > 360.0: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":%s:phase %e" % (self._output_name[index], value)) self._output_standard_waveform_start_phase[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_frequency(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:frequency?" % self._output_name[index]) self._output_standard_waveform_frequency[index] = float(resp) self._set_cache_valid(index=index) return self._output_standard_waveform_frequency[index] def _set_output_standard_waveform_frequency(self, index, value): index = ivi.get_index(self._output_name, index) value = float(value) if value < 0.1 or value > 25e6: raise ivi.OutOfRangeException() if not self._driver_operation_simulate: self._write(":%s:frequency %e" % (self._output_name[index], value)) self._output_standard_waveform_frequency[index] = value self._set_cache_valid(index=index) def _get_output_standard_waveform_waveform(self, index): index = ivi.get_index(self._output_name, index) if not self._driver_operation_simulate and not self._get_cache_valid(index=index): resp = self._ask(":%s:function?" % self._output_name[index]).lower() if resp == 'arbitrary': resp = 'sine' resp = [k for k,v in StandardWaveformMapping.items() if v==resp][0] if resp == 'ramp_up': if self._get_output_standard_waveform_symmetry(index) <= 10.0: resp = 'ramp_down' elif self._get_output_standard_waveform_symmetry(index) >= 90.0: resp = 'ramp_up' else: resp = 'triangle' self._output_standard_waveform_waveform[index] = resp self._set_cache_valid(index=index) return self._output_standard_waveform_waveform[index] def _set_output_standard_waveform_waveform(self, index, value): index = ivi.get_index(self._output_name, index) if value not in StandardWaveformMapping: raise ivi.ValueNotSupportedException() if not self._driver_operation_simulate: self._write(":%s:function %s" % (self._output_name[index], StandardWaveformMapping[value])) if value == 'triangle': if self._get_output_standard_waveform_symmetry(index) <= 10.0 or self._get_output_standard_waveform_symmetry(index) >= 90: self._set_output_standard_waveform_symmetry(index, 50.0) elif value == 'ramp_up': self._set_output_standard_waveform_symmetry(index, 100.0) elif value == 'ramp_down': self._set_output_standard_waveform_symmetry(index, 0.0) self._output_standard_waveform_waveform[index] = value self._set_cache_valid(index=index) self._output_mode[index] = 'function' self._set_cache_valid(True, 'output_mode', index=index) def _get_output_arbitrary_gain(self, index): return self._get_output_standard_waveform_amplitude(index) def _set_output_arbitrary_gain(self, index, value): self._set_output_standard_waveform_amplitude(index, value) def _get_output_arbitrary_offset(self, index): return self._get_output_standard_waveform_dc_offset(index) def _set_output_arbitrary_offset(self, index, value): self._set_output_standard_waveform_dc_offset(index, value) def _get_output_arbitrary_waveform(self, index): index = ivi.get_index(self._output_name, index) return self._output_arbitrary_waveform[index] def _set_output_arbitrary_waveform(self, index, value): index = ivi.get_index(self._output_name, index) value = str(value) self._output_arbitrary_waveform[index] = value def _get_arbitrary_sample_rate(self): return self._arbitrary_sample_rate def _set_arbitrary_sample_rate(self, value): value = float(value) self._arbitrary_sample_rate = value def _get_arbitrary_waveform_number_waveforms_max(self): return self._arbitrary_waveform_number_waveforms_max def _get_arbitrary_waveform_size_max(self): return self._arbitrary_waveform_size_max def _get_arbitrary_waveform_size_min(self): return self._arbitrary_waveform_size_min def _get_arbitrary_waveform_quantum(self): return self._arbitrary_waveform_quantum def _arbitrary_waveform_clear(self, handle): pass def _arbitrary_waveform_configure(self, index, handle, gain, offset): self._set_output_arbitrary_waveform(index, handle) self._set_output_arbitrary_gain(index, gain) self._set_output_arbitrary_offset(index, offset) def _arbitrary_waveform_create(self, data): return "handle" def _get_output_arbitrary_frequency(self, index): return self._get_output_standard_waveform_frequency(index) def _set_output_arbitrary_frequency(self, index, value): self._set_output_standard_waveform_frequency(index, value) def _arbitrary_waveform_create_channel_waveform(self, index, data): y = None x = None if type(data) == list and type(data[0]) == float: # list y = array(data) elif type(data) == np.ndarray and len(data.shape) == 1: # 1D array y = data elif type(data) == np.ndarray and len(data.shape) == 2 and data.shape[0] == 1: # 2D array, hieght 1 y = data[0] elif type(data) == np.ndarray and len(data.shape) == 2 and data.shape[1] == 1: # 2D array, width 1 y = data[:,0] else: x, y = ivi.get_sig(data) if len(y) % self._arbitrary_waveform_quantum != 0: raise ivi.ValueNotSupportedException() # clip on [-1,1] and rescale to [0,1] yc = (y.clip(-1, 1)+1)/2 # scale to 14 bits yb = np.rint(yc * ((1 << 14)-1)).astype(int) & 0x00003fff raw_data = yb.astype('<i2').tobytes() # space required before IEEE block due to Rigol firmware bug wrt. data alignment in scope memory self._write_ieee_block(raw_data, ':trace%d:data:dac volatile, ' % (index+1)) return self._output_name[index]
mit
-7,822,072,069,273,970,000
43.147126
138
0.627578
false
jldbc/pybaseball
tests/integration/pybaseball/enums/fangraphs/test_pitching_data_enum.py
1
1327
import lxml.etree import requests from pybaseball.enums.fangraphs.pitching_data_enum import FangraphsPitchingStats from tests.integration.pybaseball.enums.fangraphs.transforms import transform_leaderboard_item def test_enums_vs_fangraphs_column_list() -> None: """ Go and get all the supported columns out of Fangraphs' "Custom Query" column selector. Compare this list to our enum of supported columns and ensure we've covered them 100%. """ sample_pitching_url = "https://www.fangraphs.com/leaders.aspx?pos=all&stats=pit&lg=all&qual=y&type=8&season=2020&month=0&season1=2020&ind=0" sample_pitching_result = requests.get(sample_pitching_url) parsed_result = lxml.etree.HTML(sample_pitching_result.content.decode('utf-8')) custom_leaderboards_items = sorted( list({x for x in parsed_result.xpath('//ul[@class="rlbList"]/li[@class="rlbItem"]/text()') if x != 'Line Break'}) ) custom_leaderboards_items = sorted([transform_leaderboard_item(x) for x in custom_leaderboards_items]) current_leaderboard_items = sorted( [str(x).split('.')[1] for x in FangraphsPitchingStats.ALL() if x not in [FangraphsPitchingStats.COMMON, FangraphsPitchingStats.LINE_BREAK]] ) assert custom_leaderboards_items == current_leaderboard_items
mit
-3,920,005,448,577,044,500
41.806452
144
0.716654
false
rvs/gpdb
gpMgmt/bin/gpload.py
1
101392
#!/usr/bin/env python # -*- coding: utf-8 -*- # gpload - load file(s) into Greenplum Database # Copyright Greenplum 2008 '''gpload [options] -f configuration file Options: -h hostname: host to connect to -p port: port to connect to -U username: user to connect as -d database: database to connect to -W: force password authentication -q: quiet mode -D: do not actually load data -v: verbose -V: very verbose -l logfile: log output to logfile --no_auto_trans: do not wrap gpload in transaction --gpfdist_timeout timeout: gpfdist timeout value --version: print version number and exit -?: help ''' import sys if sys.hexversion<0x2040400: sys.stderr.write("gpload needs python 2.4.4 or higher\n") sys.exit(2) try: import yaml except ImportError: sys.stderr.write("gpload needs pyyaml. You can get it from http://pyyaml.org.\n") sys.exit(2) import platform try: from pygresql import pg except Exception, e: from struct import calcsize sysWordSize = calcsize("P") * 8 if (platform.system()) in ['Windows', 'Microsoft'] and (sysWordSize == 64): errorMsg = "gpload appears to be running in 64-bit Python under Windows.\n" errorMsg = errorMsg + "Currently only 32-bit Python is supported. Please \n" errorMsg = errorMsg + "reinstall a 32-bit Python interpreter.\n" else: errorMsg = "gpload was unable to import The PyGreSQL Python module (pg.py) - %s\n" % str(e) sys.stderr.write(str(errorMsg)) sys.exit(2) import hashlib import datetime,getpass,os,signal,socket,subprocess,threading,time,traceback,re import uuid import socket thePlatform = platform.system() if thePlatform in ['Windows', 'Microsoft']: windowsPlatform = True else: windowsPlatform = False if windowsPlatform == False: import select EXECNAME = 'gpload' NUM_WARN_ROWS = 0 # Mapping for validing our configuration file. We're only concerned with # keys -- stuff left of ':'. It gets complex in two cases: firstly when # we handle blocks which have keys which are not keywords -- such as under # COLUMNS:. Secondly, we want to detect when users put keywords in the wrong # place. To that end, the mapping is structured such that: # # key -> { 'parse_children' -> [ True | False ], # 'parent' -> <parent name> } # # Each key is a keyword in the configuration file. parse_children tells us # whether children are expected to be keywords. parent tells us the parent # keyword or None valid_tokens = { "version": {'parse_children': True, 'parent': None}, "database": {'parse_children': True, 'parent': None}, "user": {'parse_children': True, 'parent': None}, "host": {'parse_children': True, 'parent': None}, "port": {'parse_children': True, 'parent': [None, "source"]}, "password": {'parse_children': True, 'parent': None}, "gpload": {'parse_children': True, 'parent': None}, "input": {'parse_children': True, 'parent': "gpload"}, "source": {'parse_children': True, 'parent': "input"}, "local_hostname": {'parse_children': False, 'parent': "source"}, "port_range": {'parse_children': False, 'parent': "source"}, "file": {'parse_children': False, 'parent': "source"}, "ssl": {'parse_children': False, 'parent': "source"}, "certificates_path": {'parse_children': False, 'parent': "source"}, "columns": {'parse_children': False, 'parent': "input"}, "transform": {'parse_children': True, 'parent': "input"}, "transform_config": {'parse_children': True, 'parent': "input"}, "max_line_length": {'parse_children': True, 'parent': "input"}, "format": {'parse_children': True, 'parent': "input"}, "delimiter": {'parse_children': True, 'parent': "input"}, "escape": {'parse_children': True, 'parent': "input"}, "null_as": {'parse_children': True, 'parent': "input"}, "quote": {'parse_children': True, 'parent': "input"}, "encoding": {'parse_children': True, 'parent': "input"}, "force_not_null": {'parse_children': False, 'parent': "input"}, "error_limit": {'parse_children': True, 'parent': "input"}, "error_percent": {'parse_children': True, 'parent': "input"}, "error_table": {'parse_children': True, 'parent': "input"}, "log_errors": {'parse_children': False, 'parent': "input"}, "header": {'parse_children': True, 'parent': "input"}, "fully_qualified_domain_name": {'parse_children': False, 'parent': 'input'}, "output": {'parse_children': True, 'parent': "gpload"}, "table": {'parse_children': True, 'parent': "output"}, "mode": {'parse_children': True, 'parent': "output"}, "match_columns": {'parse_children': False, 'parent': "output"}, "update_columns": {'parse_children': False, 'parent': "output"}, "update_condition": {'parse_children': True, 'parent': "output"}, "mapping": {'parse_children': False, 'parent': "output"}, "including_defaults": {'parse_children': False, 'parent': 'output'}, "preload": {'parse_children': True, 'parent': 'gpload'}, "truncate": {'parse_children': False, 'parent': 'preload'}, "reuse_tables": {'parse_children': False, 'parent': 'preload'}, "sql": {'parse_children': True, 'parent': 'gpload'}, "before": {'parse_children': False, 'parent': 'sql'}, "after": {'parse_children': False, 'parent': 'sql'}, "external": {'parse_children': True, 'parent': 'gpload'}, "schema": {'parse_children': False, 'parent': 'external'}} _abbrevs = [ (1<<50L, ' PB'), (1<<40L, ' TB'), (1<<30L, ' GB'), (1<<20L, ' MB'), (1<<10L, ' kB'), (1, ' bytes') ] received_kill = False keywords = { "abort": True, "absolute": True, "access": True, "action": True, "active": True, "add": True, "admin": True, "after": True, "aggregate": True, "all": True, "also": True, "alter": True, "analyse": True, "analyze": True, "and": True, "any": True, "array": True, "as": True, "asc": True, "assertion": True, "assignment": True, "asymmetric": True, "at": True, "authorization": True, "backward": True, "before": True, "begin": True, "between": True, "bigint": True, "binary": True, "bit": True, "boolean": True, "both": True, "by": True, "cache": True, "called": True, "cascade": True, "cascaded": True, "case": True, "cast": True, "chain": True, "char": True, "character": True, "characteristics": True, "check": True, "checkpoint": True, "class": True, "close": True, "cluster": True, "coalesce": True, "collate": True, "column": True, "comment": True, "commit": True, "committed": True, "concurrently": True, "connection": True, "constraint": True, "constraints": True, "conversion": True, "convert": True, "copy": True, "cost": True, "create": True, "createdb": True, "createrole": True, "createuser": True, "cross": True, "csv": True, "cube": True, "current": True, "current_date": True, "current_role": True, "current_time": True, "current_timestamp": True, "current_user": True, "cursor": True, "cycle": True, "database": True, "day": True, "deallocate": True, "dec": True, "decimal": True, "declare": True, "default": True, "defaults": True, "deferrable": True, "deferred": True, "definer": True, "delete": True, "delimiter": True, "delimiters": True, "desc": True, "disable": True, "distinct": True, "distributed": True, "do": True, "domain": True, "double": True, "drop": True, "each": True, "else": True, "enable": True, "encoding": True, "encrypted": True, "end": True, "errors": True, "escape": True, "every": True, "except": True, "exchange": True, "exclude": True, "excluding": True, "exclusive": True, "execute": True, "exists": True, "explain": True, "external": True, "extract": True, "false": True, "fetch": True, "fields": True, "fill": True, "filter": True, "first": True, "float": True, "following": True, "for": True, "force": True, "foreign": True, "format": True, "forward": True, "freeze": True, "from": True, "full": True, "function": True, "global": True, "grant": True, "granted": True, "greatest": True, "group": True, "group_id": True, "grouping": True, "handler": True, "hash": True, "having": True, "header": True, "hold": True, "host": True, "hour": True, "if": True, "ignore": True, "ilike": True, "immediate": True, "immutable": True, "implicit": True, "in": True, "including": True, "inclusive": True, "increment": True, "index": True, "indexes": True, "inherit": True, "inherits": True, "initially": True, "inner": True, "inout": True, "input": True, "insensitive": True, "insert": True, "instead": True, "int": True, "integer": True, "intersect": True, "interval": True, "into": True, "invoker": True, "is": True, "isnull": True, "isolation": True, "join": True, "keep": True, "key": True, "lancompiler": True, "language": True, "large": True, "last": True, "leading": True, "least": True, "left": True, "level": True, "like": True, "limit": True, "list": True, "listen": True, "load": True, "local": True, "localtime": True, "localtimestamp": True, "location": True, "lock": True, "log": True, "login": True, "master": True, "match": True, "maxvalue": True, "merge": True, "minute": True, "minvalue": True, "mirror": True, "missing": True, "mode": True, "modify": True, "month": True, "move": True, "names": True, "national": True, "natural": True, "nchar": True, "new": True, "next": True, "no": True, "nocreatedb": True, "nocreaterole": True, "nocreateuser": True, "noinherit": True, "nologin": True, "none": True, "noovercommit": True, "nosuperuser": True, "not": True, "nothing": True, "notify": True, "notnull": True, "nowait": True, "null": True, "nullif": True, "numeric": True, "object": True, "of": True, "off": True, "offset": True, "oids": True, "old": True, "on": True, "only": True, "operator": True, "option": True, "or": True, "order": True, "others": True, "out": True, "outer": True, "over": True, "overcommit": True, "overlaps": True, "overlay": True, "owned": True, "owner": True, "partial": True, "partition": True, "partitions": True, "password": True, "percent": True, "placing": True, "position": True, "preceding": True, "precision": True, "prepare": True, "prepared": True, "preserve": True, "primary": True, "prior": True, "privileges": True, "procedural": True, "procedure": True, "queue": True, "quote": True, "randomly": True, "range": True, "read": True, "real": True, "reassign": True, "recheck": True, "references": True, "reindex": True, "reject": True, "relative": True, "release": True, "rename": True, "repeatable": True, "replace": True, "reset": True, "resource": True, "restart": True, "restrict": True, "returning": True, "returns": True, "revoke": True, "right": True, "role": True, "rollback": True, "rollup": True, "row": True, "rows": True, "rule": True, "savepoint": True, "schema": True, "scroll": True, "second": True, "security": True, "segment": True, "select": True, "sequence": True, "serializable": True, "session": True, "session_user": True, "set": True, "setof": True, "sets": True, "share": True, "show": True, "similar": True, "simple": True, "smallint": True, "some": True, "split": True, "stable": True, "start": True, "statement": True, "statistics": True, "stdin": True, "stdout": True, "storage": True, "strict": True, "subpartition": True, "subpartitions": True, "substring": True, "superuser": True, "symmetric": True, "sysid": True, "system": True, "table": True, "tablespace": True, "temp": True, "template": True, "temporary": True, "then": True, "threshold": True, "ties": True, "time": True, "timestamp": True, "to": True, "trailing": True, "transaction": True, "transform": True, "treat": True, "trigger": True, "trim": True, "true": True, "truncate": True, "trusted": True, "type": True, "unbounded": True, "uncommitted": True, "unencrypted": True, "union": True, "unique": True, "unknown": True, "unlisten": True, "until": True, "update": True, "user": True, "using": True, "vacuum": True, "valid": True, "validation": True, "validator": True, "values": True, "varchar": True, "varying": True, "verbose": True, "view": True, "volatile": True, "web": True, "when": True, "where": True, "window": True, "with": True, "without": True, "work": True, "write": True, "year": True, "zone": True } def is_keyword(tab): if tab in keywords: return True else: return False def caseInsensitiveDictLookup(key, dictionary): """ Do a case insensitive dictionary lookup. Return the dictionary value if found, or None if not found. """ for entry in dictionary: if entry.lower() == key.lower(): return dictionary[entry] return None def sqlIdentifierCompare(x, y): """ Compare x and y as SQL identifiers. Use SQL rules for comparing delimited and non-delimited identifiers. Return True if they are equivalent or False if they are not equivalent. """ if x == None or y == None: return False if isDelimited(x): x = quote_unident(x) else: x = x.lower() if isDelimited(y): y = quote_unident(y) else: y = y.lower() if x == y: return True else: return False def isDelimited(value): """ This method simply checks to see if the user supplied value has delimiters. That is, if it starts and ends with double-quotes, then it is delimited. """ if len(value) < 2: return False if value[0] == '"' and value[-1] == '"': return True else: return False def convertListToDelimited(identifiers): """ This method will convert a list of identifiers, which may be a mix of delimited and non-delimited identifiers, and return a list of delimited identifiers. """ returnList = [] for id in identifiers: if isDelimited(id) == False: id = id.lower() returnList.append(quote_ident(id)) else: returnList.append(id) return returnList def splitUpMultipartIdentifier(id): """ Given a sql identifer like sch.tab, return a list of its individual elements (e.g. sch.tab would return ['sch','tab'] """ returnList = [] elementList = splitIntoLiteralsAndNonLiterals(id, quoteValue='"') # If there is a leading empty string, remove it. if elementList[0] == ' ': elementList.pop(0) # Remove the dots, and split up undelimited multipart names for e in elementList: if e != '.': if e[0] != '"': subElementList = e.split('.') else: subElementList = [e] for se in subElementList: # remove any empty elements if se != '': returnList.append(se) return returnList def splitIntoLiteralsAndNonLiterals(str1, quoteValue="'"): """ Break the string (str1) into a list of literals and non-literals where every even number element is a non-literal and every odd number element is a literal. The delimiter between literals and non-literals is the quoteValue, so this function will not take into account any modifiers on a literal (e.g. E'adf'). """ returnList = [] if len(str1) > 1 and str1[0] == quoteValue: # Always start with a non-literal str1 = ' ' + str1 inLiteral = False i = 0 tokenStart = 0 while i < len(str1): if str1[i] == quoteValue: if inLiteral == False: # We are at start of literal inLiteral = True returnList.append(str1[tokenStart:i]) tokenStart = i elif i + 1 < len(str1) and str1[i+1] == quoteValue: # We are in a literal and found quote quote, so skip over it i = i + 1 else: # We are at the end of a literal or end of str1 returnList.append(str1[tokenStart:i+1]) tokenStart = i + 1 inLiteral = False i = i + 1 if tokenStart < len(str1): returnList.append(str1[tokenStart:]) return returnList def quote_ident(val): """ This method returns a new string replacing " with "", and adding a " at the start and end of the string. """ return '"' + val.replace('"', '""') + '"' def quote_unident(val): """ This method returns a new string replacing "" with ", and removing the " at the start and end of the string. """ if val != None and len(val) > 0: val = val.replace('""', '"') if val != None and len(val) > 1 and val[0] == '"' and val[-1] == '"': val = val[1:-1] return val def notice_processor(self): if windowsPlatform == True: # We don't have a pygresql with our notice fix, so skip for windows. # This means we will not get any warnings on windows (MPP10989). return theNotices = self.db.notices() r = re.compile("^NOTICE: Found (\d+) data formatting errors.*") messageNumber = 0 m = None while messageNumber < len(theNotices) and m == None: aNotice = theNotices[messageNumber] m = r.match(aNotice) messageNumber = messageNumber + 1 if m: global NUM_WARN_ROWS NUM_WARN_ROWS = int(m.group(1)) def handle_kill(signum, frame): # already dying? global received_kill if received_kill: return received_kill = True g.log(g.INFO, "received signal %d" % signum) g.exitValue = 2 sys.exit(2) def bytestr(size, precision=1): """Return a string representing the greek/metric suffix of a size""" if size==1: return '1 byte' for factor, suffix in _abbrevs: if size >= factor: break float_string_split = `size/float(factor)`.split('.') integer_part = float_string_split[0] decimal_part = float_string_split[1] if int(decimal_part[0:precision]): float_string = '.'.join([integer_part, decimal_part[0:precision]]) else: float_string = integer_part return float_string + suffix class CatThread(threading.Thread): """ Simple threading wrapper to read a file descriptor and put the contents in the log file. The fd is assumed to be stdout and stderr from gpfdist. We must use select.select and locks to ensure both threads are not read at the same time. A dead lock situation could happen if they did. communicate() is not used since it blocks. We will wait 1 second between read attempts. """ def __init__(self,gpload,fd, sharedLock = None): threading.Thread.__init__(self) self.gpload = gpload self.fd = fd self.theLock = sharedLock def run(self): try: if windowsPlatform == True: while 1: # Windows select does not support select on non-file fd's, so we can use the lock fix. Deadlock is possible here. # We need to look into the Python windows module to see if there is another way to do this in Windows. line = self.fd.readline() if line=='': break self.gpload.log(self.gpload.LOG, 'gpfdist: ' + line.strip('\n')) else: while 1: retList = select.select( [self.fd] , [] , [] , 1 ) if retList[0] == [self.fd]: self.theLock.acquire() line = self.fd.readline() self.theLock.release() else: continue if line=='': break self.gpload.log(self.gpload.LOG, 'gpfdist: ' + line.strip('\n')) except Exception, e: # close fd so that not block the worker thread because of stdout/stderr pipe not finish/closed. self.fd.close() sys.stderr.write("\n\nWarning: gpfdist log halt because Log Thread '%s' got an exception: %s \n" % (self.getName(), str(e))) self.gpload.log(self.gpload.WARN, "gpfdist log halt because Log Thread '%s' got an exception: %s" % (self.getName(), str(e))) raise class Progress(threading.Thread): """ Determine our progress from the gpfdist daemon """ def __init__(self,gpload,ports): threading.Thread.__init__(self) self.gpload = gpload self.ports = ports self.number = 0 self.condition = threading.Condition() def get(self,port): """ Connect to gpfdist and issue an HTTP query. No need to do this with httplib as the transaction is extremely simple """ addrinfo = socket.getaddrinfo('localhost', port) s = socket.socket(addrinfo[0][0],socket.SOCK_STREAM) s.connect(('localhost',port)) s.sendall('GET gpfdist/status HTTP/1.0\r\n\r\n') f = s.makefile() read_bytes = -1 total_bytes = -1 total_sessions = -1 for line in f: self.gpload.log(self.gpload.DEBUG, "gpfdist stat: %s" % \ line.strip('\n')) a = line.split(' ') if not a: continue if a[0]=='read_bytes': read_bytes = int(a[1]) elif a[0]=='total_bytes': total_bytes = int(a[1]) elif a[0]=='total_sessions': total_sessions = int(a[1]) s.close() f.close() return read_bytes,total_bytes,total_sessions def get1(self): """ Parse gpfdist output """ read_bytes = 0 total_bytes = 0 for port in self.ports: a = self.get(port) if a[2]<1: return if a[0]!=-1: read_bytes += a[0] if a[1]!=-1: total_bytes += a[1] self.gpload.log(self.gpload.INFO,'transferred %s of %s' % \ (bytestr(read_bytes),bytestr(total_bytes))) def run(self): """ Thread worker """ while 1: try: self.condition.acquire() n = self.number self.condition.release() self.get1() if n: self.gpload.log(self.gpload.DEBUG, "gpfdist status thread told to stop") self.condition.acquire() self.condition.notify() self.condition.release() break except socket.error, e: self.gpload.log(self.gpload.DEBUG, "got socket exception: %s" % e) break time.sleep(1) def cli_help(): help_path = os.path.join(sys.path[0], '..', 'docs', 'cli_help', EXECNAME + '_help'); f = None try: try: f = open(help_path); return f.read(-1) except: return '' finally: if f: f.close() #============================================================ def usage(error = None): print cli_help() or __doc__ sys.stdout.flush() if error: sys.stderr.write('ERROR: ' + error + '\n') sys.stderr.write('\n') sys.stderr.flush() sys.exit(2) def quote(a): """ SQLify a string """ return "'"+a.replace("'","''").replace('\\','\\\\')+"'" def splitPgpassLine(a): """ If the user has specified a .pgpass file, we'll have to parse it. We simply split the string into arrays at :. We could just use a native python function but we need to escape the ':' character. """ b = [] escape = False d = '' for c in a: if not escape and c=='\\': escape = True elif not escape and c==':': b.append(d) d = '' else: d += c escape = False if escape: d += '\\' b.append(d) return b def test_key(gp, key, crumb): """ Make sure that a key is a valid keyword in the configuration grammar and that it appears in the configuration file where we expect -- that is, where it has the parent we expect """ val = valid_tokens.get(key) if val == None: gp.log(gp.ERROR, 'unrecognized key: "%s"' % key) p = val['parent'] # simplify for when the same keyword can appear in multiple places if type(p) != list: p = [p] c = None if len(crumb): c = crumb[-1] found = False for m in p: if m == c: found = True break if not found: gp.log(gp.ERROR, 'unexpected key: "%s"' % key) return val def yaml_walk(gp, node, crumb): if type(node) == list: for a in node: if type(a) == tuple: key = a[0].value.lower() val = test_key(gp, key, crumb) if (len(a) > 1 and val['parse_children'] and (isinstance(a[1], yaml.nodes.MappingNode) or isinstance(a[1], yaml.nodes.SequenceNode))): crumb.append(key) yaml_walk(gp, a[1], crumb) crumb.pop() elif isinstance(a, yaml.nodes.ScalarNode): test_key(gp, a.value, crumb) else: yaml_walk(gp, a, crumb) elif isinstance(node, yaml.nodes.MappingNode): yaml_walk(gp, node.value, crumb) elif isinstance(node, yaml.nodes.ScalarNode): pass elif isinstance(node, yaml.nodes.SequenceNode): yaml_walk(gp, node.value, crumb) elif isinstance(node, yaml.nodes.CollectionNode): pass def changeToUnicode(a): """ Change every entry in a list or dictionary to a unicode item """ if type(a) == list: return map(changeToUnicode,a) if type(a) == dict: b = dict() for key,value in a.iteritems(): if type(key) == str: key = unicode(key) b[key] = changeToUnicode(value) return b if type(a) == str: a = unicode(a) return a def dictKeyToLower(a): """ down case all entries in a list or dict """ if type(a) == list: return map(dictKeyToLower,a) if type(a) == dict: b = dict() for key,value in a.iteritems(): if type(key) == str: key = unicode(key.lower()) b[key] = dictKeyToLower(value) return b if type(a) == str: a = unicode(a) return a # # MPP-13348 # '''Jenkins hash - http://burtleburtle.net/bob/hash/doobs.html''' def jenkinsmix(a, b, c): a &= 0xffffffff; b &= 0xffffffff; c &= 0xffffffff a -= b; a -= c; a ^= (c>>13); a &= 0xffffffff b -= c; b -= a; b ^= (a<<8); b &= 0xffffffff c -= a; c -= b; c ^= (b>>13); c &= 0xffffffff a -= b; a -= c; a ^= (c>>12); a &= 0xffffffff b -= c; b -= a; b ^= (a<<16); b &= 0xffffffff c -= a; c -= b; c ^= (b>>5); c &= 0xffffffff a -= b; a -= c; a ^= (c>>3); a &= 0xffffffff b -= c; b -= a; b ^= (a<<10); b &= 0xffffffff c -= a; c -= b; c ^= (b>>15); c &= 0xffffffff return a, b, c def jenkins(data, initval = 0): length = lenpos = len(data) if length == 0: return 0 a = b = 0x9e3779b9 c = initval p = 0 while lenpos >= 12: a += (ord(data[p+0]) + (ord(data[p+1])<<8) + (ord(data[p+2])<<16) + (ord(data[p+3])<<24)) b += (ord(data[p+4]) + (ord(data[p+5])<<8) + (ord(data[p+6])<<16) + (ord(data[p+7])<<24)) c += (ord(data[p+8]) + (ord(data[p+9])<<8) + (ord(data[p+10])<<16) + (ord(data[p+11])<<24)) a, b, c = jenkinsmix(a, b, c) p += 12 lenpos -= 12 c += length if lenpos >= 11: c += ord(data[p+10])<<24 if lenpos >= 10: c += ord(data[p+9])<<16 if lenpos >= 9: c += ord(data[p+8])<<8 if lenpos >= 8: b += ord(data[p+7])<<24 if lenpos >= 7: b += ord(data[p+6])<<16 if lenpos >= 6: b += ord(data[p+5])<<8 if lenpos >= 5: b += ord(data[p+4]) if lenpos >= 4: a += ord(data[p+3])<<24 if lenpos >= 3: a += ord(data[p+2])<<16 if lenpos >= 2: a += ord(data[p+1])<<8 if lenpos >= 1: a += ord(data[p+0]) a, b, c = jenkinsmix(a, b, c) return c # MPP-20927 Citibank: gpload external table name problem # Not sure if it is used by other components, just leave it here. def shortname(name): """ Returns a 10 character string formed by concatenating the first two characters of the name with another 8 character string computed using the Jenkins hash function of the table name. When the original name has only a single non-space ascii character, we return '00' followed by 8 char hash. For example: >>> shortname('mytable') 'my3cbb7ba8' >>> shortname('some_pretty_long_test_table_name') 'so9068664a' >>> shortname('t') '006742be70' @param name: the input tablename @returns: a string 10 characters or less built from the table name """ # Remove spaces from original name name = re.sub(r' ', '', name) # Run the hash function j = jenkins(name) # Now also remove non ascii chars from original name. # We do this after jenkins so that we exclude the # (very rare) case of passing an empty string to jenkins name = "".join(i for i in name if ord(i) < 128) if len(name) > 1: return '%2s%08x' % (name[0:2], j) else: return '00%08x' % (j) # could be len 0 or 1 class options: pass class gpload: """ Main class wrapper """ def __init__(self,argv): self.threads = [] # remember threads so that we can join() against them self.exitValue = 0 self.options = options() self.options.h = None self.options.gpfdist_timeout = None self.options.p = None self.options.U = None self.options.W = False self.options.D = False self.options.no_auto_trans = False self.options.password = None self.options.d = None self.DEBUG = 5 self.LOG = 4 self.INFO = 3 self.WARN = 2 self.ERROR = 1 self.options.qv = self.INFO self.options.l = None self.lastcmdtime = '' self.cmdtime = '' self.formatOpts = "" seenv = False seenq = False # Create Temp and External table names. However external table name could # get overwritten with another name later on (see create_external_table_name). # MPP-20927 Citibank: gpload external table name problem. We use uuid to avoid # external table name confliction. self.unique_suffix = str(uuid.uuid1()).replace('-', '_') self.staging_table_name = 'temp_staging_gpload_' + self.unique_suffix self.extTableName = 'ext_gpload_' + self.unique_suffix # SQL to run in order to undo our temporary work self.cleanupSql = [] self.distkey = None configFilename = None while argv: try: try: if argv[0]=='-h': self.options.h = argv[1] argv = argv[2:] if argv[0]=='--gpfdist_timeout': self.options.gpfdist_timeout = argv[1] argv = argv[2:] elif argv[0]=='-p': self.options.p = int(argv[1]) argv = argv[2:] elif argv[0]=='-l': self.options.l = argv[1] argv = argv[2:] elif argv[0]=='-q': self.options.qv -= 1 argv = argv[1:] seenq = True elif argv[0]=='--version': sys.stderr.write("gpload version $Revision$\n") sys.exit(0) elif argv[0]=='-v': self.options.qv = self.LOG argv = argv[1:] seenv = True elif argv[0]=='-V': self.options.qv = self.DEBUG argv = argv[1:] seenv = True elif argv[0]=='-W': self.options.W = True argv = argv[1:] elif argv[0]=='-D': self.options.D = True argv = argv[1:] elif argv[0]=='-U': self.options.U = argv[1] argv = argv[2:] elif argv[0]=='-d': self.options.d = argv[1] argv = argv[2:] elif argv[0]=='-f': configFilename = argv[1] argv = argv[2:] elif argv[0]=='--no_auto_trans': self.options.no_auto_trans = True argv = argv[1:] elif argv[0]=='-?': usage() else: break except IndexError: sys.stderr.write("Option %s needs a parameter.\n"%argv[0]) sys.exit(2) except ValueError: sys.stderr.write("Parameter for option %s must be an integer.\n"%argv[0]) sys.exit(2) if configFilename==None: usage('configuration file required') elif argv: a = "" if len(argv) > 1: a = "s" usage('unrecognized argument%s: %s' % (a, ' '.join(argv))) # default to gpAdminLogs for a log file, may be overwritten if self.options.l is None: self.options.l = os.path.join(os.environ.get('HOME', '.'),'gpAdminLogs') if not os.path.isdir(self.options.l): os.mkdir(self.options.l) self.options.l = os.path.join(self.options.l, 'gpload_' + \ datetime.date.today().strftime('%Y%m%d') + '.log') try: self.logfile = open(self.options.l,'a') except Exception, e: self.log(self.ERROR, "could not open logfile %s: %s" % \ (self.options.l, e)) if seenv and seenq: self.log(self.ERROR, "-q conflicts with -v and -V") if self.options.D: self.log(self.INFO, 'gpload has the -D option, so it does not actually load any data') try: f = open(configFilename,'r') except IOError,e: self.log(self.ERROR, "could not open configuration file: %s" % e) # pull in the config file, which should be in valid YAML try: # do an initial parse, validating the config file doc = f.read() self.config = yaml.load(doc) self.configOriginal = changeToUnicode(self.config) self.config = dictKeyToLower(self.config) ver = self.getconfig('version', unicode, extraStuff = ' tag') if ver != '1.0.0.1': self.control_file_error("gpload configuration schema version must be 1.0.0.1") # second parse, to check that the keywords are sensible y = yaml.compose(doc) # first should be MappingNode if not isinstance(y, yaml.MappingNode): self.control_file_error("configuration file must begin with a mapping") yaml_walk(self, y.value, []) except yaml.scanner.ScannerError,e: self.log(self.ERROR, "configuration file error: %s, line %s" % \ (e.problem, e.problem_mark.line)) except yaml.reader.ReaderError, e: es = "" if isinstance(e.character, str): es = "'%s' codec can't decode byte #x%02x: %s position %d" % \ (e.encoding, ord(e.character), e.reason, e.position) else: es = "unacceptable character #x%04x at byte %d: %s" \ % (ord(e.character), e.position, e.reason) self.log(self.ERROR, es) except yaml.error.MarkedYAMLError, e: self.log(self.ERROR, "configuration file error: %s, line %s" % \ (e.problem, e.problem_mark.line)) f.close() self.subprocesses = [] self.log(self.INFO,'gpload session started ' + \ datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')) def control_file_warning(self, msg): self.log(self.WARN, "A gpload control file processing warning occurred. %s" % msg) def control_file_error(self, msg): self.log(self.ERROR, "A gpload control file processing error occurred. %s" % msg) def elevel2str(self, level): if level == self.DEBUG: return "DEBUG" elif level == self.LOG: return "LOG" elif level == self.INFO: return "INFO" elif level == self.ERROR: return "ERROR" elif level == self.WARN: return "WARN" else: self.log(self.ERROR, "unknown log type %i" % level) def log(self, level, a): """ Level is either DEBUG, LOG, INFO, ERROR. a is the message """ try: t = time.localtime() str = '|'.join( [datetime.datetime.today().strftime('%Y-%m-%d %H:%M:%S'), self.elevel2str(level), a]) + '\n' str = str.encode('utf-8') except Exception, e: # log even if contains non-utf8 data and pass this exception self.logfile.write("\nWarning: Log() threw an exception: %s \n" % (e)) if level <= self.options.qv: sys.stdout.write(str) if level <= self.options.qv or level <= self.LOG: try: self.logfile.write(str) self.logfile.flush() except AttributeError, e: pass if level == self.ERROR: self.exitValue = 2; sys.exit(self.exitValue) def getconfig(self, a, typ=None, default='error', extraStuff='', returnOriginal=False): """ Look for a config entry, via a column delimited string. a:b:c points to a: b: c Make sure that end point is of type 'typ' when not set to None. If returnOriginal is False, the return value will be in lower case, else the return value will be in its original form (i.e. the case that the user specified in their yaml file). """ self.log(self.DEBUG, "getting config for " + a) if returnOriginal == True: config = self.configOriginal else: config = self.config for s in a.split(':'): self.log(self.DEBUG, "trying " + s) index = 1 if s[-1:]==')': j = s.index('(') index = int(s[j+1:-1]) s = s[:j] if type(config)!=list: config = [config] for c in config: if type(c)==dict: temp = caseInsensitiveDictLookup(s, c) if temp != None: index -= 1 if not index: self.log(self.DEBUG, "found " + s) config = temp break else: if default=='error': self.control_file_error("The configuration must contain %s%s"%(a,extraStuff)) sys.exit(2) return default if typ != None and type(config) != typ: if typ == list: self.control_file_error("The %s entry must be a YAML sequence %s"% (a ,extraStuff)) elif typ == dict: self.control_file_error("The %s entry must be a YAML mapping %s"% (a, extraStuff)) elif typ == unicode or typ == str: self.control_file_error("%s must be a string %s" % (a, extraStuff)) elif typ == int: self.control_file_error("The %s entry must be a YAML integer %s" % (a, extraStuff)) else: assert 0 self.control_file_error("Encountered unknown configuration type %s"% type(config)) sys.exit(2) return config def read_config(self): """ Configure ourselves """ # ensure output is of type list self.getconfig('gpload:output', list) # The user supplied table name can be completely or partially delimited, # and it can be a one or two part name. Get the originally supplied name # and parse it into its delimited one or two part name. self.schemaTable = self.getconfig('gpload:output:table', unicode, returnOriginal=True) schemaTableList = splitUpMultipartIdentifier(self.schemaTable) schemaTableList = convertListToDelimited(schemaTableList) if len(schemaTableList) == 2: self.schema = schemaTableList[0] self.table = schemaTableList[1] else: self.schema = None self.table = schemaTableList[0] # Precendence for configuration: command line > config file > env # variable # host to connect to if not self.options.h: self.options.h = self.getconfig('host', unicode, None) if self.options.h: self.options.h = str(self.options.h) if not self.options.h: self.options.h = os.environ.get('PGHOST') if not self.options.h or len(self.options.h) == 0: self.log(self.INFO, "no host supplied, defaulting to localhost") self.options.h = "localhost" # Port to connect to if not self.options.p: self.options.p = self.getconfig('port',int,None) if not self.options.p: try: self.options.p = int(os.environ.get('PGPORT')) except (ValueError, TypeError): pass if not self.options.p: self.options.p = 5432 # User to connect as if not self.options.U: self.options.U = self.getconfig('user', unicode, None) if not self.options.U: self.options.U = os.environ.get('PGUSER') if not self.options.U: self.options.U = os.environ.get('USER') or \ os.environ.get('LOGNAME') or \ os.environ.get('USERNAME') if not self.options.U or len(self.options.U) == 0: self.log(self.ERROR, "You need to specify your username with the -U " + "option or in your configuration or in your " + "environment as PGUSER") # database to connect to if not self.options.d: self.options.d = self.getconfig('database', unicode, None) if not self.options.d: self.options.d = os.environ.get('PGDATABASE') if not self.options.d: # like libpq, just inherit USER self.options.d = self.options.U if self.getconfig('gpload:input:error_table', unicode, None): self.control_file_error("ERROR_TABLE is not supported. Please use LOG_ERRORS instead.") def gpfdist_port_options(self, name, availablePorts, popenList): """ Adds gpfdist -p / -P port options to popenList based on port and port_range in YAML file. Raises errors if options are invalid or ports are unavailable. @param name: input source name from YAML file. @param availablePorts: current set of available ports @param popenList: gpfdist options (updated) """ port = self.getconfig(name + ':port', int, None) port_range = self.getconfig(name+':port_range', list, None) if port: startPort = endPort = port endPort += 1 elif port_range: try: startPort = int(port_range[0]) endPort = int(port_range[1]) except (IndexError,ValueError): self.control_file_error(name + ":port_range must be a YAML sequence of two integers") else: startPort = self.getconfig(name+':port',int,8000) endPort = self.getconfig(name+':port',int,9000) if (startPort > 65535 or endPort > 65535): # Do not allow invalid ports self.control_file_error("Invalid port. Port values must be less than or equal to 65535.") elif not (set(xrange(startPort,endPort+1)) & availablePorts): self.log(self.ERROR, "no more ports available for gpfdist") popenList.append('-p') popenList.append(str(startPort)) popenList.append('-P') popenList.append(str(endPort)) def gpfdist_filenames(self, name, popenList): """ Adds gpfdist -f filenames to popenList. Raises errors if YAML file option is invalid. @param name: input source name from YAML file. @param popenList: gpfdist options (updated) @return: list of files names """ file = self.getconfig(name+':file',list) for i in file: if type(i)!= unicode and type(i) != str: self.control_file_error(name + ":file must be a YAML sequence of strings") popenList.append('-f') popenList.append('"'+' '.join(file)+'"') return file def gpfdist_timeout_options(self, popenList): """ Adds gpfdist -t timeout option to popenList. @param popenList: gpfdist options (updated) """ if self.options.gpfdist_timeout != None: gpfdistTimeout = self.options.gpfdist_timeout else: gpfdistTimeout = 30 popenList.append('-t') popenList.append(str(gpfdistTimeout)) def gpfdist_verbose_options(self, popenList): """ Adds gpfdist -v / -V options to popenList depending on logging level @param popenList: gpfdist options (updated) """ if self.options.qv == self.LOG: popenList.append('-v') elif self.options.qv > self.LOG: popenList.append('-V') def gpfdist_max_line_length(self, popenList): """ Adds gpfdist -m option to popenList when max_line_length option specified in YAML file. @param popenList: gpfdist options (updated) """ max_line_length = self.getconfig('gpload:input:max_line_length',int,None) if max_line_length is not None: popenList.append('-m') popenList.append(str(max_line_length)) def gpfdist_transform(self, popenList): """ Compute and return url fragment if transform option specified in YAML file. Checks for readable transform config file if transform_config option is specified. Adds gpfdist -c option to popenList if transform_config is specified. Validates that transform_config is present when transform option is specified. @param popenList: gpfdist options (updated) @returns: uri fragment for transform or "" if not appropriate. """ transform = self.getconfig('gpload:input:transform', unicode, None) transform_config = self.getconfig('gpload:input:transform_config', unicode, None) if transform_config: try: f = open(transform_config,'r') except IOError,e: self.log(self.ERROR, "could not open transform_config file: %s" % e) f.close() popenList.append('-c') popenList.append(transform_config) else: if transform: self.control_file_error("transform_config is required when transform is specified") fragment = "" if transform is not None: fragment = "#transform=" + transform return fragment def gpfdist_ssl(self, popenList): """ Adds gpfdist --ssl option to popenList when ssl option specified as true in YAML file. @param popenList: gpfdist options (updated) """ ssl = self.getconfig('gpload:input:source:ssl',bool, False) certificates_path = self.getconfig('gpload:input:source:certificates_path', unicode, None) if ssl and certificates_path: dir_exists = os.path.isdir(certificates_path) if dir_exists == False: self.log(self.ERROR, "could not access CERTIFICATES_PATH directory: %s" % certificates_path) popenList.append('--ssl') popenList.append(certificates_path) else: if ssl: self.control_file_error("CERTIFICATES_PATH is required when SSL is specified as true") elif certificates_path: # ssl=false (or not specified) and certificates_path is specified self.control_file_error("CERTIFICATES_PATH is specified while SSL is not specified as true") def start_gpfdists(self): """ Start gpfdist daemon(s) """ self.locations = [] self.ports = [] sourceIndex = 0 availablePorts = set(xrange(1,65535)) found_source = False self.getconfig('gpload:input', list) while 1: sourceIndex += 1 name = 'gpload:input:source(%d)'%sourceIndex a = self.getconfig(name,None,None) if not a: break found_source = True local_hostname = self.getconfig(name+':local_hostname', list, False) # do default host, the current one if not local_hostname: # if fully_qualified_domain_name is defined and set to true we want to # resolve the fqdn rather than just grabbing the hostname. fqdn = self.getconfig('gpload:input:fully_qualified_domain_name', bool, False) if fqdn: local_hostname = [socket.getfqdn()] else: local_hostname = [socket.gethostname()] # build gpfdist parameters popenList = ['gpfdist'] self.gpfdist_ssl(popenList) self.gpfdist_port_options(name, availablePorts, popenList) file = self.gpfdist_filenames(name, popenList) self.gpfdist_timeout_options(popenList) self.gpfdist_verbose_options(popenList) self.gpfdist_max_line_length(popenList) fragment = self.gpfdist_transform(popenList) try: self.log(self.LOG, 'trying to run %s' % ' '.join(popenList)) cfds = True if platform.system() in ['Windows', 'Microsoft']: # not supported on win32 cfds = False cmd = ' '.join(popenList) needshell = False else: srcfile = None if os.environ.get('GPHOME_LOADERS'): srcfile = os.path.join(os.environ.get('GPHOME_LOADERS'), 'greenplum_loaders_path.sh') elif os.environ.get('GPHOME'): srcfile = os.path.join(os.environ.get('GPHOME'), 'greenplum_path.sh') if (not (srcfile and os.path.exists(srcfile))): self.log(self.ERROR, 'cannot find greenplum environment ' + 'file: environment misconfigured') cmd = 'source %s ; exec ' % srcfile cmd += ' '.join(popenList) needshell = True a = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, close_fds=cfds, shell=needshell) self.subprocesses.append(a) except Exception, e: self.log(self.ERROR, "could not run %s: %s" % \ (' '.join(popenList), str(e))) """ Reading from stderr and stdout on a Popen object can result in a dead lock if done at the same time. Create a lock to share when reading stderr and stdout from gpfdist. """ readLock = threading.Lock() # get all the output from the daemon(s) t = CatThread(self,a.stderr, readLock) t.start() self.threads.append(t) while 1: readLock.acquire() line = a.stdout.readline() readLock.release() if line=='': self.log(self.ERROR,'failed to start gpfdist: ' + 'gpfdist command line: ' + ' '.join(popenList)) line = line.strip('\n') self.log(self.LOG,'gpfdist says: ' + line) if (line.startswith('Serving HTTP on port ') or line.startswith('Serving HTTPS on port ')): port = int(line[21:line.index(',')]) break self.log(self.INFO, 'started %s' % ' '.join(popenList)) self.log(self.LOG,'gpfdist is running on port %d'%port) if port in availablePorts: availablePorts.remove(port) self.ports.append(port) t = CatThread(self,a.stdout,readLock) t.start() self.threads.append(t) ssl = self.getconfig('gpload:input:source:ssl', bool, False) if ssl: protocol = 'gpfdists' else: protocol = 'gpfdist' for l in local_hostname: if type(l) != str and type(l) != unicode: self.control_file_error(name + ":local_hostname must be a YAML sequence of strings") l = str(l) sep = '' if file[0] != '/': sep = '/' # MPP-13617 if ':' in l: l = '[' + l + ']' self.locations.append('%s://%s:%d%s%s%s' % (protocol, l, port, sep, '%20'.join(file), fragment)) if not found_source: self.control_file_error("configuration file must contain source definition") def readPgpass(self,pgpassname): """ Get password form .pgpass file """ try: f = open(pgpassname,'r') except IOError: return for row in f: try: row = row.rstrip("\n") line = splitPgpassLine(row) if line[0]!='*' and line[0].lower()!=self.options.h.lower(): continue if line[1]!='*' and int(line[1])!=self.options.p: continue if line[2]!='*' and line[2]!=self.options.d: continue if line[3]!='*' and line[3]!=self.options.U: continue self.options.password = line[4] break except (ValueError,IndexError): pass f.close() def setup_connection(self, recurse = 0): """ Connect to the backend """ if self.db != None: self.db.close() self.db = None if self.options.W: if self.options.password==None: self.options.password = getpass.getpass() else: if self.options.password==None: self.options.password = self.getconfig('password', unicode, None) if self.options.password==None: self.options.password = os.environ.get('PGPASSWORD') if self.options.password==None: self.readPgpass(os.environ.get('PGPASSFILE', os.environ.get('HOME','.')+'/.pgpass')) try: self.log(self.DEBUG, "connection string:" + " user=" + str(self.options.U) + " host=" + str(self.options.h) + " port=" + str(self.options.p) + " database=" + str(self.options.d)) self.db = pg.DB( dbname=self.options.d , host=self.options.h , port=self.options.p , user=self.options.U , passwd=self.options.password ) self.log(self.DEBUG, "Successfully connected to database") except Exception, e: errorMessage = str(e) if errorMessage.find("no password supplied") != -1: self.options.password = getpass.getpass() recurse += 1 if recurse > 10: self.log(self.ERROR, "too many login attempt failures") self.setup_connection(recurse) else: self.log(self.ERROR, "could not connect to database: %s. Is " \ "the Greenplum Database running on port %i?" % (errorMessage, self.options.p)) def read_columns(self): columns = self.getconfig('gpload:input:columns',list,None, returnOriginal=True) if columns != None: self.from_cols_from_user = True # user specified from columns self.from_columns = [] for d in columns: if type(d)!=dict: self.control_file_error("gpload:input:columns must be a sequence of YAML mappings") tempkey = d.keys()[0] value = d[tempkey] """ remove leading or trailing spaces """ d = { tempkey.strip() : value } key = d.keys()[0] if d[key] == None: self.log(self.DEBUG, 'getting source column data type from target') for name, typ, mapto, hasseq in self.into_columns: if sqlIdentifierCompare(name, key): d[key] = typ break # perform the same kind of magic type change that postgres does if d[key] == 'bigserial': d[key] = 'bigint' elif d[key] == 'serial': d[key] = 'int4' # Mark this column as having no mapping, which is important # for do_insert() self.from_columns.append([key.lower(),d[key].lower(),None, False]) else: self.from_columns = self.into_columns self.from_cols_from_user = False # make sure that all columns have a type for name, typ, map, hasseq in self.from_columns: if typ == None: self.log(self.ERROR, 'column "%s" has no type ' % name + 'and does not appear in target table "%s"' % self.schemaTable) self.log(self.DEBUG, 'from columns are:') for c in self.from_columns: name = c[0] typ = c[1] self.log(self.DEBUG, '%s: %s'%(name,typ)) def read_table_metadata(self): # KAS Note to self. If schema is specified, then probably should use PostgreSQL rules for defining it. # find the shema name for this table (according to search_path) # if it was not explicitly specified in the configuration file. if self.schema == None: queryString = """SELECT n.nspname FROM pg_catalog.pg_class c LEFT JOIN pg_catalog.pg_namespace n ON n.oid = c.relnamespace WHERE c.relname = '%s' AND pg_catalog.pg_table_is_visible(c.oid);""" % quote_unident(self.table) resultList = self.db.query(queryString.encode('utf-8')).getresult() if len(resultList) > 0: self.schema = (resultList[0])[0] self.log(self.INFO, "setting schema '%s' for table '%s'" % (self.schema, quote_unident(self.table))) else: self.log(self.ERROR, "table %s not found in any database schema" % self.table) queryString = """select nt.nspname as table_schema, c.relname as table_name, a.attname as column_name, a.attnum as ordinal_position, format_type(a.atttypid, a.atttypmod) as data_type, c.relkind = 'r' AS is_updatable, a.atttypid in (23, 20) and a.atthasdef and (select position ( 'nextval(' in pg_catalog.pg_get_expr(adbin,adrelid) ) > 0 and position ( '::regclass)' in pg_catalog.pg_get_expr(adbin,adrelid) ) > 0 FROM pg_catalog.pg_attrdef d WHERE d.adrelid = a.attrelid AND d.adnum = a.attnum AND a.atthasdef) as has_sequence from pg_catalog.pg_class c join pg_catalog.pg_namespace nt on (c.relnamespace = nt.oid) join pg_attribute a on (a.attrelid = c.oid) where c.relname = '%s' and nt.nspname = '%s' and a.attnum > 0 and a.attisdropped = 'f' order by a.attnum """ % (quote_unident(self.table), quote_unident(self.schema)) count = 0 self.into_columns = [] self.into_columns_dict = dict() resultList = self.db.query(queryString.encode('utf-8')).dictresult() while count < len(resultList): row = resultList[count] count += 1 ct = unicode(row['data_type']) if ct == 'bigserial': ct = 'bigint' elif ct == 'serial': ct = 'int4' name = unicode(row['column_name'], 'utf-8') name = quote_ident(name) if unicode(row['has_sequence']) != unicode('f'): has_seq = True else: has_seq = False i = [name,ct,None, has_seq] self.into_columns.append(i) self.into_columns_dict[name] = i self.log(self.DEBUG, "found input column: " + str(i)) if count == 0: # see if it's a permissions issue or it actually doesn't exist tableName = quote_unident(self.table) tableSchema = quote_unident(self.schema) sql = """select 1 from pg_class c, pg_namespace n where c.relname = '%s' and n.nspname = '%s' and n.oid = c.relnamespace""" % (tableName, tableSchema) resultList = self.db.query(sql.encode('utf-8')).getresult() if len(resultList) > 0: self.log(self.ERROR, "permission denied for table %s.%s" % \ (tableSchema, tableName)) else: self.log(self.ERROR, 'table %s.%s does not exist in database %s'% (tableSchema, tableName, self.options.d)) def read_mapping(self): mapping = self.getconfig('gpload:output:mapping',dict,None, returnOriginal=True) if mapping: for key,value in mapping.iteritems(): if type(key) != unicode or type(value) != unicode: self.control_file_error("gpload:output:mapping must be a YAML type mapping from strings to strings") found = False for a in self.into_columns: if sqlIdentifierCompare(a[0], key) == True: a[2] = value found = True break if found == False: self.log(self.ERROR,'%s in mapping is not in table %s'% \ (key, self.schemaTable)) else: # Now, map anything yet to be mapped to itself, picking up on those # columns which are not found in the table. for x in self.from_columns: # Check to see if it already has a mapping value i = filter(lambda a:a[2] == x[0], self.into_columns) if not i: # Check to see if the target column names match the input column names. for a in self.into_columns: if sqlIdentifierCompare(a[0], x[0]) == True: i = a found = True break if i: if i[2] == None: i[2] = i[0] else: self.log(self.ERROR, 'no mapping for input column ' + '"%s" to output table' % x[0]) for name,typ,mapto,seq in self.into_columns: self.log(self.DEBUG,'%s: %s = %s'%(name,typ,mapto)) # In order to find out whether we have an existing external table in the # catalog which could be reused for this operation we need to make sure # that it has the same column names and types, the same data format, and # location specification, and single row error handling specs. # # This function will return the SQL to run in order to find out whether # such a table exists. # def get_reuse_exttable_query(self, formatType, formatOpts, limitStr, from_cols, schemaName, log_errors): sqlFormat = """select attrelid::regclass from ( select attrelid, row_number() over (partition by attrelid order by attnum) as attord, attnum, attname, atttypid::regtype from pg_attribute join pg_class on (pg_class.oid = attrelid) %s where relstorage = 'x' and relname like 'ext_gpload_reusable_%%' and attnum > 0 and not attisdropped and %s ) pgattr join pg_exttable pgext on(pgattr.attrelid = pgext.reloid) """ joinStr = "" conditionStr = "" # if schemaName is None, find the resuable ext table which is visible to # current search path. Else find the resuable ext table under the specific # schema, and this needs to join pg_namespace. if schemaName is None: joinStr = "" conditionStr = "pg_table_is_visible(pg_class.oid)" else: joinStr = """join pg_namespace pgns on(pg_class.relnamespace = pgns.oid) """ conditionStr = "pgns.nspname = '%s'" % schemaName sql = sqlFormat % (joinStr, conditionStr) if log_errors: sql += " WHERE pgext.fmterrtbl = pgext.reloid " else: sql += " WHERE pgext.fmterrtbl IS NULL " for i, l in enumerate(self.locations): sql += " and pgext.urilocation[%s] = %s\n" % (i + 1, quote(l)) sql+= """and pgext.fmttype = %s and pgext.writable = false and pgext.fmtopts like %s """ % (quote(formatType[0]),quote("%" + quote_unident(formatOpts.rstrip()) +"%")) if limitStr: sql += "and pgext.rejectlimit = %s " % limitStr else: sql += "and pgext.rejectlimit IS NULL " sql+= "group by attrelid " sql+= """having count(*) = %s and bool_and(case """ % len(from_cols) for i, c in enumerate(from_cols): name = c[0] typ = c[1] sql+= "when attord = %s then atttypid = %s::regtype and attname = %s\n" % (i+1, quote(typ), quote(quote_unident(name))) sql+= """else true end) limit 1;""" self.log(self.DEBUG, "query used to identify reusable external relations: %s" % sql) return sql # # Create a string from the following conditions to reuse staging table: # 1. same target table # 2. same number of columns # 3. same names and types, in the same order # 4. same distribution key (according to columns' names and thier order) # def get_staging_conditions_string(self, target_table_name, staging_cols, distribution_cols): columns_num = len(staging_cols) staging_cols_str = '-'.join(map(lambda col:'%s-%s' % (quote(quote_unident(col[0])), quote(col[1])), staging_cols)) distribution_cols_str = '-'.join([quote(quote_unident(col)) for col in distribution_cols]) return '%s:%s:%s:%s' % (target_table_name, columns_num, staging_cols_str, distribution_cols_str) # # This function will return the SQL to run in order to find out whether # we have an existing staging table in the catalog which could be reused for this # operation, according to the mathod and the encoding conditions. # def get_reuse_staging_table_query(self, encoding_conditions): sql = """SELECT oid::regclass FROM pg_class WHERE relname = 'staging_gpload_reusable_%s';""" % (encoding_conditions) self.log(self.DEBUG, "query used to identify reusable temporary relations: %s" % sql) return sql # # get oid for table from pg_class, None if not exist # def get_table_oid(self, tableName): if tableName: sql = "select %s::regclass::oid" % quote(quote_unident(tableName)) try: resultList = self.db.query(sql.encode('utf-8')).getresult() return resultList[0][0] except Exception, e: pass return None def get_ext_schematable(self, schemaName, tableName): if schemaName == None: return tableName else: schemaTable = "%s.%s" % (schemaName, tableName) return schemaTable def get_external_table_formatOpts(self, option, specify=''): formatType = self.getconfig('gpload:input:format', unicode, 'text').lower() if formatType == 'text': valid_token = ['delimiter','escape'] elif formatType == 'csv': valid_token = ['delimiter', 'quote', 'escape'] else: valid_token = [] if not option in valid_token: self.control_file_error("The option you specified doesn't support now") return if option == 'delimiter': defval = ',' if formatType == 'csv' else '\t' val = self.getconfig('gpload:input:delimiter', unicode, defval) elif option == 'escape': defval = self.getconfig('gpload:input:quote', unicode, '"') val = self.getconfig('gpload:input:escape', unicode, defval) elif option == 'quote': val = self.getconfig('gpload:input:quote', unicode, '"') else: self.control_file_error("unexpected error -- backtrace " + "written to log file") sys.exit(2) specify_str = str(specify) if specify else option if len(val) != 1: if val.startswith("E'") and val.endswith("'") and len(val[2:-1].decode('unicode-escape')) == 1: subval = val[2:-1] if subval == "\\'": val = val self.formatOpts += "%s %s " % (specify_str, val) else: val = subval.decode('unicode-escape') self.formatOpts += "%s '%s' " % (specify_str, val) elif len(val.decode('unicode-escape')) == 1: val = val.decode('unicode-escape') self.formatOpts += "%s '%s' " % (specify_str, val) else: self.control_file_warning(option +''' must be single ASCII charactor, you can also use unprintable characters(for example: '\\x1c' / E'\\x1c' or '\\u001c' / E'\\u001c' ''') self.control_file_error("Invalid option, gpload quit immediately") sys.exit(2); else: self.formatOpts += "%s '%s' " % (specify_str, val) # # Create a new external table or find a reusable external table to use for this operation # def create_external_table(self): # extract all control file information and transform it accordingly # in order to construct a CREATE EXTERNAL TABLE statement if will be # needed later on formatType = self.getconfig('gpload:input:format', unicode, 'text').lower() locationStr = ','.join(map(quote,self.locations)) self.get_external_table_formatOpts('delimiter') nullas = self.getconfig('gpload:input:null_as', unicode, False) self.log(self.DEBUG, "null " + unicode(nullas)) if nullas != False: # could be empty string self.formatOpts += "null %s " % quote(nullas) elif formatType=='csv': self.formatOpts += "null '' " else: self.formatOpts += "null %s " % quote("\N") esc = self.getconfig('gpload:input:escape', None, None) if esc: if type(esc) != unicode and type(esc) != str: self.control_file_error("gpload:input:escape must be a string") if esc.lower() == 'off': if formatType == 'csv': self.control_file_error("ESCAPE cannot be set to OFF in CSV mode") self.formatOpts += "escape 'off' " else: self.get_external_table_formatOpts('escape') else: if formatType=='csv': self.get_external_table_formatOpts('quote','escape') else: self.formatOpts += "escape '\\'" if formatType=='csv': self.get_external_table_formatOpts('quote') if self.getconfig('gpload:input:header',bool,False): self.formatOpts += "header " force_not_null_columns = self.getconfig('gpload:input:force_not_null',list,[]) if force_not_null_columns: for i in force_not_null_columns: if type(i) != unicode and type(i) != str: self.control_file_error("gpload:input:force_not_null must be a YAML sequence of strings") self.formatOpts += "force not null %s " % ','.join(force_not_null_columns) encodingStr = self.getconfig('gpload:input:encoding', unicode, None) limitStr = self.getconfig('gpload:input:error_limit',int, None) if self.log_errors and not limitStr: self.control_file_error("gpload:input:log_errors requires " + "gpload:input:error_limit to be specified") self.extSchemaName = self.getconfig('gpload:external:schema', unicode, None) if self.extSchemaName == '%': self.extSchemaName = self.schema # get the list of columns to use in the extnernal table if not self.from_cols_from_user: # don't put values serial columns from_cols = filter(lambda a: a[3] != True, self.from_columns) else: from_cols = self.from_columns # If the 'reuse tables' option was specified we now try to find an # already existing external table in the catalog which will match # the one that we need to use. It must have identical attributes, # external location, format, and encoding specifications. if self.reuse_tables == True: # process the single quotes in order to successfully find an existing external table to reuse. self.formatOpts = self.formatOpts.replace("E'\\''","'\''") sql = self.get_reuse_exttable_query(formatType, self.formatOpts, limitStr, from_cols, self.extSchemaName, self.log_errors) resultList = self.db.query(sql.encode('utf-8')).getresult() if len(resultList) > 0: # found an external table to reuse. no need to create one. we're done here. self.extTableName = (resultList[0])[0] self.extSchemaTable = self.extTableName self.log(self.INFO, "reusing external table %s" % self.extSchemaTable) return # didn't find an existing external table suitable for reuse. Format a reusable # name and issue a CREATE EXTERNAL TABLE on it. Hopefully we can use it next time # around self.extTableName = "ext_gpload_reusable_%s" % self.unique_suffix self.log(self.INFO, "did not find an external table to reuse. creating %s" % self.extTableName) # process the single quotes in order to successfully create an external table. self.formatOpts = self.formatOpts.replace("'\''","E'\\''") # construct a CREATE EXTERNAL TABLE statement and execute it self.extSchemaTable = self.get_ext_schematable(self.extSchemaName, self.extTableName) sql = "create external table %s" % self.extSchemaTable sql += "(%s)" % ','.join(map(lambda a:'%s %s' % (a[0], a[1]), from_cols)) sql += "location(%s) "%locationStr sql += "format%s "% quote(formatType) if len(self.formatOpts) > 0: sql += "(%s) "% self.formatOpts if encodingStr: sql += "encoding%s "%quote(encodingStr) if self.log_errors: sql += "log errors " if limitStr: if limitStr < 2: self.control_file_error("error_limit must be 2 or higher") sql += "segment reject limit %s "%limitStr try: self.db.query(sql.encode('utf-8')) except Exception, e: self.log(self.ERROR, 'could not run SQL "%s": %s' % (sql, unicode(e))) # set up to drop the external table at the end of operation, unless user # specified the 'reuse_tables' option, in which case we don't drop if self.reuse_tables == False: self.cleanupSql.append('drop external table if exists %s'%self.extSchemaTable) # # Create a new staging table or find a reusable staging table to use for this operation # (only valid for update/merge operations). # def create_staging_table(self): # Do some initial work to extract the update_columns and metadata # that may be needed in order to create or reuse a temp table if not self.from_cols_from_user: # don't put values serial columns from_cols = filter(lambda a: a[3] != True, self.from_columns) else: from_cols = self.from_columns # make sure we set the correct distribution policy distcols = self.getconfig('gpload:output:match_columns', list) # MPP-13399, CR-2227 including_defaults = "" if self.getconfig('gpload:output:including_defaults',bool,True): including_defaults = " including defaults" sql = "SELECT * FROM pg_class WHERE relname LIKE 'temp_gpload_reusable_%%';" resultList = self.db.query(sql.encode('utf-8')).getresult() if len(resultList) > 0: self.log(self.WARN, """Old style, reusable tables named "temp_gpload_reusable_*" from a previous versions were found. Greenplum recommends running "DROP TABLE temp_gpload_reusable_..." on each table. This only needs to be done once.""") # If the 'reuse tables' option was specified we now try to find an # already existing staging table in the catalog which will match # the one that we need to use. It must meet the reuse conditions is_temp_table = 'TEMP ' target_columns = [] for column in self.into_columns: if column[2]: target_columns.append([quote_unident(column[0]), column[1]]) if self.reuse_tables == True: is_temp_table = '' target_table_name = quote_unident(self.table) # create a string from all reuse conditions for staging tables and ancode it conditions_str = self.get_staging_conditions_string(target_table_name, target_columns, distcols) encoding_conditions = hashlib.md5(conditions_str).hexdigest() sql = self.get_reuse_staging_table_query(encoding_conditions) resultList = self.db.query(sql.encode('utf-8')).getresult() if len(resultList) > 0: # found a temp table to reuse. no need to create one. we're done here. self.staging_table_name = (resultList[0])[0] self.log(self.INFO, "reusing staging table %s" % self.staging_table_name) # truncate it so we don't use old data self.do_truncate(self.staging_table_name) return # didn't find an existing staging table suitable for reuse. Format a reusable # name and issue a CREATE TABLE on it (without TEMP!). Hopefully we can use it # next time around # we no longer need the timestamp, since we will never want to create few # tables with same encoding_conditions self.staging_table_name = "staging_gpload_reusable_%s" % (encoding_conditions) self.log(self.INFO, "did not find a staging table to reuse. creating %s" % self.staging_table_name) # MPP-14667 - self.reuse_tables should change one, and only one, aspect of how we build the following table, # and that is, whether it's a temp table or not. In other words, is_temp_table = '' iff self.reuse_tables == True. sql = 'CREATE %sTABLE %s ' % (is_temp_table, self.staging_table_name) cols = map(lambda a:'%s %s' % (a[0], a[1]), target_columns) sql += "(%s)" % ','.join(cols) sql += " DISTRIBUTED BY (%s)" % ', '.join(distcols) self.log(self.LOG, sql) if not self.options.D: self.db.query(sql.encode('utf-8')) if not self.reuse_tables: self.cleanupSql.append('DROP TABLE IF EXISTS %s' % self.staging_table_name) def count_errors(self): notice_processor(self) if self.log_errors and not self.options.D: # make sure we only get errors for our own instance if not self.reuse_tables: queryStr = "select count(*) from gp_read_error_log('%s')" % pg.escape_string(self.extTableName) results = self.db.query(queryStr.encode('utf-8')).getresult() return (results[0])[0] else: # reuse_tables queryStr = "select cmdtime, count(*) from gp_read_error_log('%s') group by cmdtime order by cmdtime desc limit 1" % pg.escape_string(self.extTableName) results = self.db.query(queryStr.encode('utf-8')).getresult() global NUM_WARN_ROWS if len(results) == 0: NUM_WARN_ROWS = 0 return 0 if (results[0])[0] != self.cmdtime: self.lastcmdtime = (results[0])[0] NUM_WARN_ROWS = (results[0])[1] return (results[0])[1]; return 0 def report_errors(self): errors = self.count_errors() if errors==1: self.log(self.WARN, '1 bad row') elif errors: self.log(self.WARN, '%d bad rows'%errors) # error message is also deleted if external table is dropped. # if reuse_table is set, error message is not deleted. if errors and self.log_errors and self.reuse_tables: self.log(self.WARN, "Please use following query to access the detailed error") self.log(self.WARN, "select * from gp_read_error_log('{0}') where cmdtime = '{1}'".format(pg.escape_string(self.extTableName), self.lastcmdtime)) self.exitValue = 1 if errors else 0 def do_insert(self, dest): """ Handle the INSERT case """ if self.reuse_tables: queryStr = "select cmdtime from gp_read_error_log('%s') group by cmdtime order by cmdtime desc limit 1" % pg.escape_string(self.extTableName) results = self.db.query(queryStr.encode('utf-8')).getresult() if len(results) > 0: self.cmdtime = (results[0])[0] self.log(self.DEBUG, "into columns " + str(self.into_columns)) cols = filter(lambda a:a[2]!=None, self.into_columns) # only insert non-serial columns, unless the user told us to # insert the serials explicitly if not self.from_cols_from_user: cols = filter(lambda a:a[3] == False, cols) sql = 'INSERT INTO %s' % dest sql += ' (%s)' % ','.join(map(lambda a:a[0], cols)) sql += ' SELECT %s' % ','.join(map(lambda a:a[2], cols)) sql += ' FROM %s' % self.extSchemaTable # cktan: progress thread is not reliable. revisit later. #progress = Progress(self,self.ports) #progress.start() #self.threads.append(progress) self.log(self.LOG, sql) if not self.options.D: try: self.rowsInserted = self.db.query(sql.encode('utf-8')) except Exception, e: # We need to be a bit careful about the error since it may contain non-unicode characters strE = unicode(str(e), errors = 'ignore') strF = unicode(str(sql), errors = 'ignore') self.log(self.ERROR, strE + ' encountered while running ' + strF) #progress.condition.acquire() #progress.number = 1 #progress.condition.wait() #progress.condition.release() self.report_errors() def do_method_insert(self): self.create_external_table() self.do_insert(self.get_qualified_tablename()) def map_stuff(self,config,format,index): lis = [] theList = self.getconfig(config,list) theList = convertListToDelimited(theList) for i in theList: if type(i) != unicode and type(i) != str: self.control_file_error("%s must be a YAML sequence of strings"%config) j = self.into_columns_dict.get(i) if not j: self.log(self.ERROR,'column %s in %s does not exist'%(i,config)) if not j[index]: self.log(self.ERROR,'there is no mapping from the column %s in %s'%(i,config)) lis.append(format(j[0],j[index])) return lis def fix_update_cond(self, match): self.log(self.DEBUG, match.group(0)) return 'into_table.' + match.group(0) def do_update(self,fromname,index): """ UPDATE case """ sql = 'update %s into_table ' % self.get_qualified_tablename() sql += 'set %s '%','.join(self.map_stuff('gpload:output:update_columns',(lambda x,y:'%s=from_table.%s' % (x, y)),index)) sql += 'from %s from_table' % fromname match = self.map_stuff('gpload:output:match_columns' , lambda x,y:'into_table.%s=from_table.%s' % (x, y) , index) update_condition = self.getconfig('gpload:output:update_condition', unicode, None) if update_condition: # # Place the table alias infront of column references. # # The following logic is not bullet proof. It may not work # correctly if the user uses an identifier in both its # delimited and un-delimited format (e.g. where c1 < 7 and "c1" > 2) # Better lexing and parsing needs to be done here to fix all cases. # update_condition = ' ' + update_condition + ' ' for name, type, mapto, seq in self.into_columns: regexp = '(?<=[^\w])%s(?=[^\w])' % name self.log(self.DEBUG, 'update_condition re: ' + regexp) temp_update_condition = update_condition updateConditionList = splitIntoLiteralsAndNonLiterals(update_condition) skip = False newUpdateConditionList = [] update_condition = '' for uc in updateConditionList: if skip == False: uc = re.sub(regexp, self.fix_update_cond, uc) skip = True update_condition = update_condition + uc if update_condition == temp_update_condition: # see if column can be undelimited, and try again. if len(name) > 2 and name[1:-1] == name[1:-1].lower(): regexp = '(?<=[^\w])%s(?=[^\w])' % name[1:-1] self.log(self.DEBUG, 'update_condition undelimited re: ' + regexp) update_condition = re.sub( regexp , self.fix_update_cond , update_condition ) self.log(self.DEBUG, "updated update_condition to %s" % update_condition) match.append(update_condition) sql += ' where %s' % ' and '.join(match) self.log(self.LOG, sql) if not self.options.D: try: self.rowsUpdated = self.db.query(sql.encode('utf-8')) except Exception, e: # We need to be a bit careful about the error since it may contain non-unicode characters strE = unicode(str(e), errors = 'ignore') strF = unicode(str(sql), errors = 'ignore') self.log(self.ERROR, strE + ' encountered while running ' + strF) def get_qualified_tablename(self): tblname = "%s.%s" % (self.schema, self.table) return tblname def get_table_dist_key(self): # NOTE: this query should be re-written better. the problem is that it is # not possible to perform a cast on a table name with spaces... sql = "select attname from pg_attribute a, gp_distribution_policy p , pg_class c, pg_namespace n "+\ "where a.attrelid = c.oid and " + \ "a.attrelid = p.localoid and " + \ "a.attnum = any (p.attrnums) and " + \ "c.relnamespace = n.oid and " + \ "n.nspname = '%s' and c.relname = '%s'; " % (quote_unident(self.schema), quote_unident(self.table)) resultList = self.db.query(sql.encode('utf-8')).getresult() attrs = [] count = 0 while count < len(resultList): attrs.append((resultList[count])[0]) count = count + 1 return attrs def table_supports_update(self): """Columns being updated cannot appear in the distribution key.""" distKeyList = self.get_table_dist_key() distkey = set() for dk in distKeyList: distkey.add(quote_ident(dk)) self.distkey = distkey if len(distkey) != 0: # not randomly distributed - check that UPDATE_COLUMNS isn't part of the distribution key updateColumnList = self.getconfig('gpload:output:update_columns', list, returnOriginal=True) update_columns = convertListToDelimited(updateColumnList) update_columns = set(update_columns) a = distkey.intersection(update_columns) if len(a): self.control_file_error('update_columns cannot reference column(s) in distribution key (%s)' % ', '.join(list(distkey))) def do_method_update(self): """Load the data in and update an existing table based upon it""" self.table_supports_update() self.create_staging_table() self.create_external_table() self.do_insert(self.staging_table_name) # These rows are inserted temporarily for processing, so set inserted rows back to zero. self.rowsInserted = 0 self.do_update(self.staging_table_name, 0) def do_method_merge(self): """insert data not already in the table, update remaining items""" self.table_supports_update() self.create_staging_table() self.create_external_table() self.do_insert(self.staging_table_name) self.rowsInserted = 0 # MPP-13024. No rows inserted yet (only to temp table). self.do_update(self.staging_table_name, 0) # insert new rows to the target table match = self.map_stuff('gpload:output:match_columns',lambda x,y:'into_table.%s=from_table.%s'%(x,y),0) matchColumns = self.getconfig('gpload:output:match_columns',list) cols = filter(lambda a:a[2] != None, self.into_columns) sql = 'INSERT INTO %s ' % self.get_qualified_tablename() sql += '(%s) ' % ','.join(map(lambda a:a[0], cols)) sql += '(SELECT %s ' % ','.join(map(lambda a:'from_table.%s' % a[0], cols)) sql += 'FROM (SELECT *, row_number() OVER (PARTITION BY %s) AS gpload_row_number ' % ','.join(matchColumns) sql += 'FROM %s) AS from_table ' % self.staging_table_name sql += 'LEFT OUTER JOIN %s into_table ' % self.get_qualified_tablename() sql += 'ON %s '%' AND '.join(match) where = self.map_stuff('gpload:output:match_columns',lambda x,y:'into_table.%s IS NULL'%x,0) sql += 'WHERE %s ' % ' AND '.join(where) sql += 'AND gpload_row_number=1)' self.log(self.LOG, sql) if not self.options.D: try: self.rowsInserted = self.db.query(sql.encode('utf-8')) except Exception, e: # We need to be a bit careful about the error since it may contain non-unicode characters strE = unicode(str(e), errors = 'ignore') strF = unicode(str(sql), errors = 'ignore') self.log(self.ERROR, strE + ' encountered while running ' + strF) def do_truncate(self, tblname): self.log(self.LOG, "Truncate table %s" %(tblname)) if not self.options.D: try: truncateSQLtext = "truncate %s" % tblname self.db.query(truncateSQLtext.encode('utf-8')) except Exception, e: self.log(self.ERROR, 'could not execute truncate target %s: %s' % (tblname, str(e))) def do_method(self): # Is the table to be truncated before the load? preload = self.getconfig('gpload:preload', list, default=None) method = self.getconfig('gpload:output:mode', unicode, 'insert').lower() self.log_errors = self.getconfig('gpload:input:log_errors', bool, False) truncate = False self.reuse_tables = False if not self.options.no_auto_trans and not method=='insert': self.db.query("BEGIN") if preload: truncate = self.getconfig('gpload:preload:truncate',bool,False) self.reuse_tables = self.getconfig('gpload:preload:reuse_tables',bool,False) if truncate == True: if method=='insert': self.do_truncate(self.schemaTable) else: self.log(self.ERROR, 'preload truncate operation should be used with insert ' + 'operation only. used with %s' % method) # sql pre or post processing? sql = self.getconfig('gpload:sql', list, default=None) before = None after = None if sql: before = self.getconfig('gpload:sql:before', unicode, default=None) after = self.getconfig('gpload:sql:after', unicode, default=None) if before: self.log(self.LOG, "Pre-SQL from user: %s" % before) if not self.options.D: try: self.db.query(before.encode('utf-8')) except Exception, e: self.log(self.ERROR, 'could not execute SQL in sql:before "%s": %s' % (before, str(e))) if method=='insert': self.do_method_insert() elif method=='update': self.do_method_update() elif method=='merge': self.do_method_merge() else: self.control_file_error('unsupported method %s' % method) # truncate the staging table to avoid dumping it's content - see MPP-15474 if method=='merge' or method=='update': self.do_truncate(self.staging_table_name) if after: self.log(self.LOG, "Post-SQL from user: %s" % after) if not self.options.D: try: self.db.query(after.encode('utf-8')) except Exception, e: self.log(self.ERROR, 'could not execute SQL in sql:after "%s": %s' % (after, str(e))) if not self.options.no_auto_trans and not method=='insert': self.db.query("COMMIT") def stop_gpfdists(self): if self.subprocesses: self.log(self.LOG, 'killing gpfdist') for a in self.subprocesses: try: if platform.system() in ['Windows', 'Microsoft']: # win32 API is better but hard for us # to install, so we use the crude method subprocess.Popen("taskkill /F /T /PID %i" % a.pid, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) else: os.kill(a.pid, signal.SIGTERM) except OSError: pass for t in self.threads: t.join() def run2(self): self.log(self.DEBUG, 'config ' + str(self.config)) start = time.time() self.read_config() self.setup_connection() self.read_table_metadata() self.read_columns() self.read_mapping() self.start_gpfdists() self.do_method() self.log(self.INFO, 'running time: %.2f seconds'%(time.time()-start)) def run(self): self.db = None self.rowsInserted = 0 self.rowsUpdated = 0 signal.signal(signal.SIGINT, handle_kill) signal.signal(signal.SIGTERM, handle_kill) # win32 doesn't do SIGQUIT if not platform.system() in ['Windows', 'Microsoft']: signal.signal(signal.SIGQUIT, handle_kill) signal.signal(signal.SIGHUP, signal.SIG_IGN) try: try: self.run2() except Exception: traceback.print_exc(file=self.logfile) self.logfile.flush() self.exitValue = 2 if (self.options.qv > self.INFO): traceback.print_exc() else: self.log(self.ERROR, "unexpected error -- backtrace " + "written to log file") finally: self.stop_gpfdists() if self.cleanupSql: self.log(self.LOG, 'removing temporary data') self.setup_connection() for a in self.cleanupSql: try: self.log(self.DEBUG, a) self.db.query(a.encode('utf-8')) except (Exception, SystemExit): traceback.print_exc(file=self.logfile) self.logfile.flush() traceback.print_exc() if self.db != None: self.db.close() self.log(self.INFO, 'rows Inserted = ' + str(self.rowsInserted)) self.log(self.INFO, 'rows Updated = ' + str(self.rowsUpdated)) self.log(self.INFO, 'data formatting errors = ' + str(NUM_WARN_ROWS)) if self.exitValue==0: self.log(self.INFO, 'gpload succeeded') elif self.exitValue==1: self.log(self.INFO, 'gpload succeeded with warnings') else: self.log(self.INFO, 'gpload failed') ## MPP-19015 - Extra python thread shutdown time is needed on HP-UX if platform.uname()[0] == 'HP-UX': time.sleep(1) if __name__ == '__main__': g = gpload(sys.argv[1:]) g.run() sys.exit(g.exitValue)
apache-2.0
1,737,471,462,161,924,600
35.211429
188
0.541325
false
Openandgit/2014cpb_final_project-
std/b40323254.py
1
8479
#@+leo-ver=5-thin #@+node:lee.20141223114246.40: * @file example2.py #@@language python #@@tabwidth -4 import cherrypy import random from std.asciisymbol import asciiImage #@+others #@+node:lee.20141223114246.41: ** class Application class Application(object): #@+others #@+node:lee.20141223114246.42: *3* def init def __init__(self): #你的名子 self.name = '蔡柏峰' # 你的學號 self.number = '40323254' # 你的班級 self.classes = 'nfu' # 你的 github repository url self.github_repo_url = 'https://github.com/Openandgit/2014cpb_final_project-' # 你的 openshift app self.openshift_url = 'http://cpb-nfutaiwan.rhcloud.com/' # 你的自評 self.evaluation = [('Project 7', 80), ('Project 8', 90), ('Project 9', 100)] # 你的照片 url self.photo_url = 'http://placekitten.com/g/350/300' # 這裡是心得 self.my_remark = """ Computer Programming is good course """ #@+node:lee.20141223114246.43: *3* def use_template def use_template(self, content): above = """ <!DOCTYPE html> <html lang="en"> <head> <!-- Basic Page Needs –––––––––––––––––––––––––––––––––––––––––––––––––– --> <meta charset="utf-8"> <title>title</title> <meta name="description" content=""> <meta name="author" content=""> <!-- Mobile Specific Metas –––––––––––––––––––––––––––––––––––––––––––––––––– --> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- FONT –––––––––––––––––––––––––––––––––––––––––––––––––– --> <style> @font-face { font-family: 'Raleway'; font-style: normal; font-weight: 300; src: local('Raleway Light'), local('Raleway-Light'), url(/static/font/Raleway300.woff) format('woff'); } @font-face { font-family: 'Raleway'; font-style: normal; font-weight: 400; src: local('Raleway'), url(/static/font/Raleway400.woff) format('woff'); } @font-face { font-family: 'Raleway'; font-style: normal; font-weight: 600; src: local('Raleway SemiBold'), local('Raleway-SemiBold'), url(/static/font/Raleway600.woff) format('woff'); } </style> <!-- CSS –––––––––––––––––––––––––––––––––––––––––––––––––– --> <link rel="stylesheet" href="/static/css/normalize.css"> <link rel="stylesheet" href="/static/css/skeleton.css"> <link rel="stylesheet" href="/static/css/custom.css"> <!-- Favicon –––––––––––––––––––––––––––––––––––––––––––––––––– --> <link rel="icon" type="image/png" href="/static/images/favicon.png" /> </head> <body> <!-- Primary Page Layout –––––––––––––––––––––––––––––––––––––––––––––––––– --> <!-- .container is main centered wrapper --> <div class="container"> """ below = """ </div> <footer class="center"> 2014 Computer Programming </footer> <!-- Note: columns can be nested, but it's not recommended since Skeleton's grid has %-based gutters, meaning a nested grid results in variable with gutters (which can end up being *really* small on certain browser/device sizes) --> <!-- End Document –––––––––––––––––––––––––––––––––––––––––––––––––– --> </body> </html> """ return above + self.generate_nav(self.link()) + content + below #@+node:lee.20141223114246.44: *3* def generate_nav def generate_nav(self, anchors): above_side = """ <div class="row"> <div class="nav twelve columns"> <input type="checkbox" id="toggle" /> <div> <label for="toggle" class="toggle" data-open="Main Menu" data-close="Close Menu" onclick></label> <ul class="menu"> """ content = '' for link, name in anchors: content += '<li><a href="' + link + '">' + name + '</a></li>' below_side = """ </ul> </div> </div> </div> """ return above_side + content + below_side #@+node:lee.20141223114246.45: *3* def generate_form_page def generate_form_page(self, form='', output=''): content = """ <div class="content"> <div class="row"> <div class="one-half column"> %s </div> <div class="one-half column"> <div class="output u-full-width"> <p>Output:</p> <p> %s </p> </div> </div> </div> </div> """%(form, output) return self.use_template(content) #@+node:lee.20141223114246.55: *3* def generate_headline_page def generate_headline_page(self, headline, output): content = """ <div class="content"> <div class="row"> <div class="headline center">%s</div> <div class="twelve columns"> <p>%s</p> </div> </div> </div> """ % (headline, output) return self.use_template(content) #@+node:lee.20141223114246.46: *3* def generate_personal_page def generate_personal_page(self, data=None): if data is None: return '' # check data have all we need, if the key not exist, use empty string must_have_key = ('photo_url', 'name', 'ID', 'class', 'evaluation') for key in must_have_key: data[key] = data.get(key, '') if 'evaluation' in data: table_content = '' for projectName, score in data['evaluation']: table_content += """<tr><td>%s</td><td>%s</td>"""%(projectName, score) data['evaluation'] = table_content content = """ <div class="content"> <div class="row"> <div class="one-half column"> <div class="headline"> About Me </div> <div class="photo"> <img src="{photo_url:s}" alt="photo"> </div> <div class="meta"> <ul> <li>Name: {name:s}</li> <li>ID NO. : {ID:s}</li> <li>Class: {class:s}</li> </ul> </div> </div> <div class="one-half column"> <div class="headline"> Self Evaluation </div> <div> <table class="u-full-width"> <thead> <tr> <th>Project Name</th> <th>Score</th> </tr> </thead> <tbody> {evaluation:s} </tbody> </table> </div> </div> </div> </div> """.format(**data) return self.use_template(content) #@+node:lee.20141223114246.47: *3* def link def link(self): aviable_link = [("index", "HOME"), ("remark", "心得"), (self.openshift_url, "openshift app"),(self.github_repo_url, "github repo"),] return aviable_link #@+node:lee.20141223114246.54: *3* def remark @cherrypy.expose def remark(self): # 這裡是心得 # generate_headline_page(你的標題, 你的內容) return self.generate_headline_page("REMARK", self.my_remark) #@+node:lee.20141223114246.48: *3* def index @cherrypy.expose def index(self): # 這裡是首頁 data = { 'name':self.name, 'ID':self.number, 'class':self.classes, 'evaluation': self.evaluation, 'photo_url':self.photo_url, } return self.generate_personal_page(data) #@-others #@-others #@-leo
gpl-3.0
5,243,364,340,695,093,000
30.584362
236
0.489511
false
devclone/enigma2-9f38fd6
lib/python/Components/GUISkin.py
51
3199
from GUIComponent import GUIComponent from skin import applyAllAttributes from Tools.CList import CList from Sources.StaticText import StaticText class GUISkin: __module__ = __name__ def __init__(self): self["Title"] = StaticText() self.onLayoutFinish = [ ] self.summaries = CList() self.instance = None self.desktop = None def createGUIScreen(self, parent, desktop, updateonly = False): for val in self.renderer: if isinstance(val, GUIComponent): if not updateonly: val.GUIcreate(parent) if not val.applySkin(desktop, self): print "warning, skin is missing renderer", val, "in", self for key in self: val = self[key] if isinstance(val, GUIComponent): if not updateonly: val.GUIcreate(parent) depr = val.deprecationInfo if val.applySkin(desktop, self): if depr: print "WARNING: OBSOLETE COMPONENT '%s' USED IN SKIN. USE '%s' INSTEAD!" % (key, depr[0]) print "OBSOLETE COMPONENT WILL BE REMOVED %s, PLEASE UPDATE!" % (depr[1]) elif not depr: print "warning, skin is missing element", key, "in", self for w in self.additionalWidgets: if not updateonly: w.instance = w.widget(parent) # w.instance.thisown = 0 applyAllAttributes(w.instance, desktop, w.skinAttributes, self.scale) for f in self.onLayoutFinish: if type(f) is not type(self.close): # is this the best way to do this? exec f in globals(), locals() else: f() def deleteGUIScreen(self): for (name, val) in self.items(): if isinstance(val, GUIComponent): val.GUIdelete() def close(self): self.deleteGUIScreen() def createSummary(self): return None def addSummary(self, summary): self.summaries.append(summary) def removeSummary(self, summary): self.summaries.remove(summary) def setTitle(self, title): try: if self.instance: self.instance.setTitle(title) self["Title"].text = title self.summaries.setTitle(title) except: pass def getTitle(self): return self["Title"].text title = property(getTitle, setTitle) def setDesktop(self, desktop): self.desktop = desktop def applySkin(self): z = 0 baseres = (720, 576) # FIXME: a skin might have set another resolution, which should be the base res idx = 0 skin_title_idx = -1 title = self.title for (key, value) in self.skinAttributes: if key == "zPosition": z = int(value) elif key == "title": skin_title_idx = idx if title: self.skinAttributes[skin_title_idx] = ("title", title) else: self["Title"].text = value self.summaries.setTitle(value) elif key == "baseResolution": baseres = tuple([int(x) for x in value.split(',')]) idx += 1 self.scale = ((baseres[0], baseres[0]), (baseres[1], baseres[1])) if not self.instance: from enigma import eWindow self.instance = eWindow(self.desktop, z) if skin_title_idx == -1 and title: self.skinAttributes.append(("title", title)) # we need to make sure that certain attributes come last self.skinAttributes.sort(key=lambda a: {"position": 1}.get(a[0], 0)) applyAllAttributes(self.instance, self.desktop, self.skinAttributes, self.scale) self.createGUIScreen(self.instance, self.desktop)
gpl-2.0
-2,634,629,307,604,525,000
27.061404
102
0.680838
false
DadanielZ/incubator-eagle
eagle-external/hadoop_jmx_collector/system_metric_collector.py
1
13723
# !/usr/bin/python # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from metric_collector import MetricCollector, Runner import logging, socket, string, os, re, time class SystemMetricCollector(MetricCollector): METRIC_PREFIX = "system" METRIC_NAME_EXCLUDE = re.compile(r"[\(|\)]") def run(self): if self.config["env"].has_key("cpu_stat_file"): self.cpu_stat_file = self.config["env"]["cpu_stat_file"] logging.info("Overrode env.cpu_stat_file: %s", self.cpu_stat_file) else: self.cpu_stat_file = "/tmp/eagle_cpu_usage_state" logging.info("Using default env.cpu_stat_file: %s", self.cpu_stat_file) self.try_exec_func( self.collect_cpu_metric, self.collect_uptime_metric, self.collect_memory_metric, self.collect_loadavg_metric, self.collect_cpu_temp_metric, self.collect_nic_metric, self.collect_smartdisk_metric, self.collect_diskstat_metric ) def try_exec_func(self, *funcs): result = dict() succeed_num = 0 failed_num = 0 for func in funcs: try: logging.info("Executing: %s", func.__name__) func() result[func.__name__] = "success" succeed_num = succeed_num + 1 except Exception as e: logging.warn("Failed to execute: %s", func.__name__) logging.exception(e) result[func.__name__] = "error: %s: %s" % (type(e), e) failed_num = failed_num + 1 result_desc = "" for key in result: result_desc = result_desc + "%-30s: %-30s\n" % (key, result[key]) logging.info("Execution result (total: %s, succeed: %s, failed: %s): \n\n%s", len(funcs), succeed_num, failed_num, result_desc) # ==================================== # CPU Usage # ==================================== def collect_cpu_metric(self): """ CPU Usage Percentage Metrics: system.cpu.usage: (user + nice + system + wait + irq + softirq + steal + guest) / (user + nice + system + idle + wait + irq + softirq + steal + guest) Example: {'timestamp': 1483594861458, 'metric': 'system.cpu.usage', 'site': u'sandbox', 'value': 0.048, 'host': 'localhost', 'device': 'cpuN'} system.cpu.totalusage: Sum(Each CPU Usage) / Sum (CPU Total) Example: {'timestamp': 1483594861484, 'metric': 'system.cpu.totalusage', 'site': u'sandbox', 'value': 0.17, 'host': 'sandbox.hortonworks.com', 'device': 'cpu'} """ cpu_metric = self.new_metric() cpu_info = os.popen('cat /proc/stat').readlines() dimensions = ["cpu", "user", "nice", "system", "idle", "wait", "irq", "softirq", "steal", "guest"] total_cpu = 0 total_cpu_usage = 0 cpu_stat_pre = None data_dir = self.cpu_stat_file if os.path.exists(data_dir): fd = open(data_dir, "r") cpu_stat_pre = fd.read() fd.close() for item in cpu_info: if re.match(r'^cpu\d+', item) is None: continue items = re.split("\s+", item.strip()) demens = min(len(dimensions), len(items)) metric_event = dict() for i in range(1, demens): metric_event[dimensions[i]] = int(items[i]) cpu_metric['timestamp'] = int(round(time.time() * 1000)) cpu_metric['metric'] = self.METRIC_PREFIX + "." + 'cpu.' + dimensions[i] cpu_metric['device'] = items[0] cpu_metric['value'] = items[i] self.collect(cpu_metric) per_cpu_usage = metric_event["user"] + metric_event["nice"] + metric_event["system"] + metric_event[ "wait"] + metric_event["irq"] + metric_event["softirq"] + metric_event["steal"] + metric_event["guest"] per_cpu_total = metric_event["user"] + metric_event["nice"] + metric_event["system"] + metric_event[ "idle"] + metric_event["wait"] + metric_event["irq"] + metric_event["softirq"] + metric_event["steal"] + metric_event["guest"] total_cpu += per_cpu_total total_cpu_usage += per_cpu_usage # system.cpu.usage cpu_metric['timestamp'] = int(round(time.time() * 1000)) cpu_metric['metric'] = self.METRIC_PREFIX + "." + 'cpu.' + "usage" cpu_metric['device'] = items[0] cpu_metric['value'] = per_cpu_usage * 1.0 /per_cpu_total self.collect(cpu_metric) cup_stat_current = str(total_cpu_usage) + " " + str(total_cpu) logging.info("Current cpu stat: %s", cup_stat_current) fd = open(data_dir, "w") fd.write(cup_stat_current) fd.close() pre_total_cpu_usage = 0 pre_total_cpu = 0 if cpu_stat_pre != None: result = re.split("\s+", cpu_stat_pre.rstrip()) pre_total_cpu_usage = int(result[0]) pre_total_cpu = int(result[1]) cpu_metric['timestamp'] = int(round(time.time() * 1000)) cpu_metric['metric'] = self.METRIC_PREFIX + "." + 'cpu.' + "totalusage" cpu_metric['device'] = "cpu" cpu_metric['value'] = (total_cpu_usage - pre_total_cpu_usage) * 1.0 / (total_cpu - pre_total_cpu) self.collect(cpu_metric) # ==================================== # OS Up Time # ==================================== def collect_uptime_metric(self): metric = self.new_metric() demension = ["uptime.day", "idletime.day"] output = os.popen('cat /proc/uptime').readlines() for item in output: items = re.split("\s+", item.rstrip()) for i in range(len(demension)): metric["timestamp"] = int(round(time.time() * 1000)) metric["metric"] = self.METRIC_PREFIX + "." + 'uptime' + '.' + demension[i] metric["value"] = str(round(float(items[i]) / 86400, 2)) self.collect(metric) # ==================================== # Memory # ==================================== def collect_memory_metric(self): event = self.new_metric() event["host"] = self.fqdn output = os.popen('cat /proc/meminfo').readlines() mem_info = dict() for item in output: items = re.split(":?\s+", item.rstrip()) # print items mem_info[items[0]] = int(items[1]) itemNum = len(items) metric = 'memory' + '.' + items[0] if (len(items) > 2): metric = metric + '.' + items[2] event["timestamp"] = int(round(time.time() * 1000)) event["metric"] = self.METRIC_NAME_EXCLUDE.sub("", self.METRIC_PREFIX + "." + metric.lower()) event["value"] = items[1] event["device"] = 'memory' self.collect(event) usage = (mem_info['MemTotal'] - mem_info['MemFree'] - mem_info['Buffers'] - mem_info['Cached']) * 100.0 / \ mem_info[ 'MemTotal'] usage = round(usage, 2) self.emit_metric(event, self.METRIC_PREFIX, "memory.usage", usage, "memory") # ==================================== # Load AVG # ==================================== def collect_loadavg_metric(self): """ Collect Load Avg Metrics """ demension = ['cpu.loadavg.1min', 'cpu.loadavg.5min', 'cpu.loadavg.15min'] output = os.popen('cat /proc/loadavg').readlines() for item in output: items = re.split("\s+", item.rstrip()) demens = min(len(demension), len(items)) for i in range(demens): event = self.new_metric() event["timestamp"] = int(round(time.time() * 1000)) event["metric"] = self.METRIC_PREFIX + "." + demension[i] event["value"] = items[i] event["device"] = 'cpu' self.collect(event) # ==================================== # IPMI CPU Temp # ==================================== def collect_cpu_temp_metric(self): output = os.popen('sudo ipmitool sdr | grep Temp | grep CPU').readlines() for item in output: items = re.split("^(CPU\d+)\sTemp\.\s+\|\s+(\d+|\d+\.\d+)\s", item.rstrip()) event = self.new_metric() event["timestamp"] = int(round(time.time() * 1000)) event["metric"] = DATA_TYPE + "." + 'cpu.temp' event["value"] = items[2] event["device"] = item[1] self.collect(event) # ==================================== # NIC Metrics # ==================================== def collect_nic_metric(self): demension = ['receivedbytes', 'receivedpackets', 'receivederrs', 'receiveddrop', 'transmitbytes', 'transmitpackets', 'transmiterrs', 'transmitdrop'] output = os.popen("cat /proc/net/dev").readlines() for item in output: if re.match(r'^\s+eth\d+:', item) is None: continue items = re.split("[:\s]+", item.strip()) filtered_items = items[1:5] + items[9:13] for i in range(len(demension)): kafka_dict = self.new_metric() kafka_dict["timestamp"] = int(round(time.time() * 1000)) kafka_dict['metric'] = self.METRIC_PREFIX + "." + 'nic.' + demension[i] kafka_dict["value"] = filtered_items[i] kafka_dict["device"] = items[0] self.collect(kafka_dict) # ==================================== # Smart Disk Metrics # ==================================== def collect_smartdisk_metric(self): harddisks = os.popen("lsscsi").readlines() for item in harddisks: items = re.split('\/', item.strip()) # print items smartctl = os.popen('sudo smartctl -A /dev/' + items[-1]).readlines() for line in smartctl: line = line.strip() if re.match(r'^[\d]+\s', line) is None: continue lineitems = re.split("\s+", line) metric = 'smartdisk.' + lineitems[1] kafka_dict = self.new_metric() kafka_dict['metric'] = DATA_TYPE + "." + metric.lower() kafka_dict["timestamp"] = int(round(time.time() * 1000)) kafka_dict["value"] = lineitems[-1] kafka_dict["device"] = 'smartdisk' self.collect(kafka_dict) # ==================================== # Disk Stat Metrics # ==================================== def collect_diskstat_metric(self): """ FIXME: IndexError: list index out of range """ demension = ['readrate', 'writerate', 'avgwaittime', 'utilization', 'disktotal', 'diskused', 'usage'] iostat_output = os.popen("iostat -xk 1 2 | grep ^sd").readlines() # remove the first set of elements iostat_output = iostat_output[len(iostat_output) / 2:] iostat_dict = {} for item in iostat_output: items = re.split('\s+', item.strip()) filtered_items = [items[5], items[6], items[9], items[11]] iostat_dict[items[0]] = filtered_items disk_output = os.popen("df -k | grep ^/dev").readlines() for item in disk_output: items = re.split('\s+', item.strip()) disks = re.split('^\/dev\/(\w+)\d+$', items[0]) logging.info(len(disks)) disk = disks[1] iostat_dict[disk].append(items[1]) iostat_dict[disk].append(items[2]) iostat_dict[disk].append(items[4].rstrip('%')) for key, metrics in iostat_dict.iteritems(): for i in range(len(metrics)): metric = 'disk.' + demension[i] kafka_dict = self.new_metric() kafka_dict['metric'] = DATA_TYPE + "." + metric.lower() kafka_dict["timestamp"] = int(round(time.time() * 1000)) kafka_dict["value"] = metrics[i] kafka_dict["device"] = key self.collect(kafka_dict) # ==================================== # Helper Methods # ==================================== def emit_metric(self, event, prefix, metric, value, device): event["timestamp"] = int(round(time.time() * 1000)) event["metric"] = prefix + "." + metric.lower() event["value"] = str(value) event["device"] = device self.collect(event) def new_metric(self): metric = dict() metric["host"] = self.fqdn return metric if __name__ == '__main__': Runner.run(SystemMetricCollector())
apache-2.0
-1,946,900,582,706,358,000
39.842262
166
0.507688
false
Pluto-tv/chromium-crosswalk
tools/telemetry/telemetry/internal/platform/platform_backend.py
6
8322
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import weakref from telemetry.internal.forwarders import do_nothing_forwarder from telemetry.internal.platform import network_controller_backend from telemetry.internal.platform import tracing_controller_backend # pylint: disable=W0613 class PlatformBackend(object): def __init__(self, device=None): """ Initalize an instance of PlatformBackend from a device optionally. Call sites need to use SupportsDevice before intialization to check whether this platform backend supports the device. If device is None, this constructor returns the host platform backend which telemetry is running on. Args: device: an instance of telemetry.core.platform.device.Device. """ if device and not self.SupportsDevice(device): raise ValueError('Unsupported device: %s' % device.name) self._platform = None self._running_browser_backends = weakref.WeakSet() self._network_controller_backend = None self._tracing_controller_backend = None self._forwarder_factory = None def InitPlatformBackend(self): self._network_controller_backend = ( network_controller_backend.NetworkControllerBackend(self)) self._tracing_controller_backend = ( tracing_controller_backend.TracingControllerBackend(self)) @classmethod def IsPlatformBackendForHost(cls): """ Returns whether this platform backend is the platform backend to be used for the host device which telemetry is running on. """ return False @classmethod def SupportsDevice(cls, device): """ Returns whether this platform backend supports intialization from the device. """ return False @classmethod def CreatePlatformForDevice(cls, device, finder_options): raise NotImplementedError def SetPlatform(self, platform): assert self._platform == None self._platform = platform @property def platform(self): return self._platform @property def is_host_platform(self): return self._platform.is_host_platform @property def running_browser_backends(self): return list(self._running_browser_backends) @property def network_controller_backend(self): return self._network_controller_backend @property def tracing_controller_backend(self): return self._tracing_controller_backend @property def forwarder_factory(self): if not self._forwarder_factory: self._forwarder_factory = do_nothing_forwarder.DoNothingForwarderFactory() return self._forwarder_factory def GetRemotePort(self, port): return port def DidCreateBrowser(self, browser, browser_backend): browser_options = browser_backend.browser_options self.SetFullPerformanceModeEnabled(browser_options.full_performance_mode) # TODO(slamm): Remove this call when replay browser_backend dependencies # get moved to platform. https://crbug.com/423962 self._network_controller_backend.UpdateReplay(browser_backend) def DidStartBrowser(self, browser, browser_backend): assert browser not in self._running_browser_backends self._running_browser_backends.add(browser_backend) def WillCloseBrowser(self, browser, browser_backend): # TODO(slamm): Move this call when replay's life cycle is no longer # tied to the browser. https://crbug.com/424777 self._network_controller_backend.StopReplay() is_last_browser = len(self._running_browser_backends) <= 1 if is_last_browser: self.SetFullPerformanceModeEnabled(False) self._running_browser_backends.discard(browser_backend) @property def wpr_http_device_port(self): return self._network_controller_backend.wpr_http_device_port @property def wpr_https_device_port(self): return self._network_controller_backend.wpr_https_device_port def IsDisplayTracingSupported(self): return False def StartDisplayTracing(self): """Start gathering a trace with frame timestamps close to physical display.""" raise NotImplementedError() def StopDisplayTracing(self): """Stop gathering a trace with frame timestamps close to physical display. Returns a raw tracing events that contains the timestamps of physical display. """ raise NotImplementedError() def SetFullPerformanceModeEnabled(self, enabled): pass def CanMonitorThermalThrottling(self): return False def IsThermallyThrottled(self): raise NotImplementedError() def HasBeenThermallyThrottled(self): raise NotImplementedError() def GetSystemCommitCharge(self): raise NotImplementedError() def GetSystemTotalPhysicalMemory(self): raise NotImplementedError() def GetCpuStats(self, pid): return {} def GetCpuTimestamp(self): return {} def PurgeUnpinnedMemory(self): pass def GetMemoryStats(self, pid): return {} def GetChildPids(self, pid): raise NotImplementedError() def GetCommandLine(self, pid): raise NotImplementedError() def GetDeviceTypeName(self): raise NotImplementedError() def GetArchName(self): raise NotImplementedError() def GetOSName(self): raise NotImplementedError() def GetOSVersionName(self): raise NotImplementedError() def CanFlushIndividualFilesFromSystemCache(self): raise NotImplementedError() def FlushEntireSystemCache(self): raise NotImplementedError() def FlushSystemCacheForDirectory(self, directory): raise NotImplementedError() def FlushDnsCache(self): pass def LaunchApplication( self, application, parameters=None, elevate_privilege=False): raise NotImplementedError() def IsApplicationRunning(self, application): raise NotImplementedError() def CanLaunchApplication(self, application): return False def InstallApplication(self, application): raise NotImplementedError() def CanCaptureVideo(self): return False def StartVideoCapture(self, min_bitrate_mbps): raise NotImplementedError() @property def is_video_capture_running(self): return False def StopVideoCapture(self): raise NotImplementedError() def CanMonitorPower(self): return False def CanMeasurePerApplicationPower(self): return False def StartMonitoringPower(self, browser): raise NotImplementedError() def StopMonitoringPower(self): raise NotImplementedError() def CanMonitorNetworkData(self): return False def GetNetworkData(self, browser): raise NotImplementedError() def ReadMsr(self, msr_number, start=0, length=64): """Read a CPU model-specific register (MSR). Which MSRs are available depends on the CPU model. On systems with multiple CPUs, this function may run on any CPU. Args: msr_number: The number of the register to read. start: The least significant bit to read, zero-indexed. (Said another way, the number of bits to right-shift the MSR value.) length: The number of bits to read. MSRs are 64 bits, even on 32-bit CPUs. """ raise NotImplementedError() @property def wpr_ca_cert_path(self): return None def IsCooperativeShutdownSupported(self): """Indicates whether CooperativelyShutdown, below, is supported. It is not necessary to implement it on all platforms.""" return False def CooperativelyShutdown(self, proc, app_name): """Cooperatively shut down the given process from subprocess.Popen. Currently this is only implemented on Windows. See crbug.com/424024 for background on why it was added. Args: proc: a process object returned from subprocess.Popen. app_name: on Windows, is the prefix of the application's window class name that should be searched for. This helps ensure that only the application's windows are closed. Returns True if it is believed the attempt succeeded. """ raise NotImplementedError() def PathExists(self, path, timeout=None, retries=None): """Tests whether the given path exists on the target platform. Args: path: path in request. timeout: timeout. retries: num of retries. Return: Whether the path exists on the target platform. """ raise NotImplementedError()
bsd-3-clause
941,576,524,506,672,100
27.895833
80
0.731915
false
farseerri/git_code
tests/system/suite_QMLS/tst_QMLS05/test.py
4
3000
############################################################################# ## ## Copyright (C) 2014 Digia Plc and/or its subsidiary(-ies). ## Contact: http://www.qt-project.org/legal ## ## This file is part of Qt Creator. ## ## Commercial License Usage ## Licensees holding valid commercial Qt licenses may use this file in ## accordance with the commercial license agreement provided with the ## Software or, alternatively, in accordance with the terms contained in ## a written agreement between you and Digia. For licensing terms and ## conditions see http://www.qt.io/licensing. For further information ## use the contact form at http://www.qt.io/contact-us. ## ## GNU Lesser General Public License Usage ## Alternatively, this file may be used under the terms of the GNU Lesser ## General Public License version 2.1 or version 3 as published by the Free ## Software Foundation and appearing in the file LICENSE.LGPLv21 and ## LICENSE.LGPLv3 included in the packaging of this file. Please review the ## following information to ensure the GNU Lesser General Public License ## requirements will be met: https://www.gnu.org/licenses/lgpl.html and # http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. ## ## In addition, as a special exception, Digia gives you certain additional ## rights. These rights are described in the Digia Qt LGPL Exception ## version 1.1, included in the file LGPL_EXCEPTION.txt in this package. ## ############################################################################# source("../shared/qmls.py") def main(): editorArea = startQtCreatorWithNewAppAtQMLEditor(tempDir(), "SampleApp", "Text {") if not editorArea: return homeKey = "<Home>" if platform.system() == "Darwin": homeKey = "<Ctrl+Left>" for i in range(2): type(editorArea, homeKey) type(editorArea, "<Return>") type(editorArea, "<Up>") type(editorArea, "<Tab>") type(editorArea, "Item { x: 10; y: 20; width: 10 }") for i in range(30): type(editorArea, "<Left>") invokeMenuItem("File", "Save All") # activate menu and apply 'Refactoring - Split initializer' numLinesExpected = len(str(editorArea.plainText).splitlines()) + 4 try: invokeContextMenuItem(editorArea, "Refactoring", "Split Initializer") except: # If menu item is disabled it needs to reopen the menu for updating invokeContextMenuItem(editorArea, "Refactoring", "Split Initializer") # wait until refactoring ended waitFor("len(str(editorArea.plainText).splitlines()) == numLinesExpected", 5000) # verify if refactoring was properly applied - each part on separate line verifyMessage = "Verifying split initializer functionality at element line." for line in ["Item {", "x: 10;", "y: 20;", "width: 10", "}"]: verifyCurrentLine(editorArea, line, verifyMessage) type(editorArea, "<Down>") #save and exit invokeMenuItem("File", "Save All") invokeMenuItem("File", "Exit")
lgpl-2.1
-1,670,832,586,332,385,500
44.454545
86
0.665667
false
sloth4413/duktape
util/dump_bytecode.py
10
3509
#!/usr/bin/python # # Utility to dump bytecode into a human readable form. # import os import sys import struct import optparse def decode_string(buf, off): strlen, = struct.unpack('>L', buf[off:off+4]) off += 4 strdata = buf[off:off+strlen] off += strlen return off, strdata def sanitize_string(val): # Don't try to UTF-8 decode, just escape non-printable ASCII. def f(c): if ord(c) < 0x20 or ord(c) > 0x7e or c in '\'"': return '\\x%02x' % ord(c) else: return c return "'" + ''.join(map(f, val)) + "'" def decode_sanitize_string(buf, off): off, val = decode_string(buf, off) return off, sanitize_string(val) def dump_function(buf, off, ind): count_inst, count_const, count_funcs = struct.unpack('>LLL', buf[off:off+12]) off += 12 print '%sInstructions: %d' % (ind, count_inst) print '%sConstants: %d' % (ind, count_const) print '%sInner functions: %d' % (ind, count_funcs) nregs, nargs, start_line, end_line = struct.unpack('>HHLL', buf[off:off+12]) off += 12 print '%sNregs: %d' % (ind, nregs) print '%sNargs: %d' % (ind, nargs) print '%sStart line number: %d' % (ind, start_line) print '%sEnd line number: %d' % (ind, end_line) compfunc_flags, = struct.unpack('>L', buf[off:off+4]) off += 4 print '%sduk_hcompiledfunction flags: 0x%08x' % (ind, compfunc_flags) for i in xrange(count_inst): ins, = struct.unpack('>L', buf[off:off+4]) off += 4 print '%s %06d: %08lx' % (ind, i, ins) print '%sConstants:' % ind for i in xrange(count_const): const_type, = struct.unpack('B', buf[off:off+1]) off += 1 if const_type == 0x00: off, strdata = decode_sanitize_string(buf, off) print '%s %06d: %s' % (ind, i, strdata) elif const_type == 0x01: num, = struct.unpack('>d', buf[off:off+8]) off += 8 print '%s %06d: %f' % (ind, i, num) else: raise Exception('invalid constant type: %d' % const_type) for i in xrange(count_funcs): print '%sInner function %d:' % (ind, i) off = dump_function(buf, off, ind + ' ') val, = struct.unpack('>L', buf[off:off+4]) off += 4 print '%s.length: %d' % (ind, val) off, val = decode_sanitize_string(buf, off) print '%s.name: %s' % (ind, val) off, val = decode_sanitize_string(buf, off) print '%s.fileName: %s' % (ind, val) off, val = decode_string(buf, off) # actually a buffer print '%s._Pc2line: %s' % (ind, val.encode('hex')) while True: off, name = decode_string(buf, off) if name == '': break name = sanitize_string(name) val, = struct.unpack('>L', buf[off:off+4]) off += 4 print '%s_Varmap[%s] = %d' % (ind, name, val) idx = 0 while True: off, name = decode_string(buf, off) if name == '': break name = sanitize_string(name) print '%s_Formals[%d] = %s' % (ind, idx, name) idx += 1 return off def dump_bytecode(buf, off, ind): sig, ver = struct.unpack('BB', buf[off:off+2]) off += 2 if sig != 0xff: raise Exception('invalid signature byte: %d' % sig) if ver != 0x00: raise Exception('unsupported bytecode version: %d' % ver) print '%sBytecode version: 0x%02x' % (ind, ver) off = dump_function(buf, off, ind + ' ') return off def main(): parser = optparse.OptionParser() parser.add_option('--hex-decode', dest='hex_decode', default=False, action='store_true', help='Input file is ASCII hex encoded, decode before dump') (opts, args) = parser.parse_args() with open(args[0], 'rb') as f: d = f.read() if opts.hex_decode: d = d.strip() d = d.decode('hex') dump_bytecode(d, 0, '') if __name__ == '__main__': main()
mit
2,674,871,620,452,037,600
25.992308
149
0.618695
false
BhallaLab/moose-full
moose-examples/snippets/MULTI/multi1.py
2
13980
# multi1.py --- # Upi Bhalla, NCBS Bangalore 2014. # # Commentary: # # This loads in a low-detail model incorporating # reac-diff and elec signaling in neurons. The reac-diff model # has just Ca and CaM in it, and there are no-cross-compartment # reactions though Ca diffuses everywhere. The elec model controls the # Ca levels in the chem compartments. # This version uses solvers for both chem and electrical parts. # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License as # published by the Free Software Foundation; either version 3, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, Fifth # Floor, Boston, MA 02110-1301, USA. # # Code: import sys sys.path.append('../../python') import os os.environ['NUMPTHREADS'] = '1' import math import numpy import matplotlib.pyplot as plt import moose import proto18 EREST_ACT = -70e-3 def loadElec(): library = moose.Neutral( '/library' ) moose.setCwe( '/library' ) proto18.make_Ca() proto18.make_Ca_conc() proto18.make_K_AHP() proto18.make_K_C() proto18.make_Na() proto18.make_K_DR() proto18.make_K_A() proto18.make_glu() proto18.make_NMDA() proto18.make_Ca_NMDA() proto18.make_NMDA_Ca_conc() proto18.make_axon() moose.setCwe( '/library' ) model = moose.Neutral( '/model' ) cellId = moose.loadModel( 'ca1_asym.p', '/model/elec', "Neutral" ) return cellId def loadChem( diffLength ): chem = moose.Neutral( '/model/chem' ) neuroCompt = moose.NeuroMesh( '/model/chem/kinetics' ) neuroCompt.separateSpines = 1 neuroCompt.geometryPolicy = 'cylinder' spineCompt = moose.SpineMesh( '/model/chem/compartment_1' ) moose.connect( neuroCompt, 'spineListOut', spineCompt, 'spineList', 'OneToOne' ) psdCompt = moose.PsdMesh( '/model/chem/compartment_2' ) #print 'Meshvolume[neuro, spine, psd] = ', neuroCompt.mesh[0].volume, spineCompt.mesh[0].volume, psdCompt.mesh[0].volume moose.connect( neuroCompt, 'psdListOut', psdCompt, 'psdList', 'OneToOne' ) modelId = moose.loadModel( 'minimal.g', '/model/chem', 'ee' ) #modelId = moose.loadModel( 'psd_merged31d.g', '/model/chem', 'ee' ) neuroCompt.name = 'dend' spineCompt.name = 'spine' psdCompt.name = 'psd' def makeNeuroMeshModel(): diffLength = 10e-6 # Aim for 2 soma compartments. elec = loadElec() loadChem( diffLength ) neuroCompt = moose.element( '/model/chem/dend' ) neuroCompt.diffLength = diffLength neuroCompt.cellPortion( elec, '/model/elec/#' ) for x in moose.wildcardFind( '/model/chem/##[ISA=PoolBase]' ): if (x.diffConst > 0): x.diffConst = 1e-11 for x in moose.wildcardFind( '/model/chem/##/Ca' ): x.diffConst = 1e-10 # Put in dend solvers ns = neuroCompt.numSegments ndc = neuroCompt.numDiffCompts print 'ns = ', ns, ', ndc = ', ndc assert( neuroCompt.numDiffCompts == neuroCompt.mesh.num ) assert( ns == 36 ) # assert( ndc == 278 ) # nmksolve = moose.Ksolve( '/model/chem/dend/ksolve' ) nmdsolve = moose.Dsolve( '/model/chem/dend/dsolve' ) nmstoich = moose.Stoich( '/model/chem/dend/stoich' ) nmstoich.compartment = neuroCompt nmstoich.ksolve = nmksolve nmstoich.dsolve = nmdsolve nmstoich.path = "/model/chem/dend/##" print 'done setting path, numPools = ', nmdsolve.numPools assert( nmdsolve.numPools == 1 ) assert( nmdsolve.numAllVoxels == ndc ) assert( nmstoich.numAllPools == 1 ) # oddly, numLocalFields does not work. ca = moose.element( '/model/chem/dend/DEND/Ca' ) assert( ca.numData == ndc ) # Put in spine solvers. Note that these get info from the neuroCompt spineCompt = moose.element( '/model/chem/spine' ) sdc = spineCompt.mesh.num print 'sdc = ', sdc assert( sdc == 13 ) smksolve = moose.Ksolve( '/model/chem/spine/ksolve' ) smdsolve = moose.Dsolve( '/model/chem/spine/dsolve' ) smstoich = moose.Stoich( '/model/chem/spine/stoich' ) smstoich.compartment = spineCompt smstoich.ksolve = smksolve smstoich.dsolve = smdsolve smstoich.path = "/model/chem/spine/##" print 'spine num Pools = ', smstoich.numAllPools assert( smstoich.numAllPools == 3 ) assert( smdsolve.numPools == 3 ) assert( smdsolve.numAllVoxels == sdc ) # Put in PSD solvers. Note that these get info from the neuroCompt psdCompt = moose.element( '/model/chem/psd' ) pdc = psdCompt.mesh.num assert( pdc == 13 ) pmksolve = moose.Ksolve( '/model/chem/psd/ksolve' ) pmdsolve = moose.Dsolve( '/model/chem/psd/dsolve' ) pmstoich = moose.Stoich( '/model/chem/psd/stoich' ) pmstoich.compartment = psdCompt pmstoich.ksolve = pmksolve pmstoich.dsolve = pmdsolve pmstoich.path = "/model/chem/psd/##" assert( pmstoich.numAllPools == 3 ) assert( pmdsolve.numPools == 3 ) assert( pmdsolve.numAllVoxels == pdc ) foo = moose.element( '/model/chem/psd/Ca' ) print 'PSD: numfoo = ', foo.numData print 'PSD: numAllVoxels = ', pmksolve.numAllVoxels # Put in junctions between the diffusion solvers nmdsolve.buildNeuroMeshJunctions( smdsolve, pmdsolve ) """ CaNpsd = moose.vec( '/model/chem/psdMesh/PSD/PP1_PSD/CaN' ) print 'numCaN in PSD = ', CaNpsd.nInit, ', vol = ', CaNpsd.volume CaNspine = moose.vec( '/model/chem/spine/SPINE/CaN_BULK/CaN' ) print 'numCaN in spine = ', CaNspine.nInit, ', vol = ', CaNspine.volume """ ################################################################## # set up adaptors aCa = moose.Adaptor( '/model/chem/spine/adaptCa', sdc ) adaptCa = moose.vec( '/model/chem/spine/adaptCa' ) chemCa = moose.vec( '/model/chem/spine/Ca' ) #print 'aCa = ', aCa, ' foo = ', foo, "len( ChemCa ) = ", len( chemCa ), ", numData = ", chemCa.numData, "len( adaptCa ) = ", len( adaptCa ) assert( len( adaptCa ) == sdc ) assert( len( chemCa ) == sdc ) for i in range( sdc ): elecCa = moose.element( '/model/elec/spine_head_14_' + str(i+1) + '/NMDA_Ca_conc' ) #print elecCa moose.connect( elecCa, 'concOut', adaptCa[i], 'input', 'Single' ) moose.connect( adaptCa, 'output', chemCa, 'setConc', 'OneToOne' ) adaptCa.inputOffset = 0.0 # adaptCa.outputOffset = 0.00008 # 80 nM offset in chem. adaptCa.scale = 1e-4 # 520 to 0.0052 mM #print adaptCa.outputOffset moose.le( '/model/chem/dend/DEND' ) compts = neuroCompt.elecComptList begin = neuroCompt.startVoxelInCompt end = neuroCompt.endVoxelInCompt aCa = moose.Adaptor( '/model/chem/dend/DEND/adaptCa', len( compts)) adaptCa = moose.vec( '/model/chem/dend/DEND/adaptCa' ) chemCa = moose.vec( '/model/chem/dend/DEND/Ca' ) #print 'aCa = ', aCa, ' foo = ', foo, "len( ChemCa ) = ", len( chemCa ), ", numData = ", chemCa.numData, "len( adaptCa ) = ", len( adaptCa ) assert( len( chemCa ) == ndc ) for i in zip( compts, adaptCa, begin, end ): name = i[0].path + '/Ca_conc' if ( moose.exists( name ) ): elecCa = moose.element( name ) #print i[2], i[3], ' ', elecCa #print i[1] moose.connect( elecCa, 'concOut', i[1], 'input', 'Single' ) for j in range( i[2], i[3] ): moose.connect( i[1], 'output', chemCa[j], 'setConc', 'Single' ) adaptCa.inputOffset = 0.0 # adaptCa.outputOffset = 0.00008 # 80 nM offset in chem. adaptCa.scale = 20e-6 # 10 arb units to 2 uM. def addPlot( objpath, field, plot ): #assert moose.exists( objpath ) if moose.exists( objpath ): tab = moose.Table( '/graphs/' + plot ) obj = moose.element( objpath ) if obj.className == 'Neutral': print "addPlot failed: object is a Neutral: ", objpath return moose.element( '/' ) else: #print "object was found: ", objpath, obj.className moose.connect( tab, 'requestOut', obj, field ) return tab else: print "addPlot failed: object not found: ", objpath return moose.element( '/' ) def makeCaPlots(): graphs = moose.Neutral( '/graphs' ) ca = moose.Neutral( '/graphs/ca' ) addPlot( '/model/elec/soma/Ca_conc', 'getCa', 'ca/somaCa' ) addPlot( '/model/elec/lat_11_2/Ca_conc', 'getCa', 'ca/lat11Ca' ) addPlot( '/model/elec/spine_head_14_4/NMDA_Ca_conc', 'getCa', 'ca/spine4Ca' ) addPlot( '/model/elec/spine_head_14_12/NMDA_Ca_conc', 'getCa', 'ca/spine12Ca' ) def makeElecPlots(): graphs = moose.Neutral( '/graphs' ) elec = moose.Neutral( '/graphs/elec' ) addPlot( '/model/elec/soma', 'getVm', 'elec/somaVm' ) addPlot( '/model/elec/spine_head_14_4', 'getVm', 'elec/spineVm' ) def makeChemPlots(): graphs = moose.Neutral( '/graphs' ) chem = moose.Neutral( '/graphs/chem' ) addPlot( '/model/chem/psd/Ca_CaM', 'getConc', 'chem/psdCaCam' ) addPlot( '/model/chem/psd/Ca', 'getConc', 'chem/psdCa' ) addPlot( '/model/chem/spine/Ca_CaM', 'getConc', 'chem/spineCaCam' ) addPlot( '/model/chem/spine/Ca[3]', 'getConc', 'chem/spine4Ca' ) addPlot( '/model/chem/spine/Ca[11]', 'getConc', 'chem/spine12Ca' ) addPlot( '/model/chem/dend/DEND/Ca', 'getConc', 'chem/dendCa' ) addPlot( '/model/chem/dend/DEND/Ca[20]', 'getConc', 'chem/dendCa20' ) def makeGraphics(): plt.ion() fig = plt.figure( figsize=(10,16) ) chem = fig.add_subplot( 411 ) chem.set_ylim( 0, 0.006 ) plt.ylabel( 'Conc (mM)' ) plt.xlabel( 'time (seconds)' ) plt.legend() elec = fig.add_subplot( 412 ) plt.ylabel( 'Vm (V)' ) plt.xlabel( 'time (seconds)' ) plt.legend() ca = fig.add_subplot( 413 ) plt.ylabel( '[Ca] (mM)' ) plt.xlabel( 'time (seconds)' ) plt.legend() lenplot = fig.add_subplot( 414 ) plt.ylabel( 'Ca (mM )' ) plt.xlabel( 'Voxel#)' ) plt.legend() spineCa = moose.vec( '/model/chem/spine/Ca' ) dendCa = moose.vec( '/model/chem/dend/DEND/Ca' ) line1, = lenplot.plot( range( len( spineCa ) ), spineCa.conc, label='spine' ) line2, = lenplot.plot( range( len( dendCa ) ), dendCa.conc, label='dend' ) Ca = [ x.Ca * 0.0001 for x in moose.wildcardFind( '/model/elec/##[ISA=CaConcBase]') ] line3, = lenplot.plot( range( len( Ca ) ), Ca, label='elec' ) spineCaM = moose.vec( '/model/chem/spine/Ca_CaM' ) line4, = lenplot.plot( range( len( spineCaM ) ), spineCaM.conc, label='spineCaM' ) psdCaM = moose.vec( '/model/chem/psd/Ca_CaM' ) line5, = lenplot.plot( range( len( psdCaM ) ), psdCaM.conc, label='psdCaM' ) lenplot.set_ylim( 0, 0.01 ) fig.canvas.draw() return ( chem, elec, ca, lenplot, fig, line1, line2, line3, line4, line5 ) def updateGraphics( plotlist ): spineCa = moose.vec( '/model/chem/spine/Ca' ) dendCa = moose.vec( '/model/chem/dend/DEND/Ca' ) plotlist[5].set_ydata( spineCa.conc ) plotlist[6].set_ydata( dendCa.conc ) ca = [ x.Ca * 0.0001 for x in moose.wildcardFind( '/model/elec/##[ISA=CaConcBase]') ] plotlist[7].set_ydata( ca ) spineCaM = moose.vec( '/model/chem/spine/Ca_CaM' ) plotlist[8].set_ydata( spineCaM.conc ) psdCaM = moose.vec( '/model/chem/psd/Ca_CaM' ) plotlist[9].set_ydata( psdCaM.conc ) plotlist[4].canvas.draw() def finalizeGraphics( plotlist, cPlotDt, ePlotDt ): for x in moose.wildcardFind( '/graphs/chem/#[ISA=Table]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * cPlotDt line1, = plotlist[0].plot( pos, x.vector, label=x.name ) for x in moose.wildcardFind( '/graphs/elec/#[ISA=Table]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * ePlotDt line1, = plotlist[1].plot( pos, x.vector, label=x.name ) for x in moose.wildcardFind( '/graphs/ca/#[ISA=Table]' ): pos = numpy.arange( 0, x.vector.size, 1 ) * ePlotDt line1, = plotlist[2].plot( pos, x.vector, label=x.name ) plotlist[4].canvas.draw() raw_input() def testNeuroMeshMultiscale(): runtime = 0.5 #elecDt = 0.2e-6 elecDt = 10e-6 chemDt = 0.0025 ePlotDt = 0.5e-3 cPlotDt = 0.0025 plotName = 'nm.plot' makeNeuroMeshModel() print "after model is completely done" for i in moose.wildcardFind( '/model/chem/#/#/#/transloc#' ): print i[0].name, i[0].Kf, i[0].Kb, i[0].kf, i[0].kb makeChemPlots() makeElecPlots() makeCaPlots() for i in range (10): moose.setClock( i, elecDt ) for i in range ( 10, 20 ): moose.setClock( i, chemDt ) moose.setClock( 8, ePlotDt ) moose.setClock( 18, cPlotDt ) moose.useClock( 8, '/graphs/elec/#,/graphs/ca/#', 'process' ) moose.useClock( 18, '/graphs/chem/#', 'process' ) hsolve = moose.HSolve( '/model/elec/hsolve' ) hsolve.dt = elecDt hsolve.target = '/model/elec/compt' plotlist = makeGraphics() moose.reinit() moose.element( '/model/elec/soma' ).inject = 2e-10 moose.element( '/model/chem/psd/Ca' ).concInit = 0.001 moose.element( '/model/chem/spine/Ca' ).concInit = 0.002 moose.element( '/model/chem/dend/DEND/Ca' ).concInit = 0.003 moose.reinit() numDivs = 200 partialRuntime = runtime / numDivs for i in range( numDivs ): moose.start( partialRuntime ) updateGraphics( plotlist ) # moose.element( '/model/elec/soma' ).inject = 0 # moose.start( 0.25 ) finalizeGraphics( plotlist, cPlotDt, ePlotDt ) def main(): testNeuroMeshMultiscale() if __name__ == '__main__': main() # # minimal.py ends here.
gpl-2.0
5,999,106,038,725,636,000
37.406593
141
0.62711
false
sfcta/dta
scripts/importCubeDemand.py
2
9169
__copyright__ = "Copyright 2011-2012 SFCTA" __license__ = """ This file is part of DTA. DTA is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. DTA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with DTA. If not, see <http://www.gnu.org/licenses/>. """ import getopt import pdb import dta import os import sys import datetime import csv USAGE = r""" python importCubeDemand.py [-f demand_profile_file] dynameq_net_dir dynameq_net_prefix cubeVehicleClass output_demand_table startTime endTime cube_demand_table1 startTime1 endTime1 timeStep1 demand_portion1 [cube_demand_table2 startTime2 endTime2 timeStep2 demand_portion2] [cube_demand_table3 startTime3 endTime3 timeStep3 demand_portion3] ... e.g. python %DTA_CODE_DIR%\scripts\importCubeDemand.py -f Y:\dta\SanFrancisco\2010\demand\DemandProfile.csv . sf_stops Car_NoToll demand_Car_NoToll.dat 14:30 19:30 Y:\dta\SanFrancisco\2010\demand\SanFranciscoSubArea_2010_MD.csv 14:30 15:30 01:00 0.13364 Y:\dta\SanFrancisco\2010\demand\SanFranciscoSubArea_2010_PM.csv 15:30 18:30 03:00 1.00 Y:\dta\SanFrancisco\2010\demand\SanFranciscoSubArea_2010_EV.csv 18:30 19:30 01:00 0.22594 ****IMPORTANT**** Input Demand tables must be input in chronological order with the earliest start time first, and they must have non-overlapping time periods. ***************** The example command above will construct a output a Dynameq ascii demand file, demand_Car_NoToll.dat, covering 14:30-19:30 for the vehicle class "Car_NoToll". The DTA network and scenario for this table will be read from the current directory and have the prefix "sf_stops". The demand will derived from three different input (Cube) demand files: 0.13364 of the demand from SanFranciscoSubArea_2010_MD.csv will be used for the 14:30-15:30 period, 1.0 of the demand from SanFranciscoSubArea_2010_PM.csv will be used for the 15:30-18:30 period, and 0.22594 of the demand from SanFranciscoSubArea_2010_EV.csv will be used for the 18:30-19:30 period. Further, if a demand_profile_file is passed, then any portion of the demand can be further peaked or distributed non-uniformly. The demand_profile_file is a csv file with the following columns: Start Time, End Time, Factor 1, Factor 2, Factor 3,... If a row is specified matching the start and end time of one of the input demand files, then the demand will be distributed according to the factors. The sum of the factors must add to 1. When this is included, then the timeStep specified with the input demand file will be ignored, and the timeStep for this demand period will instead be the timeperiod for the demand period divided by the number of time factors. So in the given example, the contents of the DemandProfile.csv are: Start Time,End Time,Factor 1,Factor 2,Factor 3,Factor 4,Factor 5,Factor 6 15:30,18:30,0.15173,0.15772,0.1679,0.17848,0.17492,0.16925 So the timestep for the 15:30-16:30 period will be (3 hours / 6 periods) = 30 minutes, and not 3 hours as specified by timeStep2=03:00. """ if __name__ == "__main__": optlist, args = getopt.getopt(sys.argv[1:], "f:") if len(args) < 11: print USAGE sys.exit(2) INPUT_DYNAMEQ_NET_DIR = args[0] INPUT_DYNAMEQ_NET_PREFIX = args[1] CUBE_VEH_CLASS = args[2] OUTPUT_DYNAMEQ_TABLE = args[3] START_TIME = args[4] END_TIME = args[5] if optlist: for (opt,arg) in optlist: if opt=="-f": DEMAND_PROFILE_FILE = arg else: DEMAND_PROFILE_FILE = None dta.VehicleType.LENGTH_UNITS= "feet" dta.Node.COORDINATE_UNITS = "feet" dta.RoadLink.LENGTH_UNITS = "miles" dta.setupLogging("importCubeDemand.INFO.log", "importCubeDemand.DEBUG.log", logToConsole=True) outputStream = open(OUTPUT_DYNAMEQ_TABLE, "w") scenario = dta.DynameqScenario() scenario.read(INPUT_DYNAMEQ_NET_DIR, INPUT_DYNAMEQ_NET_PREFIX) net = dta.DynameqNetwork(scenario) net.read(INPUT_DYNAMEQ_NET_DIR, INPUT_DYNAMEQ_NET_PREFIX) startTime = dta.Utils.Time.readFromString(START_TIME) endTime = dta.Utils.Time.readFromString(END_TIME) # Read in the demand profile(s) if an input file was provided factorsStart = [] if DEMAND_PROFILE_FILE: factorsEnd = [] factorsList = [] factorsLists = [] factorNum = 0 inputStream = open(DEMAND_PROFILE_FILE, "r") for record in csv.DictReader(inputStream): factorsList = [] factorsStart.append(dta.Utils.Time.readFromString(record["Start Time"])) factorsEnd.append(dta.Utils.Time.readFromString(record["End Time"])) ii = 1 factorNum = record["Factor %d" % ii] while factorNum: factorsList.append(factorNum) ii += 1 factorNum = record["Factor %d" % ii] factorsLists.append(factorsList) # Check to make sure that demand is within the scenario time. Exit if not. if startTime < scenario.startTime: dta.DtaLogger.error("Demand cannot start before scenario start time.") dta.DtaLogger.error("Demand start = %s, Scenario start = %s" % (startTime.strftime("%H:%M"), scenario.startTime.strftime("%H:%M"))) sys.exit(2) if endTime > scenario.endTime: dta.DtaLogger.error("Demand cannot end after scenario end time.") dta.DtaLogger.error("Demand end = %s, Scenario end = %s" % (endTime.strftime("%H:%M"), scenario.endTime.strftime("%H:%M"))) sys.exit(2) # Create and write out demand for each table in the correct order (earliest first and getting continualy later.) dta.Demand.writeDynameqDemandHeader(outputStream, startTime, endTime, CUBE_VEH_CLASS) numDemandTables = (len(args)-5)/5 for ii in range(0,numDemandTables): CUBE_TABLE = args[6+(ii*5)] START_TIME_N = args[7+(ii*5)] END_TIME_N = args[8+(ii*5)] TIME_STEP = args[9+(ii*5)] DEMAND_PORTION = args[10+(ii*5)] # Check to be sure time is continuous if ii == 0: if dta.Utils.Time.readFromString(START_TIME_N) != startTime: dta.DtaLogger.error("Start time of first demand period (%s) must equal demand start time %s." % (START_TIME_N, startTime.strftime("%H:%M"))) sys.exit(2) elif ii > 0 and ii < numDemandTables-1: if dta.Utils.Time.readFromString(START_TIME_N) != endTime_n: dta.DtaLogger.error("Start time of demand period %d does not equal end time of demand period %d." % (ii+1, ii)) sys.exit(2) elif ii > 0 and ii == numDemandTables-1: if dta.Utils.Time.readFromString(END_TIME_N) != endTime: dta.DtaLogger.error("End time of last demand period (%s) must equal demand end time %s." % (END_TIME_N, endTime.strftime("%H:%M"))) sys.exit(2) # Set start time, end time, and time step for the demand period startTime_n = dta.Utils.Time.readFromString(START_TIME_N) endTime_n = dta.Utils.Time.readFromString(END_TIME_N) timeStep = dta.Utils.Time.readFromString(TIME_STEP) # Check to see if demand period has a demand profile demProf = 0 for jj in range(0,len(factorsStart)): if startTime_n == factorsStart[jj] and endTime_n == factorsEnd[jj]: demProf = 1 FactorsList = factorsLists[jj] # Read in cube demand table, apply time of day factors (if applicable) and write demand out to OUTPUT_DYNAMEQ_TABLE if demProf == 1: timeStep = endTime_n - startTime_n demand = dta.Demand.readCubeODTable(CUBE_TABLE, net, CUBE_VEH_CLASS, startTime_n, endTime_n, timeStep, float(DEMAND_PORTION)) demand = demand.applyTimeOfDayFactors(FactorsList) else: demand = dta.Demand.readCubeODTable(CUBE_TABLE, net, CUBE_VEH_CLASS, startTime_n, endTime_n, timeStep, float(DEMAND_PORTION)) demand.writeDynameqTable(outputStream) dta.DtaLogger.info("Wrote %10.2f %-10s to %s" % (demand.getTotalNumTrips(), "TRIPS", OUTPUT_DYNAMEQ_TABLE)) outputStream.close()
gpl-3.0
-1,559,328,016,987,186,200
39.570796
127
0.637147
false
davidzyx/PythonNotes
Part II/ch07_notes.py
1
9675
# ch07_notes.py # Chapter 7 notes taken from Automate the Boring Stuff with Python (2015).pdf # Created by Davidzz on 7/26/2016 # Finding Patterns of Text # Without Regular Expressions: def isPhoneNumber(text): if len(text) != 13: return False for i in range(0, 3): if not text[i].isdecimal(): return False if text[3] != '-': return False for i in range(4, 8): if not text[i].isdecimal(): return False if text[8] != '-': return False for i in range(9, 13): if not text[i].isdecimal(): return False return True message = 'Call me at 136-9135-5762 tomorrow. 139-6323-4580 is my office.' for i in range(len(message)): chunk = message[i:i+13] if isPhoneNumber(chunk): print('Phone number found: ' + chunk) print('Done') # with Regular Expressions: import re # remember to use raw string (r'spam') since \ is often use as an escape character phoneNumRegex = re.compile(r'\d\d\d-\d\d\d\d-\d\d\d\d') mo = phoneNumRegex.search('My number is 136-9135-5762.') print('Phone number found: ' + mo.group()) # in one line: print(re.compile(r'\d\d\d-\d\d\d\d-\d\d\d\d').search('My number is 136-9135-5762.').group()) # grouping () phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d\d-\d\d\d\d)') mo = phoneNumRegex.search('My number is 137-1858-1328.') print(mo.group(1)) # '136' print(mo.group(2)) # '9135-5762' print(mo.group(0)) # '136-9135-5762' print(mo.group()) # '136-9135-5762' print(mo.groups()) # ('136', '9135-5762') tuple! areaCode, mainNumber = mo.groups() # multiple assignment # REs with parentheses \( \) phoneNumRegex = re.compile(r'(\(\d\d\d\)) (\d\d\d-\d\d\d\d)') mo = phoneNumRegex.search('My phone number is (415) 555-4242.') print(mo.group(1)) # '(415)' print(mo.group(2)) # '555-4242' # Matching Multiple Groups with the Pipe | heroRegex = re.compile (r'Batman|Tina Fey') mo1 = heroRegex.search('Batman and Tina Fey.') print(mo1.group()) # 'Batman' mo2 = heroRegex.search('Tina Fey and Batman.') print(mo2.group()) # 'Tina Fey' batRegex = re.compile(r'Bat(man|mobile|copter|bat)') mo = batRegex.search('Batmobile lost a wheel') print(mo.group()) # 'Batmobile' print(mo.group(1)) # 'mobile' # Optionals ()? batRegex = re.compile(r'Bat(wo)?man') mo1 = batRegex.search('The Adventures of Batman') print(mo1.group()) # 'Batman' mo2 = batRegex.search('The Adventures of Batwoman') print(mo2.group()) # 'Batwoman' phoneRegex = re.compile(r'(\d\d\d-)?\d\d\d-\d\d\d\d') mo1 = phoneRegex.search('My number is 415-555-4242') print(mo1.group()) # '415-555-4242' mo2 = phoneRegex.search('My number is 555-4242') print(mo2.group()) # '555-4242' # Matching Zero or More with the Star ()* batRegex = re.compile(r'Bat(wo)*man') mo1 = batRegex.search('The Adventures of Batman') print(mo1.group()) # 'Batman' mo2 = batRegex.search('The Adventures of Batwoman') print(mo2.group()) # 'Batwoman' mo3 = batRegex.search('The Adventures of Batwowowowoman') print(mo3.group()) # 'Batwowowowoman' # Matching One or More with the Plus ()+ batRegex = re.compile(r'Bat(wo)+man') mo1 = batRegex.search('The Adventures of Batwoman') print(mo1.group()) # 'Batwoman' mo2 = batRegex.search('The Adventures of Batwowowowoman') print(mo2.group()) # 'Batwowowowoman' mo3 = batRegex.search('The Adventures of Batman') print(mo3 == None) # True # Matching Specific Repetitions with Curly Brackets (){number/expression} # (Ha){3} # (Ha)(Ha)(Ha) # (Ha){3,5} `# omiting one of the variable will make it open interval, min == 0 # (Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha))|((Ha)(Ha)(Ha)(Ha)(Ha)) # Greedy and Nongreedy Matching # default: greedy - return first longest match # nongreedy - return first shortest match greedyHaRegex = re.compile(r'(Ha){3,5}') mo1 = greedyHaRegex.search('HaHaHaHaHa') print(mo1.group()) # 'HaHaHaHaHa' nongreedyHaRegex = re.compile(r'(Ha){3,5}?') mo2 = nongreedyHaRegex.search('HaHaHaHaHa') print(mo2.group()) # 'HaHaHa' # findall() phoneNumRegex = re.compile(r'\d\d\d-\d\d\d-\d\d\d\d') # has no groups print(phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')) # ['415-555-9999', '212-555-0000'] phoneNumRegex = re.compile(r'(\d\d\d)-(\d\d\d)-(\d\d\d\d)') # has groups print(phoneNumRegex.findall('Cell: 415-555-9999 Work: 212-555-0000')) # [('415', '555', '9999'), ('212', '555', '0000')] # Shorthand Codes for Common Character Classes # class Represents # \d Any numeric digit from 0 to 9. # \D Any character that is not a numeric digit from 0 to 9. # \w Any letter, numeric digit, or the underscore character. (Think of this as matching "word" characters.) # \W Any character that is not a letter, numeric digit, or the underscore character. # \s Any space, tab, or newline character. (Think of this as matching "space" characters.) # \S Any character that is not a space, tab, or newline. # Custom characters [] vowelRegex = re.compile(r'[aeiouAEIOU]') print(vowelRegex.findall('Robo op eats baby food. BABY FOOD.')) # ['o', 'o', 'o', 'e', 'a', 'a', 'o', 'o', 'A', 'O', 'O'] consonantRegex = re.compile(r'[^aeiouAEIOU]') # ^ stands for NOT consonantRegex.findall('Robo op eats baby food. BABY FOOD.') # ['R', 'b', 'c', 'p', ' ', 't', 's', ' ', 'b', 'b', 'y', ' ', 'f', 'd', '.', ' ', 'B', 'B', 'Y', ' ', 'F', 'D', '.'] # must start with or end with ^ $ # ^ : beginsWithHello = re.compile(r'^Hello') print(beginsWithHello.search('Hello world!')) # <_sre.SRE_Match object; span=(0, 5), match='Hello'> print(beginsWithHello.search('He said hello.') == None) # True # $ : endsWithNumber = re.compile(r'\d$') print(endsWithNumber.search('Your number is 42')) # <_sre.SRE_Match object; span=(16, 17), match='2'> print(endsWithNumber.search('Your number is forty two.') == None) # True # borh ^ and $ : wholeStringIsNum = re.compile(r'^\d+$') print(wholeStringIsNum.search('1234567890')) # <_sre.SRE_Match object; span=(0, 10), match='1234567890'> # The Wildcard Character . matches anything except newline atRegex = re.compile(r'.at') atRegex.findall('The cat in the hat sat on the flat mat.') # ['cat', 'hat', 'sat', 'lat', 'mat'] # Matching Everything with Dot-Star .* nameRegex = re.compile(r'First Name: (.*) Last Name: (.*)') mo = nameRegex.search('First Name: Al Last Name: Sweigart') print(mo.group(1)) # 'Al' print(mo.group(2)) # 'Sweigart' # using .*? enables nongreedy search nongreedyRegex = re.compile(r'<.*?>') mo = nongreedyRegex.search('<To serve man> for dinner.>') print(mo.group()) # '<To serve man>' # matching longer one greedyRegex = re.compile(r'<.*>') mo = greedyRegex.search('<To serve man> for dinner.>') print(mo.group()) # '<To serve man> for dinner.>' # Matching Newlines with the Dot Character ('.*', re.DOTALL) noNewlineRegex = re.compile('.*') print(noNewlineRegex.search('Serve the public trust.\nProtect the innocent. \nUphold the law.').group()) # 'Serve the public trust.' newlineRegex = re.compile('.*', re.DOTALL) print(newlineRegex.search('Serve the public trust.\nProtect the innocent. \nUphold the law.').group()) # 'Serve the public trust.\nProtect the innocent.\nUphold the law.' # Summary of Regex symbols # This chapter covered a lot of notation, so here's a quick review of what you learned: # ` The ? matches zero or one of the preceding group. # ` The * matches zero or more of the preceding group. # ` The + matches one or more of the preceding group. # ` The {n} matches exactly n of the preceding group. # ` The {n,} matches n or more of the preceding group. # ` The {,m} matches 0 to m of the preceding group. # ` The {n,m} matches at least n and at most m of the preceding group. # ` {n,m}? or *? or +? performs a nongreedy match of the preceding group. # ` ^spam means the string must begin with spam. # ` spam$ means the string must end with spam. # ` The . matches any character, except newline characters. # ` \d, \w, and \s match a digit, word, or space character, respectively. # ` \D, \W, and \S match anything except a digit, word, or space character, respectively. # ` [abc] matches any character between the brackets (such as a, b, or c). # ` [^abc] matches any character that isn't between the brackets. # Case-Insensitive Matching re.IGNORECASE or re.I robocop = re.compile(r'robocop', re.IGNORECASE) print(robocop.search('RoboCop is part man, part machine, all cop.').group()) # 'Robo op' # Substituting Strings with the sub() Method namesRegex = re.compile(r'Agent \w+') print(namesRegex.sub('CENSORED', 'Agent Alice gave the secret documents to Agent Bob.')) # 'CENSORED gave the secret documents to CENSORED.' # advanced substituting agentNamesRegex = re.compile(r'Agent (\w)\w*') print(agentNamesRegex.sub(r'\1****', 'Agent Alice told Agent Carol that Agent Eve knew Agent Bob was a double agent.')) # A**** told C**** that E**** knew B**** was a double agent.' # Managing Complex Regexes phoneRegex = re.compile(r'((\d{3}|\(\d{3}\))?(\s|-|\.)?\d{3}(\s|-|\.)\d{4}(\s*(ext|x|ext.)\s*\d{2,5})?)') phoneRegex = re.compile(r'''( (\d{3}|\(\d{3}\))? # area code (\s|-|\.)? # separator \d{3} # first 3 digits (\s|-|\.) # separator \d{4} # last 4 digits (\s*(ext|x|ext.)\s*\d{2,5})? # extension )''', re.VERBOSE) # Combining re.IGNORECASE, re.DOTALL, and re.VERBOSE | someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL) someRegexValue = re.compile('foo', re.IGNORECASE | re.DOTALL | re.VERBOSE)
gpl-3.0
7,259,667,673,570,413,000
41.434211
119
0.642687
false
stxnext-kindergarten/presence-analyzer-dczuba
src/presence_analyzer/decorators.py
1
1346
# -*- coding: utf-8 -*- """ Decorators """ from functools import wraps from datetime import datetime, timedelta from threading import Lock import logging from presence_analyzer.helpers import generate_cache_key log = logging.getLogger(__name__) # pylint: disable=C0103 def cache(time=60*60): """ Cache in local mem for given time """ # structure: # indexes are generated keys # value is dict: {'valid_till': <datetime.datetime>, 'data': <dict>} cached_data = {} lock = Lock() def decorator(func): @wraps(func) def wrapped_function(*args, **kwargs): """ Wrapper """ key = generate_cache_key(func, args, kwargs) refresh_key = ( key not in cached_data or (cached_data[key]['valid_till']-datetime.now()).seconds <= 0 ) if refresh_key: log.debug('Refreshing cache for %s' % key) with lock: cached_data[key] = { 'valid_till': datetime.now()+timedelta(seconds=time), 'data': func(*args, **kwargs) } else: log.debug('Retrieving from cache %s' % key) return cached_data[key]['data'] return wrapped_function return decorator
mit
499,990,105,168,777,500
25.92
77
0.535661
false
nirs/vdsm
lib/vdsm/supervdsm_api/virt.py
2
7344
# Copyright 2016-2021 Red Hat, Inc. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA # # Refer to the README and COPYING files for full details of the license # from __future__ import absolute_import from __future__ import division import logging import os import stat import tempfile import uuid from vdsm.constants import P_LIBVIRT_VMCHANNELS, P_OVIRT_VMCONSOLES from vdsm.storage.fileUtils import resolveGid from vdsm.virt import filedata from vdsm.common import exception from vdsm.common import password from vdsm.common.fileutils import parse_key_val_file from . import expose @expose def prepareVmChannel(socketFile, group=None): if (socketFile.startswith(P_LIBVIRT_VMCHANNELS) or socketFile.startswith(P_OVIRT_VMCONSOLES)): fsinfo = os.stat(socketFile) mode = fsinfo.st_mode | stat.S_IWGRP os.chmod(socketFile, mode) if group is not None: os.chown(socketFile, fsinfo.st_uid, resolveGid(group)) else: raise Exception("Incorporate socketFile") @expose def hugepages_alloc(count, path): """ Function to allocate hugepages. Thread-safety not guaranteed. The default size depends on the architecture: x86_64: 2 MiB POWER8: 16 MiB Args: count (int): Number of huge pages to be allocated. Negative count deallocates pages. Returns: int: The number of successfully allocated hugepages. """ existing_pages = 0 allocated_pages = 0 with open(path, 'r') as f: existing_pages = int(f.read()) count = max(-existing_pages, count) with open(path, 'w') as f: f.write(str(existing_pages + count)) with open(path, 'r') as f: allocated_pages = int(f.read()) - existing_pages return allocated_pages @expose def mdev_create(device, mdev_type, mdev_uuid=None): """Create the desired mdev type. Args: device: PCI address of the parent device in the format (domain:bus:slot.function). Example: 0000:06:00.0. mdev_type: Type to be spawned. Example: nvidia-11. mdev_uuid: UUID for the spawned device. Keeping None generates a new UUID. Returns: UUID (string) of the created device. Raises: Possibly anything related to sysfs write (IOError). """ path = os.path.join( '/sys/class/mdev_bus/{}/mdev_supported_types/{}/create'.format( device, mdev_type ) ) if mdev_uuid is None: mdev_uuid = str(uuid.uuid4()) with open(path, 'w') as f: f.write(mdev_uuid) return mdev_uuid @expose def mdev_delete(device, mdev_uuid): """ Args: device: PCI address of the parent device in the format (domain:bus:slot.function). Example: 0000:06:00.0. mdev_type: Type to be spawned. Example: nvidia-11. mdev_uuid: UUID for the spawned device. Keeping None generates a new UUID. Raises: Possibly anything related to sysfs write (IOError). """ path = os.path.join( '/sys/class/mdev_bus/{}/{}/remove'.format( device, mdev_uuid ) ) with open(path, 'w') as f: f.write('1') QEMU_CONFIG_FILE = '/etc/libvirt/qemu.conf' @expose def check_qemu_conf_contains(key, value): """ Checks if qemu.conf contains the given key-value config. """ try: kvs = parse_key_val_file(QEMU_CONFIG_FILE) return kvs.get(key, '0') == value except: logging.error('Could not check %s for %s', QEMU_CONFIG_FILE, key) # re-raised exception will be logged, no need to log it here raise @expose def read_tpm_data(vm_id, last_modified): """ Return TPM data of the given VM. If data is not newer than `last_modified`, return None. In addition to data, the last detected data modification time is returned; the returned data may be newer, but never older than the returned time. :param vm_id: VM id :type vm_id: string :param last_modified: if data file system time stamp is not newer than this time in seconds, None is returned :type last_modified: float :returns: tuple (DATA, MODIFIED) where DATA is encoded TPM data suitable to use in `write_tpm_data()`, wrapped by `password.ProtectedPassword`, or None, and MODIFIED is DATA modification time (which may be older than actual modification time) :rtype: tuple """ accessor = filedata.DirectoryData(filedata.tpm_path(vm_id), compress=False) currently_modified = accessor.last_modified() data = accessor.retrieve(last_modified=last_modified) return password.ProtectedPassword(data), currently_modified @expose def write_tpm_data(vm_id, tpm_data): """ Write TPM data for the given VM. :param vm_id: VM id :type vm_id: string :param tpm_data: encoded TPM data as previously obtained from `read_tpm_data()` :type tpm_data: ProtectedPassword """ tpm_data = password.unprotect(tpm_data) # Permit only archives with plain files and directories to prevent various # kinds of attacks. with tempfile.TemporaryDirectory() as d: accessor = filedata.DirectoryData(os.path.join(d, 'check')) accessor.store(tpm_data) for root, dirs, files in os.walk(d): for f in files: path = os.path.join(root, f) if not os.path.isfile(path): logging.error("Special file in TPM data: %s", path) raise exception.ExternalDataFailed( reason="Cannot write TPM data with non-regular files", path=path ) # OK, write the data to the target location accessor = filedata.DirectoryData(filedata.tpm_path(vm_id)) accessor.store(tpm_data) @expose def read_nvram_data(vm_id, last_modified): accessor = filedata.FileData(filedata.nvram_path(vm_id)) currently_modified = accessor.last_modified() data = accessor.retrieve(last_modified=last_modified) return password.ProtectedPassword(data), currently_modified @expose def write_nvram_data(vm_id, nvram_data): nvram_data = password.unprotect(nvram_data) nvram_path = filedata.nvram_path(vm_id) # Create the file with restricted permissions owned by root if os.path.exists(nvram_path): os.remove(nvram_path) fd = os.open( nvram_path, os.O_WRONLY | os.O_CREAT | os.O_EXCL, mode=0o600) os.close(fd) # Write content accessor = filedata.FileData(nvram_path) accessor.store(nvram_data)
gpl-2.0
3,676,116,486,304,709,000
29.857143
79
0.652914
false
ghjm/ansible
lib/ansible/plugins/shell/powershell.py
29
11352
# Copyright (c) 2014, Chris Church <[email protected]> # Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type DOCUMENTATION = ''' name: powershell version_added: historical short_description: Windows PowerShell description: - The only option when using 'winrm' or 'psrp' as a connection plugin. - Can also be used when using 'ssh' as a connection plugin and the C(DefaultShell) has been configured to PowerShell. extends_documentation_fragment: - shell_windows ''' import base64 import os import re import shlex import pkgutil import xml.etree.ElementTree as ET import ntpath from ansible.module_utils._text import to_bytes, to_text from ansible.plugins.shell import ShellBase _common_args = ['PowerShell', '-NoProfile', '-NonInteractive', '-ExecutionPolicy', 'Unrestricted'] def _parse_clixml(data, stream="Error"): """ Takes a byte string like '#< CLIXML\r\n<Objs...' and extracts the stream message encoded in the XML data. CLIXML is used by PowerShell to encode multiple objects in stderr. """ lines = [] # There are some scenarios where the stderr contains a nested CLIXML element like # '<# CLIXML\r\n<# CLIXML\r\n<Objs>...</Objs><Objs>...</Objs>'. # Parse each individual <Objs> element and add the error strings to our stderr list. # https://github.com/ansible/ansible/issues/69550 while data: end_idx = data.find(b"</Objs>") + 7 current_element = data[data.find(b"<Objs "):end_idx] data = data[end_idx:] clixml = ET.fromstring(current_element) namespace_match = re.match(r'{(.*)}', clixml.tag) namespace = "{%s}" % namespace_match.group(1) if namespace_match else "" strings = clixml.findall("./%sS" % namespace) lines.extend([e.text.replace('_x000D__x000A_', '') for e in strings if e.attrib.get('S') == stream]) return to_bytes('\r\n'.join(lines)) class ShellModule(ShellBase): # Common shell filenames that this plugin handles # Powershell is handled differently. It's selected when winrm is the # connection COMPATIBLE_SHELLS = frozenset() # Family of shells this has. Must match the filename without extension SHELL_FAMILY = 'powershell' _SHELL_REDIRECT_ALLNULL = '> $null' _SHELL_AND = ';' # Used by various parts of Ansible to do Windows specific changes _IS_WINDOWS = True # TODO: add binary module support def env_prefix(self, **kwargs): # powershell/winrm env handling is handled in the exec wrapper return "" def join_path(self, *args): # use normpath() to remove doubled slashed and convert forward to backslashes parts = [ntpath.normpath(self._unquote(arg)) for arg in args] # Becuase ntpath.join treats any component that begins with a backslash as an absolute path, # we have to strip slashes from at least the beginning, otherwise join will ignore all previous # path components except for the drive. return ntpath.join(parts[0], *[part.strip('\\') for part in parts[1:]]) def get_remote_filename(self, pathname): # powershell requires that script files end with .ps1 base_name = os.path.basename(pathname.strip()) name, ext = os.path.splitext(base_name.strip()) if ext.lower() not in ['.ps1', '.exe']: return name + '.ps1' return base_name.strip() def path_has_trailing_slash(self, path): # Allow Windows paths to be specified using either slash. path = self._unquote(path) return path.endswith('/') or path.endswith('\\') def chmod(self, paths, mode): raise NotImplementedError('chmod is not implemented for Powershell') def chown(self, paths, user): raise NotImplementedError('chown is not implemented for Powershell') def set_user_facl(self, paths, user, mode): raise NotImplementedError('set_user_facl is not implemented for Powershell') def remove(self, path, recurse=False): path = self._escape(self._unquote(path)) if recurse: return self._encode_script('''Remove-Item '%s' -Force -Recurse;''' % path) else: return self._encode_script('''Remove-Item '%s' -Force;''' % path) def mkdtemp(self, basefile=None, system=False, mode=None, tmpdir=None): # Windows does not have an equivalent for the system temp files, so # the param is ignored if not basefile: basefile = self.__class__._generate_temp_dir_name() basefile = self._escape(self._unquote(basefile)) basetmpdir = tmpdir if tmpdir else self.get_option('remote_tmp') script = ''' $tmp_path = [System.Environment]::ExpandEnvironmentVariables('%s') $tmp = New-Item -Type Directory -Path $tmp_path -Name '%s' Write-Output -InputObject $tmp.FullName ''' % (basetmpdir, basefile) return self._encode_script(script.strip()) def expand_user(self, user_home_path, username=''): # PowerShell only supports "~" (not "~username"). Resolve-Path ~ does # not seem to work remotely, though by default we are always starting # in the user's home directory. user_home_path = self._unquote(user_home_path) if user_home_path == '~': script = 'Write-Output (Get-Location).Path' elif user_home_path.startswith('~\\'): script = "Write-Output ((Get-Location).Path + '%s')" % self._escape(user_home_path[1:]) else: script = "Write-Output '%s'" % self._escape(user_home_path) return self._encode_script(script) def exists(self, path): path = self._escape(self._unquote(path)) script = ''' If (Test-Path '%s') { $res = 0; } Else { $res = 1; } Write-Output '$res'; Exit $res; ''' % path return self._encode_script(script) def checksum(self, path, *args, **kwargs): path = self._escape(self._unquote(path)) script = ''' If (Test-Path -PathType Leaf '%(path)s') { $sp = new-object -TypeName System.Security.Cryptography.SHA1CryptoServiceProvider; $fp = [System.IO.File]::Open('%(path)s', [System.IO.Filemode]::Open, [System.IO.FileAccess]::Read); [System.BitConverter]::ToString($sp.ComputeHash($fp)).Replace("-", "").ToLower(); $fp.Dispose(); } ElseIf (Test-Path -PathType Container '%(path)s') { Write-Output "3"; } Else { Write-Output "1"; } ''' % dict(path=path) return self._encode_script(script) def build_module_command(self, env_string, shebang, cmd, arg_path=None): bootstrap_wrapper = pkgutil.get_data("ansible.executor.powershell", "bootstrap_wrapper.ps1") # pipelining bypass if cmd == '': return self._encode_script(script=bootstrap_wrapper, strict_mode=False, preserve_rc=False) # non-pipelining cmd_parts = shlex.split(cmd, posix=False) cmd_parts = list(map(to_text, cmd_parts)) if shebang and shebang.lower() == '#!powershell': if not self._unquote(cmd_parts[0]).lower().endswith('.ps1'): # we're running a module via the bootstrap wrapper cmd_parts[0] = '"%s.ps1"' % self._unquote(cmd_parts[0]) wrapper_cmd = "type " + cmd_parts[0] + " | " + self._encode_script(script=bootstrap_wrapper, strict_mode=False, preserve_rc=False) return wrapper_cmd elif shebang and shebang.startswith('#!'): cmd_parts.insert(0, shebang[2:]) elif not shebang: # The module is assumed to be a binary cmd_parts[0] = self._unquote(cmd_parts[0]) cmd_parts.append(arg_path) script = ''' Try { %s %s } Catch { $_obj = @{ failed = $true } If ($_.Exception.GetType) { $_obj.Add('msg', $_.Exception.Message) } Else { $_obj.Add('msg', $_.ToString()) } If ($_.InvocationInfo.PositionMessage) { $_obj.Add('exception', $_.InvocationInfo.PositionMessage) } ElseIf ($_.ScriptStackTrace) { $_obj.Add('exception', $_.ScriptStackTrace) } Try { $_obj.Add('error_record', ($_ | ConvertTo-Json | ConvertFrom-Json)) } Catch { } Echo $_obj | ConvertTo-Json -Compress -Depth 99 Exit 1 } ''' % (env_string, ' '.join(cmd_parts)) return self._encode_script(script, preserve_rc=False) def wrap_for_exec(self, cmd): return '& %s; exit $LASTEXITCODE' % cmd def _unquote(self, value): '''Remove any matching quotes that wrap the given value.''' value = to_text(value or '') m = re.match(r'^\s*?\'(.*?)\'\s*?$', value) if m: return m.group(1) m = re.match(r'^\s*?"(.*?)"\s*?$', value) if m: return m.group(1) return value def _escape(self, value): '''Return value escaped for use in PowerShell single quotes.''' # There are 5 chars that need to be escaped in a single quote. # https://github.com/PowerShell/PowerShell/blob/b7cb335f03fe2992d0cbd61699de9d9aafa1d7c1/src/System.Management.Automation/engine/parser/CharTraits.cs#L265-L272 return re.compile(u"(['\u2018\u2019\u201a\u201b])").sub(u'\\1\\1', value) def _encode_script(self, script, as_list=False, strict_mode=True, preserve_rc=True): '''Convert a PowerShell script to a single base64-encoded command.''' script = to_text(script) if script == u'-': cmd_parts = _common_args + ['-Command', '-'] else: if strict_mode: script = u'Set-StrictMode -Version Latest\r\n%s' % script # try to propagate exit code if present- won't work with begin/process/end-style scripts (ala put_file) # NB: the exit code returned may be incorrect in the case of a successful command followed by an invalid command if preserve_rc: script = u'%s\r\nIf (-not $?) { If (Get-Variable LASTEXITCODE -ErrorAction SilentlyContinue) { exit $LASTEXITCODE } Else { exit 1 } }\r\n'\ % script script = '\n'.join([x.strip() for x in script.splitlines() if x.strip()]) encoded_script = to_text(base64.b64encode(script.encode('utf-16-le')), 'utf-8') cmd_parts = _common_args + ['-EncodedCommand', encoded_script] if as_list: return cmd_parts return ' '.join(cmd_parts)
gpl-3.0
4,865,950,606,119,699,000
38.554007
167
0.580162
false
adamreis/nyc-jazz
src/application/urls.py
1
1283
""" urls.py URL dispatch route mappings and error handlers """ from flask import render_template from application import app from application import views ## URL dispatch rules # App Engine warm up handler # See http://code.google.com/appengine/docs/python/config/appconfig.html#Warming_Requests app.add_url_rule('/_ah/warmup', 'warmup', view_func=views.warmup) # Home page app.add_url_rule('/', 'home', view_func=views.home, methods=['GET', 'POST']) # Download all the shit app.add_url_rule('/scrape', view_func=views.scrape_everything, methods=['GET', 'POST']) app.add_url_rule('/scrape-smoke', view_func=views.scrape_smoke, methods=['GET', 'POST']) app.add_url_rule('/scrape-freetime', view_func=views.scrape_freetime, methods=['GET', 'POST']) # Email all the shit app.add_url_rule('/email-test', view_func=views.email_test, methods=['GET']) app.add_url_rule('/digest-send', view_func=views.digest_send, methods=['GET']) # Unsubscribe user app.add_url_rule('/unsubscribe/<identifier>', view_func=views.unsubscribe, methods=['GET']) ## Error handlers # Handle 404 errors @app.errorhandler(404) def page_not_found(e): return render_template('404.html'), 404 # Handle 500 errors @app.errorhandler(500) def server_error(e): return render_template('500.html'), 500
mit
-9,157,879,621,468,564,000
28.837209
94
0.721746
false
spcui/virt-test
tests/lvm.py
3
2933
import os import logging from autotest.client.shared import error @error.context_aware def mount_lv(lv_path, session): error.context("mounting ext3 filesystem made on logical volume %s" % os.path.basename(lv_path)) session.cmd("mkdir -p /mnt/kvm_test_lvm") session.cmd("mount %s /mnt/kvm_test_lvm" % lv_path) @error.context_aware def umount_lv(lv_path, session): error.context("umounting ext3 filesystem made on logical volume %s" % os.path.basename(lv_path)) session.cmd("umount %s" % lv_path) session.cmd("rm -rf /mnt/kvm_test_lvm") @error.context_aware def run_lvm(test, params, env): """ KVM reboot test: 1) Log into a guest 2) Create a volume group and add both disks as pv to the Group 3) Create a logical volume on the VG 5) `fsck' to check the partition that LV locates :param test: kvm test object :param params: Dictionary with the test parameters :param env: Dictionary with test environment. """ vm = env.get_vm(params["main_vm"]) vm.verify_alive() timeout = int(params.get("login_timeout", 360)) session = vm.wait_for_login(timeout=timeout) vg_name = "vg_kvm_test" lv_name = "lv_kvm_test" lv_path = "/dev/%s/%s" % (vg_name, lv_name) disks = params.get("disks", "/dev/hdb /dev/hdc") clean = params.get("clean", "yes") timeout = params.get("lvm_timeout", "600") try: error.context("adding physical volumes %s" % disks, logging.info) session.cmd("pvcreate %s" % disks) error.context("creating a volume group out of %s" % disks, logging.info) session.cmd("vgcreate %s %s" % (vg_name, disks)) error.context("activating volume group %s" % vg_name) session.cmd("vgchange -ay %s" % vg_name) error.context("creating logical volume on volume group %s" % vg_name, logging.info) session.cmd("lvcreate -L2000 -n %s %s" % (lv_name, vg_name)) error.context( "creating ext3 filesystem on logical volume %s" % lv_name) session.cmd("yes | mkfs.ext3 %s" % lv_path, timeout=int(timeout)) mount_lv(lv_path, session) umount_lv(lv_path, session) error.context("checking ext3 filesystem made on logical volume %s" % lv_name, logging.info) session.cmd("fsck %s" % lv_path, timeout=int(timeout)) if clean == "no": mount_lv(lv_path, session) finally: if clean == "yes": umount_lv(lv_path, session) error.context("removing logical volume %s" % lv_name) session.cmd("lvremove %s" % lv_name) error.context("disabling volume group %s" % vg_name) session.cmd("vgchange -a n %s" % vg_name) error.context("removing volume group %s" % vg_name) session.cmd("vgremove -f %s" % vg_name)
gpl-2.0
175,448,031,895,964,350
32.329545
77
0.601091
false
arbrandes/edx-platform
openedx/core/djangoapps/demographics/migrations/0002_clean_duplicate_entries.py
5
1861
import logging from django.conf import settings from django.db import migrations, models log = logging.getLogger(__name__) def _clean_duplicate_entries(apps, schema_editor): """ This method finds all the duplicate user entries in the UserDemographics model and then removes all duplicate entries except for the most recently modified one. """ demographics_model = apps.get_model('demographics', 'UserDemographics') # Retrieve a list of all users that have more than one entry. duplicate_users = ( demographics_model.objects.values( 'user' ).annotate(models.Count('id')).values('user').order_by().filter(id__count__gt=1) ) # Get a QuerySet of all the UserDemographics instances for the duplicates # sorted by user and modified in descending order. user_demographic_dupes = demographics_model.objects.filter(user__in=duplicate_users).order_by('user', '-modified') # Go through the QuerySet and only keep the most recent instance. existing_user_ids = set() for demographic in user_demographic_dupes: if demographic.user_id in existing_user_ids: log.info('UserDemographics {user} -- {modified}'.format( user=demographic.user_id, modified=demographic.modified )) demographic.delete() else: log.info('UserDemographics Duplicate User Delete {user} -- {modified}'.format( user=demographic.user_id, modified=demographic.modified )) existing_user_ids.add(demographic.user_id) class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('demographics', '0001_initial'), ] operations = [ migrations.RunPython(_clean_duplicate_entries, migrations.RunPython.noop), ]
agpl-3.0
-861,699,311,314,612,100
37.770833
118
0.674369
false
Hazardius/wesnoth-maps-guess
__init__.py
1
2255
#!/usr/bin/env python # -*- coding: utf-8 -*- import codecs import getopt import hashlib import sys from hop_net import HopfieldNetwork def usage(): print "" print " Valid arguments are:" print "" print " --debug - run generator in debug mode" print " --help - show this message" print " --no-save - don't save the results - only show them in console" print " --out - output file, default \"results.txt\"" print " --patterns - output file, default \"patternsT.pat\"" print " --prob - prob mode - patterns are given in probabilities" print " --seed - seed for RNG" print " --tests - output file, default \"testsT.tst\"" print " -d - same as --debug" print " -h - same as --help" print " -n - same as --no-save" print " -o - same as --out" print " -p - same as --patterns" print " -s - same as --seed" print " -t - same as --tests" print "" def main(argv): debug = False save_res = True prob = False patterns_file = "patternsT.pat" tests_file = "testsT.tst" out = "results.txt" seed = None inputs_number = 98 try: opts, _ = getopt.getopt( argv, "dhno:p:s:t:", ["help", "debug", "no-save", "out=", "patterns=", "prob", "seed=", "tests="] ) except getopt.GetoptError: usage() sys.exit(2) for opt, arg in opts: if opt in ('-h', "--help"): usage() sys.exit() elif opt in ('-d', "--debug"): debug = True elif opt in ('-n', "--no-save"): save_res = False elif opt in ('-o', "--out"): out = arg elif opt in ('-p', "--patterns"): patterns_file = arg elif opt in ("--prob"): prob = True elif opt in ('-s', "--seed"): seed = int(hashlib.sha1(arg).hexdigest(), 16) % 4294967295 elif opt in ('-t', "--tests"): tests_file = arg HopfieldNetwork(inputs_number, patterns_file, tests_file, out, debug, save_res, seed, prob) if __name__ == '__main__': main(sys.argv[1:])
gpl-2.0
4,351,925,335,831,189,500
28.671053
95
0.4949
false
SheffieldML/GPyOpt
GPyOpt/testing/functional_tests/base_test_case.py
1
3014
import os import numpy as np import unittest from mock import patch from driver import run_eval, run_evaluation_in_steps from mocks import MockModel class BaseTestCase(unittest.TestCase): def __init__(self, *args, **kwargs): super(BaseTestCase, self).__init__(*args, **kwargs) # This file was used to generate the test files self.outpath = os.path.join(os.path.dirname(__file__), 'test_files') # Change this False to generate test files self.is_unittest = True # Allowed margin of error for test outputs self.precision = 1e-6 def get_result_filename(self, test_name): return '{}_{}'.format(test_name, 'acquisition_gradient_testfile') def load_result_file(self, test_name): filename = self.get_result_filename(test_name) file_path = '{}/{}.txt'.format(self.outpath, filename) original_result = np.loadtxt(file_path) return original_result @patch('GPyOpt.methods.BayesianOptimization._model_chooser') def check_configs(self, mock_model_chooser, mock_gpy_model = None, mock_model = MockModel()): if mock_gpy_model is not None: mock_model.model = mock_gpy_model mock_model_chooser.return_value = mock_model for m_c in self.methods_configs: np.random.seed(1) if mock_gpy_model is not None: mock_model.model = mock_gpy_model mock_model_chooser.return_value = mock_model print('Testing acquisition ' + m_c['name']) name = self.get_result_filename(m_c['name']) unittest_result = run_eval(problem_config= self.problem_config, f_inits= self.f_inits, method_config=m_c, name=name, outpath=self.outpath, time_limit=None, unittest = self.is_unittest) original_result = self.load_result_file(m_c['name']) self.assertTrue((abs(original_result - unittest_result) < self.precision).all(), msg=m_c['name'] + ' failed') @patch('GPyOpt.methods.BayesianOptimization._model_chooser') def check_configs_in_steps(self, mock_model_chooser, mock_gpy_model=None, init_num_steps=None): for m_c in self.methods_configs: np.random.seed(1) mock_model = MockModel() if mock_gpy_model is not None: mock_model.model = mock_gpy_model mock_model_chooser.return_value = mock_model print('Testing acquisition ' + m_c['name'] + ' in steps') original_result = self.load_result_file(m_c['name']) if init_num_steps is None: num_steps = original_result.shape[0] - self.f_inits.shape[0] else: num_steps = init_num_steps unittest_result = run_evaluation_in_steps(problem_config= self.problem_config, f_inits= self.f_inits, method_config=m_c, num_steps=num_steps) self.assertTrue((abs(original_result - unittest_result) < self.precision).all(), msg=m_c['name'] + ' failed step-by-step check')
bsd-3-clause
-3,905,780,658,736,581,000
40.861111
196
0.630723
false
mancoast/CPythonPyc_test
fail/301_test_iterlen.py
8
7750
""" Test Iterator Length Transparency Some functions or methods which accept general iterable arguments have optional, more efficient code paths if they know how many items to expect. For instance, map(func, iterable), will pre-allocate the exact amount of space required whenever the iterable can report its length. The desired invariant is: len(it)==len(list(it)). A complication is that an iterable and iterator can be the same object. To maintain the invariant, an iterator needs to dynamically update its length. For instance, an iterable such as range(10) always reports its length as ten, but it=iter(range(10)) starts at ten, and then goes to nine after next(it). Having this capability means that map() can ignore the distinction between map(func, iterable) and map(func, iter(iterable)). When the iterable is immutable, the implementation can straight-forwardly report the original length minus the cumulative number of calls to next(). This is the case for tuples, range objects, and itertools.repeat(). Some containers become temporarily immutable during iteration. This includes dicts, sets, and collections.deque. Their implementation is equally simple though they need to permantently set their length to zero whenever there is an attempt to iterate after a length mutation. The situation slightly more involved whenever an object allows length mutation during iteration. Lists and sequence iterators are dynanamically updatable. So, if a list is extended during iteration, the iterator will continue through the new items. If it shrinks to a point before the most recent iteration, then no further items are available and the length is reported at zero. Reversed objects can also be wrapped around mutable objects; however, any appends after the current position are ignored. Any other approach leads to confusion and possibly returning the same item more than once. The iterators not listed above, such as enumerate and the other itertools, are not length transparent because they have no way to distinguish between iterables that report static length and iterators whose length changes with each call (i.e. the difference between enumerate('abc') and enumerate(iter('abc')). """ import unittest from test import support from itertools import repeat from collections import deque from builtins import len as _len n = 10 def len(obj): try: return _len(obj) except TypeError: try: # note: this is an internal undocumented API, # don't rely on it in your own programs return obj.__length_hint__() except AttributeError: raise TypeError class TestInvariantWithoutMutations(unittest.TestCase): def test_invariant(self): it = self.it for i in reversed(range(1, n+1)): self.assertEqual(len(it), i) next(it) self.assertEqual(len(it), 0) self.assertRaises(StopIteration, next, it) self.assertEqual(len(it), 0) class TestTemporarilyImmutable(TestInvariantWithoutMutations): def test_immutable_during_iteration(self): # objects such as deques, sets, and dictionaries enforce # length immutability during iteration it = self.it self.assertEqual(len(it), n) next(it) self.assertEqual(len(it), n-1) self.mutate() self.assertRaises(RuntimeError, next, it) self.assertEqual(len(it), 0) ## ------- Concrete Type Tests ------- class TestRepeat(TestInvariantWithoutMutations): def setUp(self): self.it = repeat(None, n) def test_no_len_for_infinite_repeat(self): # The repeat() object can also be infinite self.assertRaises(TypeError, len, repeat(None)) class TestXrange(TestInvariantWithoutMutations): def setUp(self): self.it = iter(range(n)) class TestXrangeCustomReversed(TestInvariantWithoutMutations): def setUp(self): self.it = reversed(range(n)) class TestTuple(TestInvariantWithoutMutations): def setUp(self): self.it = iter(tuple(range(n))) ## ------- Types that should not be mutated during iteration ------- class TestDeque(TestTemporarilyImmutable): def setUp(self): d = deque(range(n)) self.it = iter(d) self.mutate = d.pop class TestDequeReversed(TestTemporarilyImmutable): def setUp(self): d = deque(range(n)) self.it = reversed(d) self.mutate = d.pop class TestDictKeys(TestTemporarilyImmutable): def setUp(self): d = dict.fromkeys(range(n)) self.it = iter(d) self.mutate = d.popitem class TestDictItems(TestTemporarilyImmutable): def setUp(self): d = dict.fromkeys(range(n)) self.it = iter(d.items()) self.mutate = d.popitem class TestDictValues(TestTemporarilyImmutable): def setUp(self): d = dict.fromkeys(range(n)) self.it = iter(d.values()) self.mutate = d.popitem class TestSet(TestTemporarilyImmutable): def setUp(self): d = set(range(n)) self.it = iter(d) self.mutate = d.pop ## ------- Types that can mutate during iteration ------- class TestList(TestInvariantWithoutMutations): def setUp(self): self.it = iter(range(n)) def test_mutation(self): d = list(range(n)) it = iter(d) next(it) next(it) self.assertEqual(len(it), n-2) d.append(n) self.assertEqual(len(it), n-1) # grow with append d[1:] = [] self.assertEqual(len(it), 0) self.assertEqual(list(it), []) d.extend(range(20)) self.assertEqual(len(it), 0) class TestListReversed(TestInvariantWithoutMutations): def setUp(self): self.it = reversed(range(n)) def test_mutation(self): d = list(range(n)) it = reversed(d) next(it) next(it) self.assertEqual(len(it), n-2) d.append(n) self.assertEqual(len(it), n-2) # ignore append d[1:] = [] self.assertEqual(len(it), 0) self.assertEqual(list(it), []) # confirm invariant d.extend(range(20)) self.assertEqual(len(it), 0) ## -- Check to make sure exceptions are not suppressed by __length_hint__() class BadLen(object): def __iter__(self): return iter(range(10)) def __len__(self): raise RuntimeError('hello') class BadLengthHint(object): def __iter__(self): return iter(range(10)) def __length_hint__(self): raise RuntimeError('hello') class NoneLengthHint(object): def __iter__(self): return iter(range(10)) def __length_hint__(self): return None class TestLengthHintExceptions(unittest.TestCase): def test_issue1242657(self): self.assertRaises(RuntimeError, list, BadLen()) self.assertRaises(RuntimeError, list, BadLengthHint()) self.assertRaises(RuntimeError, [].extend, BadLen()) self.assertRaises(RuntimeError, [].extend, BadLengthHint()) b = bytearray(range(10)) self.assertRaises(RuntimeError, b.extend, BadLen()) self.assertRaises(RuntimeError, b.extend, BadLengthHint()) def test_invalid_hint(self): # Make sure an invalid result doesn't muck-up the works self.assertEqual(list(NoneLengthHint()), list(range(10))) def test_main(): unittests = [ TestRepeat, TestXrange, TestXrangeCustomReversed, TestTuple, TestDeque, TestDequeReversed, TestDictKeys, TestDictItems, TestDictValues, TestSet, TestList, TestListReversed, TestLengthHintExceptions, ] support.run_unittest(*unittests) if __name__ == "__main__": test_main()
gpl-3.0
6,387,546,859,020,444,000
29.876494
78
0.669419
false
char101/pyjade
pyjade/testsuite/test_inline_lexer.py
7
10822
from pyjade.lexer import Lexer from pyjade.utils import odict expected_results = { "p Here is some #[strong: em text] and look at #[a(href='http://google.com') this link!]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'Here is some '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'strong'}, {'buffer': None, 'type': ':', 'line': 1, 'inline_level': 1, 'val': None}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'em'}, {'buffer': None, 'type': 'text', 'line': 1, 'inline_level': 1, 'val': u' text'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u' and look at '}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'tag', 'val': u'a'}, {'inline_level': 1, 'val': None, 'buffer': None, 'static_attrs': set([u'href']), 'attrs': odict([(u'href', u"'http://google.com'")]), 'line': 1, 'type': 'attrs'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'text', 'val': u' this link!'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "p Other inline #[strong= 'test']": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'Other inline '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'strong'}, {'inline_level': 1, 'val': u" 'test'", 'buffer': True, 'escape': True, 'line': 1, 'type': 'code'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "p Test #[|text line]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'Test '}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u'text line'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "p Test buffered #[= map(str, zip('iln', 'nie')) + 'code']": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'Test buffered '}, {'inline_level': 1, 'val': u" map(str, zip('iln', 'nie')) + 'code'", 'buffer': True, 'escape': True, 'line': 1, 'type': 'code'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "p #[- abcf = [[123, [[],[]], []],'abc']] #[= abcf]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'inline_level': 1, 'val': u" abcf = [[123, [[],[]], []],'abc']", 'buffer': False, 'escape': False, 'line': 1, 'type': 'code'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u' '}, {'inline_level': 1, 'val': u' abcf', 'buffer': True, 'escape': True, 'line': 1, 'type': 'code'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "#[#[#[a a#[b #[i a] b]] d]e]": [ {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u''}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 2, 'val': u''}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 3, 'val': u'a'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 3, 'val': u'a'}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 4, 'val': u'b'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 4, 'val': u''}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 5, 'val': u'i'}, {'buffer': None, 'type': 'text', 'line': 1, 'inline_level': 5, 'val': u' a'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 4, 'val': u' b'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 3, 'val': u''}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 2, 'val': u' d'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u'e'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "p We can also #[strong combine #[em multiple #[img(src='http://jade-lang.com/style/logo.png')]]]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'We can also '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'strong'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u'combine '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 2, 'val': u'em'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 2, 'val': u'multiple '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 3, 'val': u'img'}, {'inline_level': 3, 'val': None, 'buffer': None, 'static_attrs': set([u'src']), 'attrs': odict([(u'src', u"'http://jade-lang.com/style/logo.png'")]), 'line': 1, 'type': 'attrs'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 2, 'val': u''}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u''}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "#[strong start] line with #[i]\#[j] inline": [ {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'strong'}, {'buffer': None, 'type': 'text', 'line': 1, 'inline_level': 1, 'val': u' start'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u' line with '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'i'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'#[j] inline'}], "p Another #[strong.lil#okf(acs=[1,2]) test [[with brackets]] [in#[='side']]]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'Another '}, {'buffer': None, 'type': 'tag', 'line': 1, 'inline_level': 1, 'val': u'strong'}, {'buffer': None, 'type': 'class', 'line': 1, 'inline_level': 1, 'val': u'lil'}, {'buffer': None, 'type': 'id', 'line': 1, 'inline_level': 1, 'val': u'okf'}, {'val': None, 'buffer': None, 'static_attrs': set([]), 'attrs': odict([(u'acs', u'[1,2]')]), 'line': 1, 'type': 'attrs', 'inline_level': 1}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u'test [[with brackets]] [in'}, {'inline_level': 2, 'val': u"'side'", 'buffer': True, 'escape': True, 'line': 1, 'type': 'code'}, {'buffer': None, 'type': 'string', 'line': 1, 'inline_level': 1, 'val': u']'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], """mixin lala(a, b) span lala(#{a}, #{b}) p Test inline mixin #[+lala(123, 'lala inside inline')] end""": [ {'args': u'a, b', 'buffer': None, 'line': 1, 'type': 'mixin', 'inline_level': 0, 'val': u'lala'}, {'buffer': None, 'line': 2, 'type': 'indent', 'inline_level': 0, 'val': 2}, {'buffer': None, 'line': 2, 'type': 'tag', 'inline_level': 0, 'val': u'span'}, {'buffer': None, 'line': 2, 'type': 'text', 'inline_level': 0, 'val': u' lala(#{a}, #{b})'}, {'buffer': None, 'line': 3, 'type': 'outdent', 'inline_level': 0, 'val': None}, {'buffer': None, 'line': 3, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 3, 'type': 'string', 'inline_level': 0, 'val': u'Test inline mixin '}, {'inline_level': 1, 'val': u'lala', 'buffer': None, 'args': u"123, 'lala inside inline'", 'line': 1, 'type': 'call'}, {'buffer': None, 'line': 3, 'type': 'string', 'inline_level': 0, 'val': u' end'}], "p only class #[.strong: em inline]": [ {'buffer': None, 'line': 1, 'type': 'tag', 'inline_level': 0, 'val': u'p'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u'only class '}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'class', 'val': u'strong'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': ':', 'val': None}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'tag', 'val': u'em'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'text', 'val': u' inline'}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "#[asdf.lol(fff)#[asdf]]": [ {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'tag', 'val': u'asdf'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'class', 'val': u'lol'}, {'inline_level': 1, 'val': None, 'buffer': None, 'static_attrs': set([u'fff']), 'attrs': odict([(u'fff', True)]), 'line': 1, 'type': 'attrs'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'string', 'val': u''}, {'buffer': None, 'inline_level': 2, 'line': 1, 'type': 'tag', 'val': u'asdf'}, {'buffer': None, 'inline_level': 1, 'line': 1, 'type': 'string', 'val': u''}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "#[= '[[[[[[[[[[']": [ {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'buffer': True, 'line': 1, 'type': 'code', 'val': u" '[[[[[[[[[['", 'escape': True, 'inline_level': 1}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], "#[= ']]]]]]]]]]']": [ {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}, {'buffer': True, 'line': 1, 'type': 'code', 'val': u" ']]]]]]]]]]'", 'escape': True, 'inline_level': 1}, {'buffer': None, 'line': 1, 'type': 'string', 'inline_level': 0, 'val': u''}], } def generate_expected(jade): lx = Lexer(jade) res = [] while True: tok = lx.advance() if tok.type == 'eos': break res.append(tok.__dict__) return res def process(jade): assert expected_results[jade] == generate_expected(jade) def test_lexer(): import six for k, v in six.iteritems(expected_results): yield process, k
mit
-7,361,041,636,928,403,000
68.371795
186
0.489928
false
xzYue/odoo
addons/hw_escpos/controllers/main.py
13
14014
# -*- coding: utf-8 -*- import commands import logging import simplejson import os import os.path import io import base64 import openerp import time import random import math import md5 import openerp.addons.hw_proxy.controllers.main as hw_proxy import pickle import re import subprocess import traceback try: from .. escpos import * from .. escpos.exceptions import * from .. escpos.printer import Usb except ImportError: escpos = printer = None from threading import Thread, Lock from Queue import Queue, Empty try: import usb.core except ImportError: usb = None from PIL import Image from openerp import http from openerp.http import request from openerp.tools.translate import _ _logger = logging.getLogger(__name__) # workaround https://bugs.launchpad.net/openobject-server/+bug/947231 # related to http://bugs.python.org/issue7980 from datetime import datetime datetime.strptime('2012-01-01', '%Y-%m-%d') class EscposDriver(Thread): def __init__(self): Thread.__init__(self) self.queue = Queue() self.lock = Lock() self.status = {'status':'connecting', 'messages':[]} def connected_usb_devices(self): connected = [] # printers can either define bDeviceClass=7, or they can define one of # their interfaces with bInterfaceClass=7. This class checks for both. class FindUsbClass(object): def __init__(self, usb_class): self._class = usb_class def __call__(self, device): # first, let's check the device if device.bDeviceClass == self._class: return True # transverse all devices and look through their interfaces to # find a matching class for cfg in device: intf = usb.util.find_descriptor(cfg, bInterfaceClass=self._class) if intf is not None: return True return False printers = usb.core.find(find_all=True, custom_match=FindUsbClass(7)) # if no printers are found after this step we will take the # first epson or star device we can find. # epson if not printers: printers = usb.core.find(find_all=True, idVendor=0x04b8) # star if not printers: printers = usb.core.find(find_all=True, idVendor=0x0519) for printer in printers: connected.append({ 'vendor': printer.idVendor, 'product': printer.idProduct, 'name': usb.util.get_string(printer, 256, printer.iManufacturer) + " " + usb.util.get_string(printer, 256, printer.iProduct) }) return connected def lockedstart(self): with self.lock: if not self.isAlive(): self.daemon = True self.start() def get_escpos_printer(self): printers = self.connected_usb_devices() if len(printers) > 0: self.set_status('connected','Connected to '+printers[0]['name']) return Usb(printers[0]['vendor'], printers[0]['product']) else: self.set_status('disconnected','Printer Not Found') return None def get_status(self): self.push_task('status') return self.status def open_cashbox(self,printer): printer.cashdraw(2) printer.cashdraw(5) def set_status(self, status, message = None): _logger.info(status+' : '+ (message or 'no message')) if status == self.status['status']: if message != None and (len(self.status['messages']) == 0 or message != self.status['messages'][-1]): self.status['messages'].append(message) else: self.status['status'] = status if message: self.status['messages'] = [message] else: self.status['messages'] = [] if status == 'error' and message: _logger.error('ESC/POS Error: '+message) elif status == 'disconnected' and message: _logger.warning('ESC/POS Device Disconnected: '+message) def run(self): printer = None if not escpos: _logger.error('ESC/POS cannot initialize, please verify system dependencies.') return while True: try: error = True timestamp, task, data = self.queue.get(True) printer = self.get_escpos_printer() if printer == None: if task != 'status': self.queue.put((timestamp,task,data)) error = False time.sleep(5) continue elif task == 'receipt': if timestamp >= time.time() - 1 * 60 * 60: self.print_receipt_body(printer,data) printer.cut() elif task == 'xml_receipt': if timestamp >= time.time() - 1 * 60 * 60: printer.receipt(data) elif task == 'cashbox': if timestamp >= time.time() - 12: self.open_cashbox(printer) elif task == 'printstatus': self.print_status(printer) elif task == 'status': pass error = False except NoDeviceError as e: print "No device found %s" %str(e) except HandleDeviceError as e: print "Impossible to handle the device due to previous error %s" % str(e) except TicketNotPrinted as e: print "The ticket does not seems to have been fully printed %s" % str(e) except NoStatusError as e: print "Impossible to get the status of the printer %s" % str(e) except Exception as e: self.set_status('error', str(e)) errmsg = str(e) + '\n' + '-'*60+'\n' + traceback.format_exc() + '-'*60 + '\n' _logger.error(errmsg); finally: if error: self.queue.put((timestamp, task, data)) if printer: printer.close() def push_task(self,task, data = None): self.lockedstart() self.queue.put((time.time(),task,data)) def print_status(self,eprint): localips = ['0.0.0.0','127.0.0.1','127.0.1.1'] hosting_ap = os.system('pgrep hostapd') == 0 ssid = subprocess.check_output('iwconfig 2>&1 | grep \'ESSID:"\' | sed \'s/.*"\\(.*\\)"/\\1/\'', shell=True).rstrip() ips = [ c.split(':')[1].split(' ')[0] for c in commands.getoutput("/sbin/ifconfig").split('\n') if 'inet addr' in c ] ips = [ ip for ip in ips if ip not in localips ] eprint.text('\n\n') eprint.set(align='center',type='b',height=2,width=2) eprint.text('PosBox Status\n') eprint.text('\n') eprint.set(align='center') if hosting_ap: eprint.text('Wireless network:\nPosbox\n\n') elif ssid: eprint.text('Wireless network:\n' + ssid + '\n\n') if len(ips) == 0: eprint.text('ERROR: Could not connect to LAN\n\nPlease check that the PosBox is correc-\ntly connected with a network cable,\n that the LAN is setup with DHCP, and\nthat network addresses are available') elif len(ips) == 1: eprint.text('IP Address:\n'+ips[0]+'\n') else: eprint.text('IP Addresses:\n') for ip in ips: eprint.text(ip+'\n') if len(ips) >= 1: eprint.text('\nHomepage:\nhttp://'+ips[0]+':8069\n') eprint.text('\n\n') eprint.cut() def print_receipt_body(self,eprint,receipt): def check(string): return string != True and bool(string) and string.strip() def price(amount): return ("{0:."+str(receipt['precision']['price'])+"f}").format(amount) def money(amount): return ("{0:."+str(receipt['precision']['money'])+"f}").format(amount) def quantity(amount): if math.floor(amount) != amount: return ("{0:."+str(receipt['precision']['quantity'])+"f}").format(amount) else: return str(amount) def printline(left, right='', width=40, ratio=0.5, indent=0): lwidth = int(width * ratio) rwidth = width - lwidth lwidth = lwidth - indent left = left[:lwidth] if len(left) != lwidth: left = left + ' ' * (lwidth - len(left)) right = right[-rwidth:] if len(right) != rwidth: right = ' ' * (rwidth - len(right)) + right return ' ' * indent + left + right + '\n' def print_taxes(): taxes = receipt['tax_details'] for tax in taxes: eprint.text(printline(tax['tax']['name'],price(tax['amount']), width=40,ratio=0.6)) # Receipt Header if receipt['company']['logo']: eprint.set(align='center') eprint.print_base64_image(receipt['company']['logo']) eprint.text('\n') else: eprint.set(align='center',type='b',height=2,width=2) eprint.text(receipt['company']['name'] + '\n') eprint.set(align='center',type='b') if check(receipt['company']['contact_address']): eprint.text(receipt['company']['contact_address'] + '\n') if check(receipt['company']['phone']): eprint.text('Tel:' + receipt['company']['phone'] + '\n') if check(receipt['company']['vat']): eprint.text('VAT:' + receipt['company']['vat'] + '\n') if check(receipt['company']['email']): eprint.text(receipt['company']['email'] + '\n') if check(receipt['company']['website']): eprint.text(receipt['company']['website'] + '\n') if check(receipt['header']): eprint.text(receipt['header']+'\n') if check(receipt['cashier']): eprint.text('-'*32+'\n') eprint.text('Served by '+receipt['cashier']+'\n') # Orderlines eprint.text('\n\n') eprint.set(align='center') for line in receipt['orderlines']: pricestr = price(line['price_display']) if line['discount'] == 0 and line['unit_name'] == 'Unit(s)' and line['quantity'] == 1: eprint.text(printline(line['product_name'],pricestr,ratio=0.6)) else: eprint.text(printline(line['product_name'],ratio=0.6)) if line['discount'] != 0: eprint.text(printline('Discount: '+str(line['discount'])+'%', ratio=0.6, indent=2)) if line['unit_name'] == 'Unit(s)': eprint.text( printline( quantity(line['quantity']) + ' x ' + price(line['price']), pricestr, ratio=0.6, indent=2)) else: eprint.text( printline( quantity(line['quantity']) + line['unit_name'] + ' x ' + price(line['price']), pricestr, ratio=0.6, indent=2)) # Subtotal if the taxes are not included taxincluded = True if money(receipt['subtotal']) != money(receipt['total_with_tax']): eprint.text(printline('','-------')); eprint.text(printline(_('Subtotal'),money(receipt['subtotal']),width=40, ratio=0.6)) print_taxes() #eprint.text(printline(_('Taxes'),money(receipt['total_tax']),width=40, ratio=0.6)) taxincluded = False # Total eprint.text(printline('','-------')); eprint.set(align='center',height=2) eprint.text(printline(_(' TOTAL'),money(receipt['total_with_tax']),width=40, ratio=0.6)) eprint.text('\n\n'); # Paymentlines eprint.set(align='center') for line in receipt['paymentlines']: eprint.text(printline(line['journal'], money(line['amount']), ratio=0.6)) eprint.text('\n'); eprint.set(align='center',height=2) eprint.text(printline(_(' CHANGE'),money(receipt['change']),width=40, ratio=0.6)) eprint.set(align='center') eprint.text('\n'); # Extra Payment info if receipt['total_discount'] != 0: eprint.text(printline(_('Discounts'),money(receipt['total_discount']),width=40, ratio=0.6)) if taxincluded: print_taxes() #eprint.text(printline(_('Taxes'),money(receipt['total_tax']),width=40, ratio=0.6)) # Footer if check(receipt['footer']): eprint.text('\n'+receipt['footer']+'\n\n') eprint.text(receipt['name']+'\n') eprint.text( str(receipt['date']['date']).zfill(2) +'/'+ str(receipt['date']['month']+1).zfill(2) +'/'+ str(receipt['date']['year']).zfill(4) +' '+ str(receipt['date']['hour']).zfill(2) +':'+ str(receipt['date']['minute']).zfill(2) ) driver = EscposDriver() driver.push_task('printstatus') hw_proxy.drivers['escpos'] = driver class EscposProxy(hw_proxy.Proxy): @http.route('/hw_proxy/open_cashbox', type='json', auth='none', cors='*') def open_cashbox(self): _logger.info('ESC/POS: OPEN CASHBOX') driver.push_task('cashbox') @http.route('/hw_proxy/print_receipt', type='json', auth='none', cors='*') def print_receipt(self, receipt): _logger.info('ESC/POS: PRINT RECEIPT') driver.push_task('receipt',receipt) @http.route('/hw_proxy/print_xml_receipt', type='json', auth='none', cors='*') def print_xml_receipt(self, receipt): _logger.info('ESC/POS: PRINT XML RECEIPT') driver.push_task('xml_receipt',receipt)
agpl-3.0
-6,520,309,028,010,183,000
36.672043
215
0.537819
false
CiscoSystems/nova
nova/tests/integrated/v3/test_admin_actions.py
20
1909
# Copyright 2012 Nebula, Inc. # Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from nova.tests.integrated.v3 import test_servers class AdminActionsSamplesJsonTest(test_servers.ServersSampleBase): extension_name = "os-admin-actions" def setUp(self): """setUp Method for AdminActions api samples extension This method creates the server that will be used in each tests """ super(AdminActionsSamplesJsonTest, self).setUp() self.uuid = self._post_server() def test_post_reset_network(self): # Get api samples to reset server network request. response = self._do_post('servers/%s/action' % self.uuid, 'admin-actions-reset-network', {}) self.assertEqual(response.status, 202) def test_post_inject_network_info(self): # Get api samples to inject network info request. response = self._do_post('servers/%s/action' % self.uuid, 'admin-actions-inject-network-info', {}) self.assertEqual(response.status, 202) def test_post_reset_state(self): # get api samples to server reset state request. response = self._do_post('servers/%s/action' % self.uuid, 'admin-actions-reset-server-state', {}) self.assertEqual(response.status, 202)
apache-2.0
-5,774,711,405,961,999,000
40.5
78
0.657936
false
shifter/rekall
rekall-core/rekall/plugins/windows/taskmods.py
3
8383
# Rekall Memory Forensics # Copyright (C) 2007-2011 Volatile Systems # Copyright 2013 Google Inc. All Rights Reserved. # # Additional Authors: # Michael Cohen <[email protected]> # Mike Auty <[email protected]> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or (at # your option) any later version. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # pylint: disable=protected-access from rekall import testlib from rekall.plugins import core from rekall.plugins.windows import common from rekall import plugin from rekall.ui import text class WinPsList(common.WinProcessFilter): """List processes for windows.""" __name = "pslist" eprocess = None @classmethod def args(cls, metadata): super(WinPsList, cls).args(metadata) metadata.set_description(""" Lists the processes by following the _EPROCESS.PsActiveList. In the windows operating system, processes are linked together through a doubly linked list. This plugin follows the list around, printing information about each process. To begin, we need to find any element on the list. This can be done by: 1) Obtaining the _KDDEBUGGER_DATA64.PsActiveProcessHead - debug information. 2) Finding any _EPROCESS in memory (e.g. through psscan) and following its list. This plugin supports both approaches. """) def render(self, renderer): renderer.table_header([ dict(type="_EPROCESS", cname="_EPROCESS"), dict(name="PPID", cname="ppid", width=6, align="r"), dict(name="Thds", cname="thread_count", width=6, align="r"), dict(name="Hnds", cname="handle_count", width=8, align="r"), dict(name="Sess", cname="session_id", width=6, align="r"), dict(name="Wow64", cname="wow64", width=6), dict(name="Start", cname="process_create_time", width=24), dict(name="Exit", cname="process_exit_time", width=24)]) for task in self.filter_processes(): renderer.table_row(task, task.InheritedFromUniqueProcessId, task.ActiveThreads, task.ObjectTable.m("HandleCount"), task.SessionId, task.IsWow64, task.CreateTime, task.ExitTime, ) class WinDllList(common.WinProcessFilter): """Prints a list of dll modules mapped into each process.""" __name = "dlllist" def render(self, renderer): for task in self.filter_processes(): pid = task.UniqueProcessId renderer.section() renderer.format(u"{0} pid: {1:6}\n", task.ImageFileName, pid) if task.Peb: renderer.format(u"Command line : {0}\n", task.Peb.ProcessParameters.CommandLine) if task.IsWow64: renderer.format(u"Note: use ldrmodules for listing DLLs " "in Wow64 processes\n") renderer.format(u"{0}\n\n", task.Peb.CSDVersion) renderer.table_header([("Base", "module_base", "[addrpad]"), ("Size", "module_size", "[addr]"), ("Load Reason/Count", "reason", "30"), ("Path", "loaded_dll_path", ""), ]) for m in task.get_load_modules(): renderer.table_row(m.DllBase, m.SizeOfImage, m.LoadReason, m.FullDllName) else: renderer.format("Unable to read PEB for task.\n") class WinMemMap(core.MemmapMixIn, common.WinProcessFilter): """Calculates the memory regions mapped by a process.""" __name = "memmap" def _get_highest_user_address(self): return self.profile.get_constant_object( "MmHighestUserAddress", "Pointer").v() class WinMemDump(core.DirectoryDumperMixin, WinMemMap): """Dump the addressable memory for a process""" __name = "memdump" def dump_process(self, eprocess, fd, index_fd): task_as = eprocess.get_process_address_space() highest_address = self._get_highest_user_address() temp_renderer = text.TextRenderer(session=self.session, fd=index_fd) with temp_renderer.start(): temp_renderer.table_header([ ("File Address", "file_addr", "[addrpad]"), ("Length", "length", "[addrpad]"), ("Virtual Addr", "virtual", "[addrpad]")]) for _ in task_as.get_available_addresses(): virt_address, phys_address, length = _ if not self.all and virt_address > highest_address: break data = self.physical_address_space.read(phys_address, length) temp_renderer.table_row(fd.tell(), length, virt_address) fd.write(data) def render(self, renderer): if self.dump_dir is None: raise plugin.PluginError("Dump directory not specified.") for task in self.filter_processes(): renderer.section() filename = u"{0}_{1:d}.dmp".format( task.ImageFileName, task.UniqueProcessId) renderer.format(u"Writing {0} {1:#x} to {2}\n", task.ImageFileName, task, filename) with renderer.open(directory=self.dump_dir, filename=filename, mode='wb') as fd: with renderer.open(directory=self.dump_dir, filename=filename + ".idx", mode='wb') as index_fd: self.dump_process(task, fd, index_fd) class Threads(common.WinProcessFilter): """Enumerate threads.""" name = "threads" def render(self, renderer): renderer.table_header( [("_ETHREAD", "offset", "[addrpad]"), ("PID", "pid", ">6"), ("TID", "tid", ">6"), ("Start Address", "start", "[addrpad]"), ("Process", "name", "16"), ("Symbol", "symbol", "")]) cc = self.session.plugins.cc() with cc: for task in self.filter_processes(): # Resolve names in the process context. cc.SwitchProcessContext(process=task) for thread in task.ThreadListHead.list_of_type( "_ETHREAD", "ThreadListEntry"): renderer.table_row( thread, thread.Cid.UniqueProcess, thread.Cid.UniqueThread, thread.StartAddress, task.ImageFileName, self.session.address_resolver.format_address( thread.Win32StartAddress, max_distance=0xffffffff), ) class TestWinMemDump(testlib.HashChecker): """Test the pslist module.""" PARAMETERS = dict( commandline="memdump --pid=%(pid)s --dump_dir %(tempdir)s", pid=2624) class TestMemmap(testlib.SimpleTestCase): """Test the pslist module.""" PARAMETERS = dict( commandline="memmap --pid=%(pid)s", pid=2624) class TestMemmapCoalesce(testlib.SimpleTestCase): """Make sure that memmaps are coalesced properly.""" PARAMETERS = dict(commandline="memmap --pid=%(pid)s --coalesce", pid=2624)
gpl-2.0
4,664,065,186,811,321,000
34.824786
80
0.55374
false
wood-galaxy/FreeCAD
src/Mod/Material/InitGui.py
57
1621
#*************************************************************************** #* * #* Copyright (c) 2013 - Juergen Riegel <[email protected]> * #* * #* This program is free software; you can redistribute it and/or modify * #* it under the terms of the GNU Lesser General Public License (LGPL) * #* as published by the Free Software Foundation; either version 2 of * #* the License, or (at your option) any later version. * #* for detail see the LICENCE text file. * #* * #* This program is distributed in the hope that it will be useful, * #* but WITHOUT ANY WARRANTY; without even the implied warranty of * #* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * #* GNU Library General Public License for more details. * #* * #* You should have received a copy of the GNU Library General Public * #* License along with this program; if not, write to the Free Software * #* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * #* USA * #* * #***************************************************************************
lgpl-2.1
-119,050,321,549,593,230
69.478261
78
0.396052
false
tumbl3w33d/ansible
lib/ansible/plugins/doc_fragments/docker.py
9
7280
# -*- coding: utf-8 -*- # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type class ModuleDocFragment(object): # Docker doc fragment DOCUMENTATION = r''' options: docker_host: description: - The URL or Unix socket path used to connect to the Docker API. To connect to a remote host, provide the TCP connection string. For example, C(tcp://192.0.2.23:2376). If TLS is used to encrypt the connection, the module will automatically replace C(tcp) in the connection URL with C(https). - If the value is not specified in the task, the value of environment variable C(DOCKER_HOST) will be used instead. If the environment variable is not set, the default value will be used. type: str default: unix://var/run/docker.sock aliases: [ docker_url ] tls_hostname: description: - When verifying the authenticity of the Docker Host server, provide the expected name of the server. - If the value is not specified in the task, the value of environment variable C(DOCKER_TLS_HOSTNAME) will be used instead. If the environment variable is not set, the default value will be used. type: str default: localhost api_version: description: - The version of the Docker API running on the Docker Host. - Defaults to the latest version of the API supported by Docker SDK for Python and the docker daemon. - If the value is not specified in the task, the value of environment variable C(DOCKER_API_VERSION) will be used instead. If the environment variable is not set, the default value will be used. type: str default: auto aliases: [ docker_api_version ] timeout: description: - The maximum amount of time in seconds to wait on a response from the API. - If the value is not specified in the task, the value of environment variable C(DOCKER_TIMEOUT) will be used instead. If the environment variable is not set, the default value will be used. type: int default: 60 ca_cert: description: - Use a CA certificate when performing server verification by providing the path to a CA certificate file. - If the value is not specified in the task and the environment variable C(DOCKER_CERT_PATH) is set, the file C(ca.pem) from the directory specified in the environment variable C(DOCKER_CERT_PATH) will be used. type: path aliases: [ tls_ca_cert, cacert_path ] client_cert: description: - Path to the client's TLS certificate file. - If the value is not specified in the task and the environment variable C(DOCKER_CERT_PATH) is set, the file C(cert.pem) from the directory specified in the environment variable C(DOCKER_CERT_PATH) will be used. type: path aliases: [ tls_client_cert, cert_path ] client_key: description: - Path to the client's TLS key file. - If the value is not specified in the task and the environment variable C(DOCKER_CERT_PATH) is set, the file C(key.pem) from the directory specified in the environment variable C(DOCKER_CERT_PATH) will be used. type: path aliases: [ tls_client_key, key_path ] ssl_version: description: - Provide a valid SSL version number. Default value determined by ssl.py module. - If the value is not specified in the task, the value of environment variable C(DOCKER_SSL_VERSION) will be used instead. type: str tls: description: - Secure the connection to the API by using TLS without verifying the authenticity of the Docker host server. Note that if I(validate_certs) is set to C(yes) as well, it will take precedence. - If the value is not specified in the task, the value of environment variable C(DOCKER_TLS) will be used instead. If the environment variable is not set, the default value will be used. type: bool default: no validate_certs: description: - Secure the connection to the API by using TLS and verifying the authenticity of the Docker host server. - If the value is not specified in the task, the value of environment variable C(DOCKER_TLS_VERIFY) will be used instead. If the environment variable is not set, the default value will be used. type: bool default: no aliases: [ tls_verify ] debug: description: - Debug mode type: bool default: no notes: - Connect to the Docker daemon by providing parameters with each task or by defining environment variables. You can define C(DOCKER_HOST), C(DOCKER_TLS_HOSTNAME), C(DOCKER_API_VERSION), C(DOCKER_CERT_PATH), C(DOCKER_SSL_VERSION), C(DOCKER_TLS), C(DOCKER_TLS_VERIFY) and C(DOCKER_TIMEOUT). If you are using docker machine, run the script shipped with the product that sets up the environment. It will set these variables for you. See U(https://docker-py.readthedocs.io/en/stable/machine/) for more details. - When connecting to Docker daemon with TLS, you might need to install additional Python packages. For the Docker SDK for Python, version 2.4 or newer, this can be done by installing C(docker[tls]) with M(pip). - Note that the Docker SDK for Python only allows to specify the path to the Docker configuration for very few functions. In general, it will use C($HOME/.docker/config.json) if the C(DOCKER_CONFIG) environment variable is not specified, and use C($DOCKER_CONFIG/config.json) otherwise. ''' # Additional, more specific stuff for minimal Docker SDK for Python version < 2.0 DOCKER_PY_1_DOCUMENTATION = r''' options: {} requirements: - "Docker SDK for Python: Please note that the L(docker-py,https://pypi.org/project/docker-py/) Python module has been superseded by L(docker,https://pypi.org/project/docker/) (see L(here,https://github.com/docker/docker-py/issues/1310) for details). For Python 2.6, C(docker-py) must be used. Otherwise, it is recommended to install the C(docker) Python module. Note that both modules should *not* be installed at the same time. Also note that when both modules are installed and one of them is uninstalled, the other might no longer function and a reinstall of it is required." ''' # Additional, more specific stuff for minimal Docker SDK for Python version >= 2.0. # Note that Docker SDK for Python >= 2.0 requires Python 2.7 or newer. DOCKER_PY_2_DOCUMENTATION = r''' options: {} requirements: - "Python >= 2.7" - "Docker SDK for Python: Please note that the L(docker-py,https://pypi.org/project/docker-py/) Python module has been superseded by L(docker,https://pypi.org/project/docker/) (see L(here,https://github.com/docker/docker-py/issues/1310) for details). This module does *not* work with docker-py." '''
gpl-3.0
-395,994,057,431,448,700
52.529412
125
0.673077
false
veltzer/openbook
scripts/graph.py
1
3860
#!/usr/bin/env python """ this script gets the graph data for the openbook progress report the idea is to be able to see in a graph the progress being made in this project. TODO: - modify this script to produce counts for both jazz and non-jazz tunes. (very easy). This way the data that is outputted will be related to the openbook pdf. And do this also for completion level 5. """ import subprocess import dateutil.parser import os.path import configparser import getpass import pymysql import tqdm from dateutil import tz ############## # parameters # ############## debug = False doDb = True ############# # functions # ############# ''' get the configuration, including user and password from the ~/.my.cnf file of the user if no such file exists then use sensible defaults ''' def get_config(): d = {} inifile = os.path.expanduser('~/.my.cnf') if os.path.isfile(inifile): config = configparser.ConfigParser() config.read(inifile) if config.has_option('mysql', 'user'): d['user'] = config.get('mysql', 'user') else: d['user'] = getpass.getuser() if config.has_option('mysql', 'database'): d['database'] = config.get('mysql', 'database') else: d['database'] = 'mysql' if config.has_option('mysql', 'password'): d['password'] = config.get('mysql', 'password') return d else: d['user'] = getpass.getuser() d['database'] = 'mysql' return d def main(): connection = pymysql.connect(**get_config()) cursor = None row_id = None if doDb: # remove the old data cursor = connection.cursor() cursor.execute('SELECT id FROM TbGraph WHERE name=\'openbook_progress\'') row = cursor.fetchone() # only remove data if we already have data if row is not None: row_id = int(row[0]) if debug: print('id is', row_id) cursor.execute('DELETE from TbGraphData WHERE graphId=%s', (row_id,)) cursor.execute('DELETE from TbGraph WHERE id=%s', (row_id,)) # insert a new row into the graph meta data cursor.execute('INSERT INTO TbGraph (name) VALUES(\'openbook_progress\')') row_id = cursor.lastrowid if debug: print('id is', row_id) # this gets all commits in the right order commits = subprocess.check_output(['git', 'log', '--format=%H', '--reverse']).decode().split('\n') # removes the extra element that I don't need which is the current commit commits.pop() for commit in tqdm.tqdm(commits): d1 = subprocess.check_output(['git', 'show', '-s', '--format=%ci', commit]).decode().strip() d2 = dateutil.parser.parse(d1) dt = d2.astimezone(tz.tzutc()) count_mako = 0 count_temp = 0 count_gpp = 0 count_ly = 0 lines = subprocess.check_output(['git', 'ls-tree', '-r', commit]).decode().split('\n') for line in lines: if line.endswith('.mako'): count_mako += 1 if line.endswith('.temp'): count_temp += 1 if line.endswith('.gpp'): count_gpp += 1 if line.endswith('.ly'): count_ly += 1 count = max(count_mako, count_temp, count_gpp, count_ly) if debug: print('commit is', commit) print('dt is', str(dt)) print('count is', str(count)) if doDb: cursor.execute('INSERT INTO TbGraphData (tag,dt,value,graphId) VALUES(%s,%s,%s,%s)', (commit, dt, count, row_id)) # commit everything... if doDb: cursor.close() connection.commit() connection.close() if __name__ == "__main__": main()
gpl-3.0
-4,699,438,864,874,608,000
29.634921
102
0.563472
false
huahang/typhoon-blade
src/blade/test_scheduler.py
3
8125
# Copyright (c) 2012 Tencent Inc. # All rights reserved. # # Author: Michaelpeng <[email protected]> # Date: February 29, 2012 """ This is a thread module for blade which is used to spawn threads to finish some kind of work. """ import Queue import subprocess import sys import threading import time import traceback import blade_util import console signal_map = {-1: 'SIGHUP', -2: 'SIGINT', -3: 'SIGQUIT', -4: 'SIGILL', -5: 'SIGTRAP', -6: 'SIGABRT', -7: 'SIGBUS', -8: 'SIGFPE', -9: 'SIGKILL', -10: 'SIGUSR1', -11: 'SIGSEGV', -12: 'SIGUSR2', -13: 'SIGPIPE', -14: 'SIGALRM', -15: 'SIGTERM', -17: 'SIGCHLD', -18: 'SIGCONT', -19: 'SIGSTOP', -20: 'SIGTSTP', -21: 'SIGTTIN', -22: 'SIGTTOU', -23: 'SIGURG', -24: 'SIGXCPU', -25: 'SIGXFSZ', -26: 'SIGVTALRM', -27: 'SIGPROF', -28: 'SIGWINCH', -29: 'SIGIO', -30: 'SIGPWR', -31: 'SIGSYS'} class WorkerThread(threading.Thread): def __init__(self, worker_args, proc_func, args): """Init methods for this thread. """ threading.Thread.__init__(self) self.worker_args = worker_args self.func_args = args self.job_handler = proc_func self.thread_id = int(self.worker_args) self.start_working_time = time.time() self.end_working_time = None self.ret = None console.info('blade test executor %d starts to work' % self.thread_id) def __process(self): """Private handler to handle one job. """ console.info('blade worker %d starts to process' % self.thread_id) console.info('blade worker %d finish' % self.thread_id) return def get_return(self): """returns worker result to caller. """ return self.ret def run(self): """executes and runs here. """ try: if self.job_handler: self.ret = self.job_handler(*self.func_args) self.end_working_time = time.time() return True else: self.__process() return True except: (ErrorType, ErrorValue, ErrorTB) = sys.exc_info() print sys.exc_info() traceback.print_exc(ErrorTB) class TestScheduler(object): """TestScheduler. """ def __init__(self, tests_list, jobs, tests_run_map): """init method. """ self.tests_list = tests_list self.jobs = jobs self.tests_run_map = tests_run_map self.tests_run_map_lock = threading.Lock() self.worker_threads = [] self.cpu_core_num = blade_util.cpu_count() self.num_of_tests = len(self.tests_list) self.max_worker_threads = 16 self.threads = [] self.tests_stdout_map = {} self.failed_targets = [] self.failed_targets_lock = threading.Lock() self.tests_stdout_lock = threading.Lock() self.num_of_run_tests = 0 self.num_of_run_tests_lock = threading.Lock() self.job_queue = Queue.Queue(0) self.exclusive_job_queue = Queue.Queue(0) def __get_workers_num(self): """get the number of thread workers. """ max_workers = max([self.cpu_core_num, self.max_worker_threads]) if max_workers == 0: max_workers = self.max_worker_threads if self.jobs <= 1: return 1 elif self.jobs > max_workers: self.jobs = max_workers if self.num_of_tests <= self.jobs: return self.num_of_tests else: return self.jobs return 1 def __get_result(self, returncode): """translate result from returncode. """ result = 'SUCCESS' if returncode: result = signal_map.get(returncode, 'FAILED') result = '%s:%s' % (result, returncode) return result def _run_job_redirect(self, job): """run job, redirect the output. """ (target, run_dir, test_env, cmd) = job test_name = '%s:%s' % (target.path, target.name) console.info('Running %s' % cmd) p = subprocess.Popen(cmd, env=test_env, cwd=run_dir, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, close_fds=True) (stdoutdata, stderrdata) = p.communicate() result = self.__get_result(p.returncode) console.info('Output of %s:\n%s\n%s finished: %s\n' % (test_name, stdoutdata, test_name, result)) return p.returncode def _run_job(self, job): """run job, do not redirect the output. """ (target, run_dir, test_env, cmd) = job console.info('Running %s' % cmd) p = subprocess.Popen(cmd, env=test_env, cwd=run_dir, close_fds=True) p.wait() result = self.__get_result(p.returncode) console.info('%s/%s finished : %s\n' % ( target.path, target.name, result)) return p.returncode def _process_command(self, job_queue, redirect): """process routine. Each test is a tuple (target, run_dir, env, cmd) """ while not job_queue.empty(): job = job_queue.get() target = job[0] target_key = '%s:%s' % (target.path, target.name) start_time = time.time() try: if redirect: returncode = self._run_job_redirect(job) else: returncode = self._run_job(job) except OSError, e: console.error('%s: Create test process error: %s' % (target_key, str(e))) returncode = 255 costtime = time.time() - start_time if returncode: target.data['test_exit_code'] = returncode self.failed_targets_lock.acquire() self.failed_targets.append(target) self.failed_targets_lock.release() self.tests_run_map_lock.acquire() run_item_map = self.tests_run_map.get(target.key, {}) if run_item_map: run_item_map['result'] = self.__get_result(returncode) run_item_map['costtime'] = costtime self.tests_run_map_lock.release() self.num_of_run_tests_lock.acquire() self.num_of_run_tests += 1 self.num_of_run_tests_lock.release() return True def print_summary(self): """print the summary output of tests. """ console.info('There are %d tests scheduled to run by scheduler' % (len(self.tests_list))) def _join_thread(self, t): """Join thread and keep signal awareable""" # The Thread.join without timeout will block signals, which makes # blade can't be terminated by Ctrl-C while t.isAlive(): t.join(1) def schedule_jobs(self): """scheduler. """ if self.num_of_tests <= 0: return True num_of_workers = self.__get_workers_num() console.info('spawn %d worker(s) to run tests' % num_of_workers) for i in self.tests_list: target = i[0] if target.data.get('exclusive'): self.exclusive_job_queue.put(i) else: self.job_queue.put(i) test_arg = [self.job_queue, num_of_workers > 1] for i in range(num_of_workers): t = WorkerThread((i), self._process_command, args=test_arg) t.start() self.threads.append(t) for t in self.threads: self._join_thread(t) if not self.exclusive_job_queue.empty(): console.info('spawn 1 worker to run exclusive tests') test_arg = [self.exclusive_job_queue, False] last_t = WorkerThread((num_of_workers), self._process_command, args=test_arg) last_t.start() self._join_thread(last_t) self.print_summary() return True
bsd-3-clause
-8,000,737,057,557,708,000
32.713693
97
0.538338
false
dparlevliet/zelenka-report-storage
server-db/twisted/conch/test/test_userauth.py
4
39526
# -*- test-case-name: twisted.conch.test.test_userauth -*- # Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for the implementation of the ssh-userauth service. Maintainer: Paul Swartz """ from zope.interface import implements from twisted.cred.checkers import ICredentialsChecker from twisted.cred.credentials import IUsernamePassword, ISSHPrivateKey from twisted.cred.credentials import IPluggableAuthenticationModules from twisted.cred.credentials import IAnonymous from twisted.cred.error import UnauthorizedLogin from twisted.cred.portal import IRealm, Portal from twisted.conch.error import ConchError, ValidPublicKey from twisted.internet import defer, task from twisted.protocols import loopback from twisted.trial import unittest try: import Crypto.Cipher.DES3 import pyasn1 except ImportError: keys = None class transport: class SSHTransportBase: """ A stub class so that later class definitions won't die. """ class userauth: class SSHUserAuthClient: """ A stub class so that later class definitions won't die. """ else: from twisted.conch.ssh.common import NS from twisted.conch.checkers import SSHProtocolChecker from twisted.conch.ssh import keys, userauth, transport from twisted.conch.test import keydata class ClientUserAuth(userauth.SSHUserAuthClient): """ A mock user auth client. """ def getPublicKey(self): """ If this is the first time we've been called, return a blob for the DSA key. Otherwise, return a blob for the RSA key. """ if self.lastPublicKey: return keys.Key.fromString(keydata.publicRSA_openssh) else: return defer.succeed(keys.Key.fromString(keydata.publicDSA_openssh)) def getPrivateKey(self): """ Return the private key object for the RSA key. """ return defer.succeed(keys.Key.fromString(keydata.privateRSA_openssh)) def getPassword(self, prompt=None): """ Return 'foo' as the password. """ return defer.succeed('foo') def getGenericAnswers(self, name, information, answers): """ Return 'foo' as the answer to two questions. """ return defer.succeed(('foo', 'foo')) class OldClientAuth(userauth.SSHUserAuthClient): """ The old SSHUserAuthClient returned a PyCrypto key object from getPrivateKey() and a string from getPublicKey """ def getPrivateKey(self): return defer.succeed(keys.Key.fromString( keydata.privateRSA_openssh).keyObject) def getPublicKey(self): return keys.Key.fromString(keydata.publicRSA_openssh).blob() class ClientAuthWithoutPrivateKey(userauth.SSHUserAuthClient): """ This client doesn't have a private key, but it does have a public key. """ def getPrivateKey(self): return def getPublicKey(self): return keys.Key.fromString(keydata.publicRSA_openssh) class FakeTransport(transport.SSHTransportBase): """ L{userauth.SSHUserAuthServer} expects an SSH transport which has a factory attribute which has a portal attribute. Because the portal is important for testing authentication, we need to be able to provide an interesting portal object to the L{SSHUserAuthServer}. In addition, we want to be able to capture any packets sent over the transport. @ivar packets: a list of 2-tuples: (messageType, data). Each 2-tuple is a sent packet. @type packets: C{list} @param lostConnecion: True if loseConnection has been called on us. @type lostConnection: C{bool} """ class Service(object): """ A mock service, representing the other service offered by the server. """ name = 'nancy' def serviceStarted(self): pass class Factory(object): """ A mock factory, representing the factory that spawned this user auth service. """ def getService(self, transport, service): """ Return our fake service. """ if service == 'none': return FakeTransport.Service def __init__(self, portal): self.factory = self.Factory() self.factory.portal = portal self.lostConnection = False self.transport = self self.packets = [] def sendPacket(self, messageType, message): """ Record the packet sent by the service. """ self.packets.append((messageType, message)) def isEncrypted(self, direction): """ Pretend that this transport encrypts traffic in both directions. The SSHUserAuthServer disables password authentication if the transport isn't encrypted. """ return True def loseConnection(self): self.lostConnection = True class Realm(object): """ A mock realm for testing L{userauth.SSHUserAuthServer}. This realm is not actually used in the course of testing, so it returns the simplest thing that could possibly work. """ implements(IRealm) def requestAvatar(self, avatarId, mind, *interfaces): return defer.succeed((interfaces[0], None, lambda: None)) class PasswordChecker(object): """ A very simple username/password checker which authenticates anyone whose password matches their username and rejects all others. """ credentialInterfaces = (IUsernamePassword,) implements(ICredentialsChecker) def requestAvatarId(self, creds): if creds.username == creds.password: return defer.succeed(creds.username) return defer.fail(UnauthorizedLogin("Invalid username/password pair")) class PrivateKeyChecker(object): """ A very simple public key checker which authenticates anyone whose public/private keypair is the same keydata.public/privateRSA_openssh. """ credentialInterfaces = (ISSHPrivateKey,) implements(ICredentialsChecker) def requestAvatarId(self, creds): if creds.blob == keys.Key.fromString(keydata.publicRSA_openssh).blob(): if creds.signature is not None: obj = keys.Key.fromString(creds.blob) if obj.verify(creds.signature, creds.sigData): return creds.username else: raise ValidPublicKey() raise UnauthorizedLogin() class PAMChecker(object): """ A simple PAM checker which asks the user for a password, verifying them if the password is the same as their username. """ credentialInterfaces = (IPluggableAuthenticationModules,) implements(ICredentialsChecker) def requestAvatarId(self, creds): d = creds.pamConversion([('Name: ', 2), ("Password: ", 1)]) def check(values): if values == [(creds.username, 0), (creds.username, 0)]: return creds.username raise UnauthorizedLogin() return d.addCallback(check) class AnonymousChecker(object): """ A simple checker which isn't supported by L{SSHUserAuthServer}. """ credentialInterfaces = (IAnonymous,) implements(ICredentialsChecker) class SSHUserAuthServerTestCase(unittest.TestCase): """ Tests for SSHUserAuthServer. """ if keys is None: skip = "cannot run w/o PyCrypto" def setUp(self): self.realm = Realm() self.portal = Portal(self.realm) self.portal.registerChecker(PasswordChecker()) self.portal.registerChecker(PrivateKeyChecker()) self.portal.registerChecker(PAMChecker()) self.authServer = userauth.SSHUserAuthServer() self.authServer.transport = FakeTransport(self.portal) self.authServer.serviceStarted() self.authServer.supportedAuthentications.sort() # give a consistent # order def tearDown(self): self.authServer.serviceStopped() self.authServer = None def _checkFailed(self, ignored): """ Check that the authentication has failed. """ self.assertEqual(self.authServer.transport.packets[-1], (userauth.MSG_USERAUTH_FAILURE, NS('keyboard-interactive,password,publickey') + '\x00')) def test_noneAuthentication(self): """ A client may request a list of authentication 'method name' values that may continue by using the "none" authentication 'method name'. See RFC 4252 Section 5.2. """ d = self.authServer.ssh_USERAUTH_REQUEST(NS('foo') + NS('service') + NS('none')) return d.addCallback(self._checkFailed) def test_successfulPasswordAuthentication(self): """ When provided with correct password authentication information, the server should respond by sending a MSG_USERAUTH_SUCCESS message with no other data. See RFC 4252, Section 5.1. """ packet = NS('foo') + NS('none') + NS('password') + chr(0) + NS('foo') d = self.authServer.ssh_USERAUTH_REQUEST(packet) def check(ignored): self.assertEqual( self.authServer.transport.packets, [(userauth.MSG_USERAUTH_SUCCESS, '')]) return d.addCallback(check) def test_failedPasswordAuthentication(self): """ When provided with invalid authentication details, the server should respond by sending a MSG_USERAUTH_FAILURE message which states whether the authentication was partially successful, and provides other, open options for authentication. See RFC 4252, Section 5.1. """ # packet = username, next_service, authentication type, FALSE, password packet = NS('foo') + NS('none') + NS('password') + chr(0) + NS('bar') self.authServer.clock = task.Clock() d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.assertEqual(self.authServer.transport.packets, []) self.authServer.clock.advance(2) return d.addCallback(self._checkFailed) def test_successfulPrivateKeyAuthentication(self): """ Test that private key authentication completes sucessfully, """ blob = keys.Key.fromString(keydata.publicRSA_openssh).blob() obj = keys.Key.fromString(keydata.privateRSA_openssh) packet = (NS('foo') + NS('none') + NS('publickey') + '\xff' + NS(obj.sshType()) + NS(blob)) self.authServer.transport.sessionID = 'test' signature = obj.sign(NS('test') + chr(userauth.MSG_USERAUTH_REQUEST) + packet) packet += NS(signature) d = self.authServer.ssh_USERAUTH_REQUEST(packet) def check(ignored): self.assertEqual(self.authServer.transport.packets, [(userauth.MSG_USERAUTH_SUCCESS, '')]) return d.addCallback(check) def test_requestRaisesConchError(self): """ ssh_USERAUTH_REQUEST should raise a ConchError if tryAuth returns None. Added to catch a bug noticed by pyflakes. """ d = defer.Deferred() def mockCbFinishedAuth(self, ignored): self.fail('request should have raised ConochError') def mockTryAuth(kind, user, data): return None def mockEbBadAuth(reason): d.errback(reason.value) self.patch(self.authServer, 'tryAuth', mockTryAuth) self.patch(self.authServer, '_cbFinishedAuth', mockCbFinishedAuth) self.patch(self.authServer, '_ebBadAuth', mockEbBadAuth) packet = NS('user') + NS('none') + NS('public-key') + NS('data') # If an error other than ConchError is raised, this will trigger an # exception. self.authServer.ssh_USERAUTH_REQUEST(packet) return self.assertFailure(d, ConchError) def test_verifyValidPrivateKey(self): """ Test that verifying a valid private key works. """ blob = keys.Key.fromString(keydata.publicRSA_openssh).blob() packet = (NS('foo') + NS('none') + NS('publickey') + '\x00' + NS('ssh-rsa') + NS(blob)) d = self.authServer.ssh_USERAUTH_REQUEST(packet) def check(ignored): self.assertEqual(self.authServer.transport.packets, [(userauth.MSG_USERAUTH_PK_OK, NS('ssh-rsa') + NS(blob))]) return d.addCallback(check) def test_failedPrivateKeyAuthenticationWithoutSignature(self): """ Test that private key authentication fails when the public key is invalid. """ blob = keys.Key.fromString(keydata.publicDSA_openssh).blob() packet = (NS('foo') + NS('none') + NS('publickey') + '\x00' + NS('ssh-dsa') + NS(blob)) d = self.authServer.ssh_USERAUTH_REQUEST(packet) return d.addCallback(self._checkFailed) def test_failedPrivateKeyAuthenticationWithSignature(self): """ Test that private key authentication fails when the public key is invalid. """ blob = keys.Key.fromString(keydata.publicRSA_openssh).blob() obj = keys.Key.fromString(keydata.privateRSA_openssh) packet = (NS('foo') + NS('none') + NS('publickey') + '\xff' + NS('ssh-rsa') + NS(blob) + NS(obj.sign(blob))) self.authServer.transport.sessionID = 'test' d = self.authServer.ssh_USERAUTH_REQUEST(packet) return d.addCallback(self._checkFailed) def test_successfulPAMAuthentication(self): """ Test that keyboard-interactive authentication succeeds. """ packet = (NS('foo') + NS('none') + NS('keyboard-interactive') + NS('') + NS('')) response = '\x00\x00\x00\x02' + NS('foo') + NS('foo') d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.ssh_USERAUTH_INFO_RESPONSE(response) def check(ignored): self.assertEqual(self.authServer.transport.packets, [(userauth.MSG_USERAUTH_INFO_REQUEST, (NS('') + NS('') + NS('') + '\x00\x00\x00\x02' + NS('Name: ') + '\x01' + NS('Password: ') + '\x00')), (userauth.MSG_USERAUTH_SUCCESS, '')]) return d.addCallback(check) def test_failedPAMAuthentication(self): """ Test that keyboard-interactive authentication fails. """ packet = (NS('foo') + NS('none') + NS('keyboard-interactive') + NS('') + NS('')) response = '\x00\x00\x00\x02' + NS('bar') + NS('bar') d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.ssh_USERAUTH_INFO_RESPONSE(response) def check(ignored): self.assertEqual(self.authServer.transport.packets[0], (userauth.MSG_USERAUTH_INFO_REQUEST, (NS('') + NS('') + NS('') + '\x00\x00\x00\x02' + NS('Name: ') + '\x01' + NS('Password: ') + '\x00'))) return d.addCallback(check).addCallback(self._checkFailed) def test_invalid_USERAUTH_INFO_RESPONSE_not_enough_data(self): """ If ssh_USERAUTH_INFO_RESPONSE gets an invalid packet, the user authentication should fail. """ packet = (NS('foo') + NS('none') + NS('keyboard-interactive') + NS('') + NS('')) d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.ssh_USERAUTH_INFO_RESPONSE(NS('\x00\x00\x00\x00' + NS('hi'))) return d.addCallback(self._checkFailed) def test_invalid_USERAUTH_INFO_RESPONSE_too_much_data(self): """ If ssh_USERAUTH_INFO_RESPONSE gets too much data, the user authentication should fail. """ packet = (NS('foo') + NS('none') + NS('keyboard-interactive') + NS('') + NS('')) response = '\x00\x00\x00\x02' + NS('foo') + NS('foo') + NS('foo') d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.ssh_USERAUTH_INFO_RESPONSE(response) return d.addCallback(self._checkFailed) def test_onlyOnePAMAuthentication(self): """ Because it requires an intermediate message, one can't send a second keyboard-interactive request while the first is still pending. """ packet = (NS('foo') + NS('none') + NS('keyboard-interactive') + NS('') + NS('')) self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.ssh_USERAUTH_REQUEST(packet) self.assertEqual(self.authServer.transport.packets[-1][0], transport.MSG_DISCONNECT) self.assertEqual(self.authServer.transport.packets[-1][1][3], chr(transport.DISCONNECT_PROTOCOL_ERROR)) def test_ignoreUnknownCredInterfaces(self): """ L{SSHUserAuthServer} sets up C{SSHUserAuthServer.supportedAuthentications} by checking the portal's credentials interfaces and mapping them to SSH authentication method strings. If the Portal advertises an interface that L{SSHUserAuthServer} can't map, it should be ignored. This is a white box test. """ server = userauth.SSHUserAuthServer() server.transport = FakeTransport(self.portal) self.portal.registerChecker(AnonymousChecker()) server.serviceStarted() server.serviceStopped() server.supportedAuthentications.sort() # give a consistent order self.assertEqual(server.supportedAuthentications, ['keyboard-interactive', 'password', 'publickey']) def test_removePasswordIfUnencrypted(self): """ Test that the userauth service does not advertise password authentication if the password would be send in cleartext. """ self.assertIn('password', self.authServer.supportedAuthentications) # no encryption clearAuthServer = userauth.SSHUserAuthServer() clearAuthServer.transport = FakeTransport(self.portal) clearAuthServer.transport.isEncrypted = lambda x: False clearAuthServer.serviceStarted() clearAuthServer.serviceStopped() self.assertNotIn('password', clearAuthServer.supportedAuthentications) # only encrypt incoming (the direction the password is sent) halfAuthServer = userauth.SSHUserAuthServer() halfAuthServer.transport = FakeTransport(self.portal) halfAuthServer.transport.isEncrypted = lambda x: x == 'in' halfAuthServer.serviceStarted() halfAuthServer.serviceStopped() self.assertIn('password', halfAuthServer.supportedAuthentications) def test_removeKeyboardInteractiveIfUnencrypted(self): """ Test that the userauth service does not advertise keyboard-interactive authentication if the password would be send in cleartext. """ self.assertIn('keyboard-interactive', self.authServer.supportedAuthentications) # no encryption clearAuthServer = userauth.SSHUserAuthServer() clearAuthServer.transport = FakeTransport(self.portal) clearAuthServer.transport.isEncrypted = lambda x: False clearAuthServer.serviceStarted() clearAuthServer.serviceStopped() self.assertNotIn( 'keyboard-interactive', clearAuthServer.supportedAuthentications) # only encrypt incoming (the direction the password is sent) halfAuthServer = userauth.SSHUserAuthServer() halfAuthServer.transport = FakeTransport(self.portal) halfAuthServer.transport.isEncrypted = lambda x: x == 'in' halfAuthServer.serviceStarted() halfAuthServer.serviceStopped() self.assertIn('keyboard-interactive', halfAuthServer.supportedAuthentications) def test_unencryptedConnectionWithoutPasswords(self): """ If the L{SSHUserAuthServer} is not advertising passwords, then an unencrypted connection should not cause any warnings or exceptions. This is a white box test. """ # create a Portal without password authentication portal = Portal(self.realm) portal.registerChecker(PrivateKeyChecker()) # no encryption clearAuthServer = userauth.SSHUserAuthServer() clearAuthServer.transport = FakeTransport(portal) clearAuthServer.transport.isEncrypted = lambda x: False clearAuthServer.serviceStarted() clearAuthServer.serviceStopped() self.assertEqual(clearAuthServer.supportedAuthentications, ['publickey']) # only encrypt incoming (the direction the password is sent) halfAuthServer = userauth.SSHUserAuthServer() halfAuthServer.transport = FakeTransport(portal) halfAuthServer.transport.isEncrypted = lambda x: x == 'in' halfAuthServer.serviceStarted() halfAuthServer.serviceStopped() self.assertEqual(clearAuthServer.supportedAuthentications, ['publickey']) def test_loginTimeout(self): """ Test that the login times out. """ timeoutAuthServer = userauth.SSHUserAuthServer() timeoutAuthServer.clock = task.Clock() timeoutAuthServer.transport = FakeTransport(self.portal) timeoutAuthServer.serviceStarted() timeoutAuthServer.clock.advance(11 * 60 * 60) timeoutAuthServer.serviceStopped() self.assertEqual(timeoutAuthServer.transport.packets, [(transport.MSG_DISCONNECT, '\x00' * 3 + chr(transport.DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE) + NS("you took too long") + NS(''))]) self.assertTrue(timeoutAuthServer.transport.lostConnection) def test_cancelLoginTimeout(self): """ Test that stopping the service also stops the login timeout. """ timeoutAuthServer = userauth.SSHUserAuthServer() timeoutAuthServer.clock = task.Clock() timeoutAuthServer.transport = FakeTransport(self.portal) timeoutAuthServer.serviceStarted() timeoutAuthServer.serviceStopped() timeoutAuthServer.clock.advance(11 * 60 * 60) self.assertEqual(timeoutAuthServer.transport.packets, []) self.assertFalse(timeoutAuthServer.transport.lostConnection) def test_tooManyAttempts(self): """ Test that the server disconnects if the client fails authentication too many times. """ packet = NS('foo') + NS('none') + NS('password') + chr(0) + NS('bar') self.authServer.clock = task.Clock() for i in range(21): d = self.authServer.ssh_USERAUTH_REQUEST(packet) self.authServer.clock.advance(2) def check(ignored): self.assertEqual(self.authServer.transport.packets[-1], (transport.MSG_DISCONNECT, '\x00' * 3 + chr(transport.DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE) + NS("too many bad auths") + NS(''))) return d.addCallback(check) def test_failIfUnknownService(self): """ If the user requests a service that we don't support, the authentication should fail. """ packet = NS('foo') + NS('') + NS('password') + chr(0) + NS('foo') self.authServer.clock = task.Clock() d = self.authServer.ssh_USERAUTH_REQUEST(packet) return d.addCallback(self._checkFailed) def test__pamConvErrors(self): """ _pamConv should fail if it gets a message that's not 1 or 2. """ def secondTest(ignored): d2 = self.authServer._pamConv([('', 90)]) return self.assertFailure(d2, ConchError) d = self.authServer._pamConv([('', 3)]) return self.assertFailure(d, ConchError).addCallback(secondTest) def test_tryAuthEdgeCases(self): """ tryAuth() has two edge cases that are difficult to reach. 1) an authentication method auth_* returns None instead of a Deferred. 2) an authentication type that is defined does not have a matching auth_* method. Both these cases should return a Deferred which fails with a ConchError. """ def mockAuth(packet): return None self.patch(self.authServer, 'auth_publickey', mockAuth) # first case self.patch(self.authServer, 'auth_password', None) # second case def secondTest(ignored): d2 = self.authServer.tryAuth('password', None, None) return self.assertFailure(d2, ConchError) d1 = self.authServer.tryAuth('publickey', None, None) return self.assertFailure(d1, ConchError).addCallback(secondTest) class SSHUserAuthClientTestCase(unittest.TestCase): """ Tests for SSHUserAuthClient. """ if keys is None: skip = "cannot run w/o PyCrypto" def setUp(self): self.authClient = ClientUserAuth('foo', FakeTransport.Service()) self.authClient.transport = FakeTransport(None) self.authClient.transport.sessionID = 'test' self.authClient.serviceStarted() def tearDown(self): self.authClient.serviceStopped() self.authClient = None def test_init(self): """ Test that client is initialized properly. """ self.assertEqual(self.authClient.user, 'foo') self.assertEqual(self.authClient.instance.name, 'nancy') self.assertEqual(self.authClient.transport.packets, [(userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('none'))]) def test_USERAUTH_SUCCESS(self): """ Test that the client succeeds properly. """ instance = [None] def stubSetService(service): instance[0] = service self.authClient.transport.setService = stubSetService self.authClient.ssh_USERAUTH_SUCCESS('') self.assertEqual(instance[0], self.authClient.instance) def test_publickey(self): """ Test that the client can authenticate with a public key. """ self.authClient.ssh_USERAUTH_FAILURE(NS('publickey') + '\x00') self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('publickey') + '\x00' + NS('ssh-dss') + NS(keys.Key.fromString( keydata.publicDSA_openssh).blob()))) # that key isn't good self.authClient.ssh_USERAUTH_FAILURE(NS('publickey') + '\x00') blob = NS(keys.Key.fromString(keydata.publicRSA_openssh).blob()) self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, (NS('foo') + NS('nancy') + NS('publickey') + '\x00'+ NS('ssh-rsa') + blob))) self.authClient.ssh_USERAUTH_PK_OK(NS('ssh-rsa') + NS(keys.Key.fromString(keydata.publicRSA_openssh).blob())) sigData = (NS(self.authClient.transport.sessionID) + chr(userauth.MSG_USERAUTH_REQUEST) + NS('foo') + NS('nancy') + NS('publickey') + '\x01' + NS('ssh-rsa') + blob) obj = keys.Key.fromString(keydata.privateRSA_openssh) self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('publickey') + '\x01' + NS('ssh-rsa') + blob + NS(obj.sign(sigData)))) def test_publickey_without_privatekey(self): """ If the SSHUserAuthClient doesn't return anything from signData, the client should start the authentication over again by requesting 'none' authentication. """ authClient = ClientAuthWithoutPrivateKey('foo', FakeTransport.Service()) authClient.transport = FakeTransport(None) authClient.transport.sessionID = 'test' authClient.serviceStarted() authClient.tryAuth('publickey') authClient.transport.packets = [] self.assertIs(authClient.ssh_USERAUTH_PK_OK(''), None) self.assertEqual(authClient.transport.packets, [ (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('none'))]) def test_old_publickey_getPublicKey(self): """ Old SSHUserAuthClients returned strings of public key blobs from getPublicKey(). Test that a Deprecation warning is raised but the key is verified correctly. """ oldAuth = OldClientAuth('foo', FakeTransport.Service()) oldAuth.transport = FakeTransport(None) oldAuth.transport.sessionID = 'test' oldAuth.serviceStarted() oldAuth.transport.packets = [] self.assertWarns(DeprecationWarning, "Returning a string from " "SSHUserAuthClient.getPublicKey() is deprecated since " "Twisted 9.0. Return a keys.Key() instead.", userauth.__file__, oldAuth.tryAuth, 'publickey') self.assertEqual(oldAuth.transport.packets, [ (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('publickey') + '\x00' + NS('ssh-rsa') + NS(keys.Key.fromString(keydata.publicRSA_openssh).blob()))]) def test_old_publickey_getPrivateKey(self): """ Old SSHUserAuthClients returned a PyCrypto key object from getPrivateKey(). Test that _cbSignData signs the data warns the user about the deprecation, but signs the data correctly. """ oldAuth = OldClientAuth('foo', FakeTransport.Service()) d = self.assertWarns(DeprecationWarning, "Returning a PyCrypto key " "object from SSHUserAuthClient.getPrivateKey() is " "deprecated since Twisted 9.0. " "Return a keys.Key() instead.", userauth.__file__, oldAuth.signData, None, 'data') def _checkSignedData(sig): self.assertEqual(sig, keys.Key.fromString(keydata.privateRSA_openssh).sign( 'data')) d.addCallback(_checkSignedData) return d def test_no_publickey(self): """ If there's no public key, auth_publickey should return a Deferred called back with a False value. """ self.authClient.getPublicKey = lambda x: None d = self.authClient.tryAuth('publickey') def check(result): self.assertFalse(result) return d.addCallback(check) def test_password(self): """ Test that the client can authentication with a password. This includes changing the password. """ self.authClient.ssh_USERAUTH_FAILURE(NS('password') + '\x00') self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('password') + '\x00' + NS('foo'))) self.authClient.ssh_USERAUTH_PK_OK(NS('') + NS('')) self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('password') + '\xff' + NS('foo') * 2)) def test_no_password(self): """ If getPassword returns None, tryAuth should return False. """ self.authClient.getPassword = lambda: None self.assertFalse(self.authClient.tryAuth('password')) def test_keyboardInteractive(self): """ Test that the client can authenticate using keyboard-interactive authentication. """ self.authClient.ssh_USERAUTH_FAILURE(NS('keyboard-interactive') + '\x00') self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('keyboard-interactive') + NS('')*2)) self.authClient.ssh_USERAUTH_PK_OK(NS('')*3 + '\x00\x00\x00\x02' + NS('Name: ') + '\xff' + NS('Password: ') + '\x00') self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_INFO_RESPONSE, '\x00\x00\x00\x02' + NS('foo')*2)) def test_USERAUTH_PK_OK_unknown_method(self): """ If C{SSHUserAuthClient} gets a MSG_USERAUTH_PK_OK packet when it's not expecting it, it should fail the current authentication and move on to the next type. """ self.authClient.lastAuth = 'unknown' self.authClient.transport.packets = [] self.authClient.ssh_USERAUTH_PK_OK('') self.assertEqual(self.authClient.transport.packets, [(userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('none'))]) def test_USERAUTH_FAILURE_sorting(self): """ ssh_USERAUTH_FAILURE should sort the methods by their position in SSHUserAuthClient.preferredOrder. Methods that are not in preferredOrder should be sorted at the end of that list. """ def auth_firstmethod(): self.authClient.transport.sendPacket(255, 'here is data') def auth_anothermethod(): self.authClient.transport.sendPacket(254, 'other data') return True self.authClient.auth_firstmethod = auth_firstmethod self.authClient.auth_anothermethod = auth_anothermethod # although they shouldn't get called, method callbacks auth_* MUST # exist in order for the test to work properly. self.authClient.ssh_USERAUTH_FAILURE(NS('anothermethod,password') + '\x00') # should send password packet self.assertEqual(self.authClient.transport.packets[-1], (userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('password') + '\x00' + NS('foo'))) self.authClient.ssh_USERAUTH_FAILURE( NS('firstmethod,anothermethod,password') + '\xff') self.assertEqual(self.authClient.transport.packets[-2:], [(255, 'here is data'), (254, 'other data')]) def test_disconnectIfNoMoreAuthentication(self): """ If there are no more available user authentication messages, the SSHUserAuthClient should disconnect with code DISCONNECT_NO_MORE_AUTH_METHODS_AVAILABLE. """ self.authClient.ssh_USERAUTH_FAILURE(NS('password') + '\x00') self.authClient.ssh_USERAUTH_FAILURE(NS('password') + '\xff') self.assertEqual(self.authClient.transport.packets[-1], (transport.MSG_DISCONNECT, '\x00\x00\x00\x0e' + NS('no more authentication methods available') + '\x00\x00\x00\x00')) def test_ebAuth(self): """ _ebAuth (the generic authentication error handler) should send a request for the 'none' authentication method. """ self.authClient.transport.packets = [] self.authClient._ebAuth(None) self.assertEqual(self.authClient.transport.packets, [(userauth.MSG_USERAUTH_REQUEST, NS('foo') + NS('nancy') + NS('none'))]) def test_defaults(self): """ getPublicKey() should return None. getPrivateKey() should return a failed Deferred. getPassword() should return a failed Deferred. getGenericAnswers() should return a failed Deferred. """ authClient = userauth.SSHUserAuthClient('foo', FakeTransport.Service()) self.assertIs(authClient.getPublicKey(), None) def check(result): result.trap(NotImplementedError) d = authClient.getPassword() return d.addCallback(self.fail).addErrback(check2) def check2(result): result.trap(NotImplementedError) d = authClient.getGenericAnswers(None, None, None) return d.addCallback(self.fail).addErrback(check3) def check3(result): result.trap(NotImplementedError) d = authClient.getPrivateKey() return d.addCallback(self.fail).addErrback(check) class LoopbackTestCase(unittest.TestCase): if keys is None: skip = "cannot run w/o PyCrypto or PyASN1" class Factory: class Service: name = 'TestService' def serviceStarted(self): self.transport.loseConnection() def serviceStopped(self): pass def getService(self, avatar, name): return self.Service def test_loopback(self): """ Test that the userauth server and client play nicely with each other. """ server = userauth.SSHUserAuthServer() client = ClientUserAuth('foo', self.Factory.Service()) # set up transports server.transport = transport.SSHTransportBase() server.transport.service = server server.transport.isEncrypted = lambda x: True client.transport = transport.SSHTransportBase() client.transport.service = client server.transport.sessionID = client.transport.sessionID = '' # don't send key exchange packet server.transport.sendKexInit = client.transport.sendKexInit = \ lambda: None # set up server authentication server.transport.factory = self.Factory() server.passwordDelay = 0 # remove bad password delay realm = Realm() portal = Portal(realm) checker = SSHProtocolChecker() checker.registerChecker(PasswordChecker()) checker.registerChecker(PrivateKeyChecker()) checker.registerChecker(PAMChecker()) checker.areDone = lambda aId: ( len(checker.successfulCredentials[aId]) == 3) portal.registerChecker(checker) server.transport.factory.portal = portal d = loopback.loopbackAsync(server.transport, client.transport) server.transport.transport.logPrefix = lambda: '_ServerLoopback' client.transport.transport.logPrefix = lambda: '_ClientLoopback' server.serviceStarted() client.serviceStarted() def check(ignored): self.assertEqual(server.transport.service.name, 'TestService') return d.addCallback(check) class ModuleInitializationTestCase(unittest.TestCase): if keys is None: skip = "cannot run w/o PyCrypto or PyASN1" def test_messages(self): # Several message types have value 60, check that MSG_USERAUTH_PK_OK # is always the one which is mapped. self.assertEqual(userauth.SSHUserAuthServer.protocolMessages[60], 'MSG_USERAUTH_PK_OK') self.assertEqual(userauth.SSHUserAuthClient.protocolMessages[60], 'MSG_USERAUTH_PK_OK')
lgpl-3.0
-1,446,955,946,522,393,300
35.700093
81
0.61939
false
luckielordie/conan
conans/test/built_type_setting_test.py
2
2198
import unittest from conans.test.utils.tools import TestClient class BuildTypeSettingTest(unittest.TestCase): def test_build_type(self): # https://github.com/conan-io/conan/issues/2500 client = TestClient() conanfile = """from conans import ConanFile class Pkg(ConanFile): settings = "build_type" def build(self): self.output.info("BUILD TYPE: %s" % (self.settings.build_type or "Not defined")) """ test_conanfile = """from conans import ConanFile class Pkg(ConanFile): settings = "build_type" def build(self): self.output.info("BUILD TYPE: %s" % (self.settings.build_type or "Not defined")) def test(self): pass """ client.save({"conanfile.py": conanfile, "test_package/conanfile.py": test_conanfile, "myprofile": ""}) # This won't fail, as it has a build_type=None, which is allowed client.run("export . Pkg/0.1@lasote/testing") client.run("install Pkg/0.1@lasote/testing -pr=myprofile --build") self.assertEqual(1, str(client.out).count("BUILD TYPE: Not defined")) # This is an error. test_package/conanfile won't have build_type defined, more restrictive error = client.run("create . Pkg/0.1@lasote/testing -pr=myprofile", ignore_error=True) self.assertTrue(error) self.assertEqual(1, str(client.out).count("BUILD TYPE: Not defined")) self.assertIn("ConanException: 'settings.build_type' doesn't exist", client.out) client.save({"conanfile.py": conanfile, "test_package/conanfile.py": test_conanfile, "myprofile": "[settings]\nbuild_type=None"}) # This won't fail, as it has a build_type=None, which is allowed client.run("export . Pkg/0.1@lasote/testing") client.run("install Pkg/0.1@lasote/testing -pr=myprofile --build") self.assertEqual(1, str(client.out).count("BUILD TYPE: Not defined")) # This is NOT an error. build_type has a value = None client.run("create . Pkg/0.1@lasote/testing -pr=myprofile") self.assertEqual(2, str(client.out).count("BUILD TYPE: Not defined"))
mit
3,625,856,705,286,749,000
42.96
98
0.636033
false
GreenleafLab/NucleoATAC
nucleoatac/run_occ.py
1
5567
""" Script to make nucleosome occupancy track! @author: Alicia Schep """ ##### IMPORT MODULES ##### # import necessary python modules #import matplotlib as mpl #mpl.use('PS') import matplotlib.pyplot as plt import multiprocessing as mp import numpy as np import traceback import itertools import pysam from pyatac.utils import shell_command,read_chrom_sizes_from_bam, read_chrom_sizes_from_fasta from pyatac.chunk import ChunkList from nucleoatac.Occupancy import FragmentMixDistribution, OccupancyParameters, OccChunk from pyatac.fragmentsizes import FragmentSizes from pyatac.bias import PWM def _occHelper(arg): """function to get occupancy for a set of bed regions """ (chunk, params) = arg try: occ = OccChunk(chunk) occ.process(params) out = (occ.getNucDist(), occ.occ, [occ.peaks[i] for i in sorted(occ.peaks.keys())]) occ.removeData() except Exception as e: print('Caught exception when processing:\n'+ chunk.asBed()+"\n") traceback.print_exc() print() raise e return out def _writeOcc(track_queue, out): out_handle1 = open(out + '.occ.bedgraph','a') out_handle2 = open(out + '.occ.lower_bound.bedgraph','a') out_handle3 = open(out + '.occ.upper_bound.bedgraph','a') try: for track in iter(track_queue.get, 'STOP'): track.write_track(out_handle1, vals = track.smoothed_vals) track.write_track(out_handle2, vals = track.smoothed_lower) track.write_track(out_handle3, vals = track.smoothed_upper) track_queue.task_done() except Exception, e: print('Caught exception when writing occupancy track\n') traceback.print_exc() print() raise e out_handle1.close() out_handle2.close() out_handle3.close() return True def _writePeaks(pos_queue, out): out_handle = open(out + '.occpeaks.bed','a') try: for poslist in iter(pos_queue.get, 'STOP'): for pos in poslist: pos.write(out_handle) pos_queue.task_done() except Exception, e: print('Caught exception when writing occupancy track\n') traceback.print_exc() print() raise e out_handle.close() return True def run_occ(args): """run occupancy calling """ if args.fasta: chrs = read_chrom_sizes_from_fasta(args.fasta) else: chrs = read_chrom_sizes_from_bam(args.bam) pwm = PWM.open(args.pwm) chunks = ChunkList.read(args.bed, chromDict = chrs, min_offset = args.flank + args.upper/2 + max(pwm.up,pwm.down) + args.nuc_sep/2) chunks.slop(chrs, up = args.nuc_sep/2, down = args.nuc_sep/2) chunks.merge() maxQueueSize = args.cores*10 fragment_dist = FragmentMixDistribution(0, upper = args.upper) if args.sizes is not None: tmp = FragmentSizes.open(args.sizes) fragment_dist.fragmentsizes = FragmentSizes(0, args.upper, vals = tmp.get(0,args.upper)) else: fragment_dist.getFragmentSizes(args.bam, chunks) fragment_dist.modelNFR() fragment_dist.plotFits(args.out + '.occ_fit.eps') fragment_dist.fragmentsizes.save(args.out + '.fragmentsizes.txt') params = OccupancyParameters(fragment_dist, args.upper, args.fasta, args.pwm, sep = args.nuc_sep, min_occ = args.min_occ, flank = args.flank, bam = args.bam, ci = args.confidence_interval, step = args.step) sets = chunks.split(items = args.cores * 5) pool1 = mp.Pool(processes = max(1,args.cores-1)) out_handle1 = open(args.out + '.occ.bedgraph','w') out_handle1.close() out_handle2 = open(args.out + '.occ.lower_bound.bedgraph','w') out_handle2.close() out_handle3 = open(args.out + '.occ.upper_bound.bedgraph','w') out_handle3.close() write_queue = mp.JoinableQueue(maxsize = maxQueueSize) write_process = mp.Process(target = _writeOcc, args=(write_queue, args.out)) write_process.start() peaks_handle = open(args.out + '.occpeaks.bed','w') peaks_handle.close() peaks_queue = mp.JoinableQueue() peaks_process = mp.Process(target = _writePeaks, args=(peaks_queue, args.out)) peaks_process.start() nuc_dist = np.zeros(args.upper) for j in sets: tmp = pool1.map(_occHelper, zip(j,itertools.repeat(params))) for result in tmp: nuc_dist += result[0] write_queue.put(result[1]) peaks_queue.put(result[2]) pool1.close() pool1.join() write_queue.put('STOP') peaks_queue.put('STOP') write_process.join() peaks_process.join() pysam.tabix_compress(args.out + '.occpeaks.bed', args.out + '.occpeaks.bed.gz',force = True) shell_command('rm ' + args.out + '.occpeaks.bed') pysam.tabix_index(args.out + '.occpeaks.bed.gz', preset = "bed", force = True) for i in ('occ','occ.lower_bound','occ.upper_bound'): pysam.tabix_compress(args.out + '.' + i + '.bedgraph', args.out + '.'+i+'.bedgraph.gz',force = True) shell_command('rm ' + args.out + '.' + i + '.bedgraph') pysam.tabix_index(args.out + '.' + i + '.bedgraph.gz', preset = "bed", force = True) dist_out = FragmentSizes(0, args.upper, vals = nuc_dist) dist_out.save(args.out + '.nuc_dist.txt') print "Making figure" #make figure fig = plt.figure() plt.plot(range(0,args.upper),dist_out.get(0,args.upper),label = "Nucleosome Distribution") plt.xlabel("Fragment Size") plt.ylabel("Frequency") fig.savefig(args.out+'.nuc_dist.eps') plt.close(fig)
mit
-1,796,655,134,098,109,200
34.012579
135
0.637866
false
vipul-sharma20/oh-mainline
vendor/packages/twisted/twisted/web/google.py
20
2091
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. # """\"I'm Feeling Lucky\" with U{Google<http://google.com>}. """ import urllib from twisted.internet import protocol, reactor, defer from twisted.web import http class GoogleChecker(http.HTTPClient): def connectionMade(self): self.sendCommand('GET', self.factory.url) self.sendHeader('Host', self.factory.host) self.sendHeader('User-Agent', self.factory.agent) self.endHeaders() def handleHeader(self, key, value): key = key.lower() if key == 'location': self.factory.gotLocation(value) def handleStatus(self, version, status, message): if status != '302': self.factory.noLocation(ValueError("bad status")) def handleEndHeaders(self): self.factory.noLocation(ValueError("no location")) def handleResponsePart(self, part): pass def handleResponseEnd(self): pass def connectionLost(self, reason): self.factory.noLocation(reason) class GoogleCheckerFactory(protocol.ClientFactory): protocol = GoogleChecker def __init__(self, words): self.url = ('/search?q=%s&btnI=%s' % (urllib.quote_plus(' '.join(words)), urllib.quote_plus("I'm Feeling Lucky"))) self.agent="Twisted/GoogleChecker" self.host = "www.google.com" self.deferred = defer.Deferred() def clientConnectionFailed(self, _, reason): self.noLocation(reason) def gotLocation(self, location): if self.deferred: self.deferred.callback(location) self.deferred = None def noLocation(self, error): if self.deferred: self.deferred.errback(error) self.deferred = None def checkGoogle(words): """Check google for a match. @returns: a Deferred which will callback with a URL or errback with a Failure. """ factory = GoogleCheckerFactory(words) reactor.connectTCP('www.google.com', 80, factory) return factory.deferred
agpl-3.0
-3,836,474,049,388,754,400
26.88
73
0.635581
false
iLoop2/ResInsight
ThirdParty/Ert/devel/python/python/ert/test/ert_test_runner.py
1
1860
import os try: from unittest2 import TestLoader, TextTestRunner except ImportError: from unittest import TestLoader, TextTestRunner class ErtTestRunner(object): @staticmethod def runTestSuite(tests , test_verbosity = 3): test_runner = TextTestRunner(verbosity=test_verbosity) result = test_runner.run(tests) return result.wasSuccessful() @staticmethod def findTestsInDirectory(path, recursive=True , pattern = "test*.py"): loader = TestLoader() test_suite = loader.discover(path , pattern = pattern) for (root, dirnames, filenames) in os.walk( path ): for directory in dirnames: test_suite.addTests(ErtTestRunner.findTestsInDirectory(os.path.join(root, directory), recursive , pattern)) return test_suite @staticmethod def runTestsInDirectory(path=".", recursive=True, test_verbosity=3): test_suite = ErtTestRunner.findTestsInDirectory(path, recursive) return ErtTestRunner.runTestSuite(test_suite) @staticmethod def runTestsInClass(classpath, test_verbosity=3): klass = ErtTestRunner.importClass(classpath) loader = TestLoader() tests = loader.loadTestsFromTestCase(klass) testRunner = TextTestRunner(verbosity=test_verbosity) testRunner.run(tests) @staticmethod def importClass(classpath): dot = classpath.rfind(".") class_name = classpath[dot + 1:len(classpath)] m = __import__(classpath[0:dot], globals(), locals(), [class_name]) return getattr(m, class_name) @staticmethod def getTestsFromTestClass(test_class_path, argv=None): klass = ErtTestRunner.importClass(test_class_path) klass.argv = argv loader = TestLoader() return loader.loadTestsFromTestCase(klass)
gpl-3.0
3,933,060,547,694,078,000
30.525424
123
0.67043
false
harmy/kbengine
kbe/res/scripts/common/Lib/wsgiref/util.py
3
5760
"""Miscellaneous WSGI-related Utilities""" import posixpath __all__ = [ 'FileWrapper', 'guess_scheme', 'application_uri', 'request_uri', 'shift_path_info', 'setup_testing_defaults', ] class FileWrapper: """Wrapper to convert file-like objects to iterables""" def __init__(self, filelike, blksize=8192): self.filelike = filelike self.blksize = blksize if hasattr(filelike,'close'): self.close = filelike.close def __getitem__(self,key): data = self.filelike.read(self.blksize) if data: return data raise IndexError def __iter__(self): return self def __next__(self): data = self.filelike.read(self.blksize) if data: return data raise StopIteration def guess_scheme(environ): """Return a guess for whether 'wsgi.url_scheme' should be 'http' or 'https' """ if environ.get("HTTPS") in ('yes','on','1'): return 'https' else: return 'http' def application_uri(environ): """Return the application's base URI (no PATH_INFO or QUERY_STRING)""" url = environ['wsgi.url_scheme']+'://' from urllib.parse import quote if environ.get('HTTP_HOST'): url += environ['HTTP_HOST'] else: url += environ['SERVER_NAME'] if environ['wsgi.url_scheme'] == 'https': if environ['SERVER_PORT'] != '443': url += ':' + environ['SERVER_PORT'] else: if environ['SERVER_PORT'] != '80': url += ':' + environ['SERVER_PORT'] url += quote(environ.get('SCRIPT_NAME') or '/') return url def request_uri(environ, include_query=True): """Return the full request URI, optionally including the query string""" url = application_uri(environ) from urllib.parse import quote path_info = quote(environ.get('PATH_INFO',''),safe='/;=,') if not environ.get('SCRIPT_NAME'): url += path_info[1:] else: url += path_info if include_query and environ.get('QUERY_STRING'): url += '?' + environ['QUERY_STRING'] return url def shift_path_info(environ): """Shift a name from PATH_INFO to SCRIPT_NAME, returning it If there are no remaining path segments in PATH_INFO, return None. Note: 'environ' is modified in-place; use a copy if you need to keep the original PATH_INFO or SCRIPT_NAME. Note: when PATH_INFO is just a '/', this returns '' and appends a trailing '/' to SCRIPT_NAME, even though empty path segments are normally ignored, and SCRIPT_NAME doesn't normally end in a '/'. This is intentional behavior, to ensure that an application can tell the difference between '/x' and '/x/' when traversing to objects. """ path_info = environ.get('PATH_INFO','') if not path_info: return None path_parts = path_info.split('/') path_parts[1:-1] = [p for p in path_parts[1:-1] if p and p != '.'] name = path_parts[1] del path_parts[1] script_name = environ.get('SCRIPT_NAME','') script_name = posixpath.normpath(script_name+'/'+name) if script_name.endswith('/'): script_name = script_name[:-1] if not name and not script_name.endswith('/'): script_name += '/' environ['SCRIPT_NAME'] = script_name environ['PATH_INFO'] = '/'.join(path_parts) # Special case: '/.' on PATH_INFO doesn't get stripped, # because we don't strip the last element of PATH_INFO # if there's only one path part left. Instead of fixing this # above, we fix it here so that PATH_INFO gets normalized to # an empty string in the environ. if name=='.': name = None return name def setup_testing_defaults(environ): """Update 'environ' with trivial defaults for testing purposes This adds various parameters required for WSGI, including HTTP_HOST, SERVER_NAME, SERVER_PORT, REQUEST_METHOD, SCRIPT_NAME, PATH_INFO, and all of the wsgi.* variables. It only supplies default values, and does not replace any existing settings for these variables. This routine is intended to make it easier for unit tests of WSGI servers and applications to set up dummy environments. It should *not* be used by actual WSGI servers or applications, since the data is fake! """ environ.setdefault('SERVER_NAME','127.0.0.1') environ.setdefault('SERVER_PROTOCOL','HTTP/1.0') environ.setdefault('HTTP_HOST',environ['SERVER_NAME']) environ.setdefault('REQUEST_METHOD','GET') if 'SCRIPT_NAME' not in environ and 'PATH_INFO' not in environ: environ.setdefault('SCRIPT_NAME','') environ.setdefault('PATH_INFO','/') environ.setdefault('wsgi.version', (1,0)) environ.setdefault('wsgi.run_once', 0) environ.setdefault('wsgi.multithread', 0) environ.setdefault('wsgi.multiprocess', 0) from io import StringIO, BytesIO environ.setdefault('wsgi.input', BytesIO()) environ.setdefault('wsgi.errors', StringIO()) environ.setdefault('wsgi.url_scheme',guess_scheme(environ)) if environ['wsgi.url_scheme']=='http': environ.setdefault('SERVER_PORT', '80') elif environ['wsgi.url_scheme']=='https': environ.setdefault('SERVER_PORT', '443') _hoppish = { 'connection':1, 'keep-alive':1, 'proxy-authenticate':1, 'proxy-authorization':1, 'te':1, 'trailers':1, 'transfer-encoding':1, 'upgrade':1 }.__contains__ def is_hop_by_hop(header_name): """Return true if 'header_name' is an HTTP/1.1 "Hop-by-Hop" header""" return _hoppish(header_name.lower())
lgpl-3.0
-2,503,851,634,378,656,300
32.909091
79
0.615625
false
border/vnpy
vn.trader/windGateway/windGateway.py
16
6658
# encoding: UTF-8 ''' Wind Python API的gateway接入 ''' from copy import copy try: from WindPy import w except ImportError: print u'请先安装WindPy接口' from vtGateway import * # 交易所类型映射 exchangeMap = {} exchangeMap[EXCHANGE_SSE] = 'SH' exchangeMap[EXCHANGE_SZSE] = 'SZ' exchangeMap[EXCHANGE_CFFEX] = 'CFE' exchangeMap[EXCHANGE_SHFE] = 'SHF' exchangeMap[EXCHANGE_DCE] = 'DCE' exchangeMap[EXCHANGE_CZCE] = 'CZC' exchangeMap[EXCHANGE_UNKNOWN] = '' exchangeMapReverse = {v:k for k,v in exchangeMap.items()} ######################################################################## class WindGateway(VtGateway): """Wind接口""" # 订阅wsq时传入的字段列表 wsqParamMap = {} wsqParamMap['rt_last'] = 'lastPrice' wsqParamMap['rt_last_vol'] = 'volume' wsqParamMap['rt_oi'] = 'openInterest' wsqParamMap['rt_open'] = 'openPrice' wsqParamMap['rt_high'] = 'highPrice' wsqParamMap['rt_low'] = 'lowPrice' wsqParamMap['rt_pre_close'] = 'preClosePrice' wsqParamMap['rt_high_limit'] = 'upperLimit' wsqParamMap['rt_low_limit'] = 'lowerLimit' wsqParamMap['rt_bid1'] = 'bidPrice1' wsqParamMap['rt_bid2'] = 'bidPrice2' wsqParamMap['rt_bid3'] = 'bidPrice3' wsqParamMap['rt_bid4'] = 'bidPrice4' wsqParamMap['rt_bid5'] = 'bidPrice5' wsqParamMap['rt_ask1'] = 'askPrice1' wsqParamMap['rt_ask2'] = 'askPrice2' wsqParamMap['rt_ask3'] = 'askPrice3' wsqParamMap['rt_ask4'] = 'askPrice4' wsqParamMap['rt_ask5'] = 'askPrice5' wsqParamMap['rt_bsize1'] = 'bidVolume1' wsqParamMap['rt_bsize2'] = 'bidVolume2' wsqParamMap['rt_bsize3'] = 'bidVolume3' wsqParamMap['rt_bsize4'] = 'bidVolume4' wsqParamMap['rt_bsize5'] = 'bidVolume5' wsqParamMap['rt_asize1'] = 'askVolume1' wsqParamMap['rt_asize2'] = 'askVolume2' wsqParamMap['rt_asize3'] = 'askVolume3' wsqParamMap['rt_asize4'] = 'askVolume4' wsqParamMap['rt_asize5'] = 'askVolume5' wsqParam = ','.join(wsqParamMap.keys()) #---------------------------------------------------------------------- def __init__(self, eventEngine, gatewayName='Wind'): """Constructor""" super(WindGateway, self).__init__(eventEngine, gatewayName) self.w = w # Wind API对象 self.connected = False # 连接状态 # Wind的wsq更新采用的是增量更新模式,每次推送只会更新发生变化的字段 # 而vt中的tick是完整更新,因此需要本地维护一个所有字段的快照 self.tickDict = {} self.registerEvent() #---------------------------------------------------------------------- def connect(self): """连接""" # 由于w.start方法会阻塞较长时间 # 因此设计为异步模式,交给事件处理线程去处理 # 另外w.start和WingIDE的debug模块有冲突,会导致异常退出 event = Event(type_=EVENT_WIND_CONNECTREQ) self.eventEngine.put(event) #---------------------------------------------------------------------- def subscribe(self, subscribeReq): """订阅行情""" windSymbol = '.'.join([subscribeReq.symbol, exchangeMap[subscribeReq.exchange]]) data = self.w.wsq(windSymbol, self.wsqParam, func=self.wsqCallBack) #---------------------------------------------------------------------- def sendOrder(self, orderReq): """发单""" log = VtLogData() log.gatewayName = self.gatewayName log.logContent = u'Wind接口未实现发单功能' self.onLog(log) #---------------------------------------------------------------------- def cancelOrder(self, cancelOrderReq): """撤单""" log = VtLogData() log.gatewayName = self.gatewayName log.logContent = u'Wind接口未实现撤单功能' self.onLog(log) #---------------------------------------------------------------------- def getAccount(self): """查询账户资金""" log = VtLogData() log.gatewayName = self.gatewayName log.logContent = u'Wind接口未实现查询账户功能' self.onLog(log) #---------------------------------------------------------------------- def getPosition(self): """查询持仓""" log = VtLogData() log.gatewayName = self.gatewayName log.logContent = u'Wind接口未实现查询持仓功能' self.onLog(log) #---------------------------------------------------------------------- def close(self): self.w.stop() #---------------------------------------------------------------------- def registerEvent(self): """注册事件监听""" self.eventEngine.register(EVENT_WIND_CONNECTREQ, self.wConnect) #---------------------------------------------------------------------- def wsqCallBack(self, data): """收到wsq推送""" windSymbol = data.Codes[0] if windSymbol in self.tickDict: tick = self.tickDict[windSymbol] else: tick = VtTickData() tick.gatewayName = self.gatewayName symbolSplit = windSymbol.split('.') tick.symbol = symbolSplit[0] tick.exchange = exchangeMapReverse[symbolSplit[1]] tick.vtSymbol = '.'.join([tick.symbol, tick.exchange]) self.tickDict[windSymbol] = tick dt = data.Times[0] tick.time = dt.strftime('%H:%M:%S') tick.date = dt.strftime('%Y%m%d') # 采用遍历的形式读取数值 fields = data.Fields values = data.Data d = tick.__dict__ for n, field in enumerate(fields): field = field.lower() key = self.wsqParamMap[field] value = values[n][0] d[key] = value newtick = copy(tick) self.onTick(newtick) #---------------------------------------------------------------------- def wConnect(self, event): """利用事件处理线程去异步连接Wind接口""" result = self.w.start() log = VtLogData() log.gatewayName = self.gatewayName if not result.ErrorCode: log.logContent = u'Wind接口连接成功' else: log.logContent = u'Wind接口连接失败,错误代码%d' %result.ErrorCode self.onLog(log)
mit
6,544,425,153,080,652,000
32.281081
88
0.491066
false
biospi/seamass-windeps
src/boost_1_57_0/libs/python/test/test_cltree.py
46
1072
# Copyright David Abrahams 2004. Distributed under the Boost # Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) #!/usr/bin/env python from cltree import basic,symbol,constant,variable b = basic() c = constant() s = symbol() v = variable() assert isinstance(b,basic) assert not isinstance(b,symbol) assert not isinstance(b,constant) assert not isinstance(b,variable) assert isinstance(c,basic) assert isinstance(c,constant) assert not isinstance(c,symbol) assert not isinstance(c,variable) assert not isinstance(s,basic) assert isinstance(s,symbol) assert not isinstance(s,constant) assert not isinstance(s,variable) assert isinstance(v,basic) assert not isinstance(v,symbol) assert not isinstance(v,constant) assert isinstance(v,variable) print 'b=',b assert repr(b)=='cltree.basic()' print 's=',s assert repr(s)!='cltree.wrapped_symbol()' # because not isinstance(s,basic) print 'c=',c assert repr(c)=='cltree.constant()' print 'v=',v assert repr(v)=='cltree.wrapped_variable()' print 'ok'
apache-2.0
-1,727,333,699,628,102,400
23.930233
75
0.754664
false
sclamons/murraylab_tools
murraylab_tools/tests/echo_tests/test_destinationplate.py
1
1684
import os import pytest import numpy as np import murraylab_tools.echo as mt_echo @pytest.fixture() def test_dir(): return os.path.join(os.path.dirname(os.path.realpath(__file__)), "data") def gen_plate(): fname = 'dplate.dat' if os.path.exists(fname): os.rm(fname) dplate = mt_echo.DestinationPlate(filename=fname) return dplate @pytest.fixture(scope="session") def unused_plate(): return gen_plate() @pytest.fixture(scope="session") def used_plate(): dplate = gen_plate() dplate.request_wells(10) return dplate def test_request_wells(unused_plate): wells = unused_plate.request_wells(5) assert np.all(wells == np.array(['A01', 'A02', 'A03', 'A04', 'A05'])) def test_request_wells_from_used_plate(used_plate): wells = used_plate.request_wells(5) assert np.all(wells == np.array(['A11', 'A12', 'A13', 'A14', 'A15'])) def test_request_too_many_wells(unused_plate): with pytest.raises(Exception): wells = unused_plate.request_wells(500) # def test_make_simple_picklist(test_dir): # # TODO Expand on assertions # dplate = mt_echo.DestinationPlate() # splate = mt_echo.SourcePlate() # splate.load_well_definitions(os.path.join(test_dir, # 'test_def_good_column_names.csv')) # rxns = [ # [ # ['chem', 5, 10], # ['h2o', 5] # ], # [ # ['chem', 5, 100], # ['h2o', 5] # ] # ] # picklist, _ = dplate.make_picklist(splate, rxns) # assert picklist[0][0] == 'A3' # assert picklist[2][0] == 'A5'
mit
2,820,130,651,303,012,400
27.542373
76
0.564133
false
bruderstein/PythonScript
PythonLib/min/selectors.py
16
19536
"""Selectors module. This module allows high-level and efficient I/O multiplexing, built upon the `select` module primitives. """ from abc import ABCMeta, abstractmethod from collections import namedtuple from collections.abc import Mapping import math import select import sys # generic events, that must be mapped to implementation-specific ones EVENT_READ = (1 << 0) EVENT_WRITE = (1 << 1) def _fileobj_to_fd(fileobj): """Return a file descriptor from a file object. Parameters: fileobj -- file object or file descriptor Returns: corresponding file descriptor Raises: ValueError if the object is invalid """ if isinstance(fileobj, int): fd = fileobj else: try: fd = int(fileobj.fileno()) except (AttributeError, TypeError, ValueError): raise ValueError("Invalid file object: " "{!r}".format(fileobj)) from None if fd < 0: raise ValueError("Invalid file descriptor: {}".format(fd)) return fd SelectorKey = namedtuple('SelectorKey', ['fileobj', 'fd', 'events', 'data']) SelectorKey.__doc__ = """SelectorKey(fileobj, fd, events, data) Object used to associate a file object to its backing file descriptor, selected event mask, and attached data. """ if sys.version_info >= (3, 5): SelectorKey.fileobj.__doc__ = 'File object registered.' SelectorKey.fd.__doc__ = 'Underlying file descriptor.' SelectorKey.events.__doc__ = 'Events that must be waited for on this file object.' SelectorKey.data.__doc__ = ('''Optional opaque data associated to this file object. For example, this could be used to store a per-client session ID.''') class _SelectorMapping(Mapping): """Mapping of file objects to selector keys.""" def __init__(self, selector): self._selector = selector def __len__(self): return len(self._selector._fd_to_key) def __getitem__(self, fileobj): try: fd = self._selector._fileobj_lookup(fileobj) return self._selector._fd_to_key[fd] except KeyError: raise KeyError("{!r} is not registered".format(fileobj)) from None def __iter__(self): return iter(self._selector._fd_to_key) class BaseSelector(metaclass=ABCMeta): """Selector abstract base class. A selector supports registering file objects to be monitored for specific I/O events. A file object is a file descriptor or any object with a `fileno()` method. An arbitrary object can be attached to the file object, which can be used for example to store context information, a callback, etc. A selector can use various implementations (select(), poll(), epoll()...) depending on the platform. The default `Selector` class uses the most efficient implementation on the current platform. """ @abstractmethod def register(self, fileobj, events, data=None): """Register a file object. Parameters: fileobj -- file object or file descriptor events -- events to monitor (bitwise mask of EVENT_READ|EVENT_WRITE) data -- attached data Returns: SelectorKey instance Raises: ValueError if events is invalid KeyError if fileobj is already registered OSError if fileobj is closed or otherwise is unacceptable to the underlying system call (if a system call is made) Note: OSError may or may not be raised """ raise NotImplementedError @abstractmethod def unregister(self, fileobj): """Unregister a file object. Parameters: fileobj -- file object or file descriptor Returns: SelectorKey instance Raises: KeyError if fileobj is not registered Note: If fileobj is registered but has since been closed this does *not* raise OSError (even if the wrapped syscall does) """ raise NotImplementedError def modify(self, fileobj, events, data=None): """Change a registered file object monitored events or attached data. Parameters: fileobj -- file object or file descriptor events -- events to monitor (bitwise mask of EVENT_READ|EVENT_WRITE) data -- attached data Returns: SelectorKey instance Raises: Anything that unregister() or register() raises """ self.unregister(fileobj) return self.register(fileobj, events, data) @abstractmethod def select(self, timeout=None): """Perform the actual selection, until some monitored file objects are ready or a timeout expires. Parameters: timeout -- if timeout > 0, this specifies the maximum wait time, in seconds if timeout <= 0, the select() call won't block, and will report the currently ready file objects if timeout is None, select() will block until a monitored file object becomes ready Returns: list of (key, events) for ready file objects `events` is a bitwise mask of EVENT_READ|EVENT_WRITE """ raise NotImplementedError def close(self): """Close the selector. This must be called to make sure that any underlying resource is freed. """ pass def get_key(self, fileobj): """Return the key associated to a registered file object. Returns: SelectorKey for this file object """ mapping = self.get_map() if mapping is None: raise RuntimeError('Selector is closed') try: return mapping[fileobj] except KeyError: raise KeyError("{!r} is not registered".format(fileobj)) from None @abstractmethod def get_map(self): """Return a mapping of file objects to selector keys.""" raise NotImplementedError def __enter__(self): return self def __exit__(self, *args): self.close() class _BaseSelectorImpl(BaseSelector): """Base selector implementation.""" def __init__(self): # this maps file descriptors to keys self._fd_to_key = {} # read-only mapping returned by get_map() self._map = _SelectorMapping(self) def _fileobj_lookup(self, fileobj): """Return a file descriptor from a file object. This wraps _fileobj_to_fd() to do an exhaustive search in case the object is invalid but we still have it in our map. This is used by unregister() so we can unregister an object that was previously registered even if it is closed. It is also used by _SelectorMapping. """ try: return _fileobj_to_fd(fileobj) except ValueError: # Do an exhaustive search. for key in self._fd_to_key.values(): if key.fileobj is fileobj: return key.fd # Raise ValueError after all. raise def register(self, fileobj, events, data=None): if (not events) or (events & ~(EVENT_READ | EVENT_WRITE)): raise ValueError("Invalid events: {!r}".format(events)) key = SelectorKey(fileobj, self._fileobj_lookup(fileobj), events, data) if key.fd in self._fd_to_key: raise KeyError("{!r} (FD {}) is already registered" .format(fileobj, key.fd)) self._fd_to_key[key.fd] = key return key def unregister(self, fileobj): try: key = self._fd_to_key.pop(self._fileobj_lookup(fileobj)) except KeyError: raise KeyError("{!r} is not registered".format(fileobj)) from None return key def modify(self, fileobj, events, data=None): try: key = self._fd_to_key[self._fileobj_lookup(fileobj)] except KeyError: raise KeyError("{!r} is not registered".format(fileobj)) from None if events != key.events: self.unregister(fileobj) key = self.register(fileobj, events, data) elif data != key.data: # Use a shortcut to update the data. key = key._replace(data=data) self._fd_to_key[key.fd] = key return key def close(self): self._fd_to_key.clear() self._map = None def get_map(self): return self._map def _key_from_fd(self, fd): """Return the key associated to a given file descriptor. Parameters: fd -- file descriptor Returns: corresponding key, or None if not found """ try: return self._fd_to_key[fd] except KeyError: return None class SelectSelector(_BaseSelectorImpl): """Select-based selector.""" def __init__(self): super().__init__() self._readers = set() self._writers = set() def register(self, fileobj, events, data=None): key = super().register(fileobj, events, data) if events & EVENT_READ: self._readers.add(key.fd) if events & EVENT_WRITE: self._writers.add(key.fd) return key def unregister(self, fileobj): key = super().unregister(fileobj) self._readers.discard(key.fd) self._writers.discard(key.fd) return key if sys.platform == 'win32': def _select(self, r, w, _, timeout=None): r, w, x = select.select(r, w, w, timeout) return r, w + x, [] else: _select = select.select def select(self, timeout=None): timeout = None if timeout is None else max(timeout, 0) ready = [] try: r, w, _ = self._select(self._readers, self._writers, [], timeout) except InterruptedError: return ready r = set(r) w = set(w) for fd in r | w: events = 0 if fd in r: events |= EVENT_READ if fd in w: events |= EVENT_WRITE key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready class _PollLikeSelector(_BaseSelectorImpl): """Base class shared between poll, epoll and devpoll selectors.""" _selector_cls = None _EVENT_READ = None _EVENT_WRITE = None def __init__(self): super().__init__() self._selector = self._selector_cls() def register(self, fileobj, events, data=None): key = super().register(fileobj, events, data) poller_events = 0 if events & EVENT_READ: poller_events |= self._EVENT_READ if events & EVENT_WRITE: poller_events |= self._EVENT_WRITE try: self._selector.register(key.fd, poller_events) except: super().unregister(fileobj) raise return key def unregister(self, fileobj): key = super().unregister(fileobj) try: self._selector.unregister(key.fd) except OSError: # This can happen if the FD was closed since it # was registered. pass return key def modify(self, fileobj, events, data=None): try: key = self._fd_to_key[self._fileobj_lookup(fileobj)] except KeyError: raise KeyError(f"{fileobj!r} is not registered") from None changed = False if events != key.events: selector_events = 0 if events & EVENT_READ: selector_events |= self._EVENT_READ if events & EVENT_WRITE: selector_events |= self._EVENT_WRITE try: self._selector.modify(key.fd, selector_events) except: super().unregister(fileobj) raise changed = True if data != key.data: changed = True if changed: key = key._replace(events=events, data=data) self._fd_to_key[key.fd] = key return key def select(self, timeout=None): # This is shared between poll() and epoll(). # epoll() has a different signature and handling of timeout parameter. if timeout is None: timeout = None elif timeout <= 0: timeout = 0 else: # poll() has a resolution of 1 millisecond, round away from # zero to wait *at least* timeout seconds. timeout = math.ceil(timeout * 1e3) ready = [] try: fd_event_list = self._selector.poll(timeout) except InterruptedError: return ready for fd, event in fd_event_list: events = 0 if event & ~self._EVENT_READ: events |= EVENT_WRITE if event & ~self._EVENT_WRITE: events |= EVENT_READ key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready if hasattr(select, 'poll'): class PollSelector(_PollLikeSelector): """Poll-based selector.""" _selector_cls = select.poll _EVENT_READ = select.POLLIN _EVENT_WRITE = select.POLLOUT if hasattr(select, 'epoll'): class EpollSelector(_PollLikeSelector): """Epoll-based selector.""" _selector_cls = select.epoll _EVENT_READ = select.EPOLLIN _EVENT_WRITE = select.EPOLLOUT def fileno(self): return self._selector.fileno() def select(self, timeout=None): if timeout is None: timeout = -1 elif timeout <= 0: timeout = 0 else: # epoll_wait() has a resolution of 1 millisecond, round away # from zero to wait *at least* timeout seconds. timeout = math.ceil(timeout * 1e3) * 1e-3 # epoll_wait() expects `maxevents` to be greater than zero; # we want to make sure that `select()` can be called when no # FD is registered. max_ev = max(len(self._fd_to_key), 1) ready = [] try: fd_event_list = self._selector.poll(timeout, max_ev) except InterruptedError: return ready for fd, event in fd_event_list: events = 0 if event & ~select.EPOLLIN: events |= EVENT_WRITE if event & ~select.EPOLLOUT: events |= EVENT_READ key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready def close(self): self._selector.close() super().close() if hasattr(select, 'devpoll'): class DevpollSelector(_PollLikeSelector): """Solaris /dev/poll selector.""" _selector_cls = select.devpoll _EVENT_READ = select.POLLIN _EVENT_WRITE = select.POLLOUT def fileno(self): return self._selector.fileno() def close(self): self._selector.close() super().close() if hasattr(select, 'kqueue'): class KqueueSelector(_BaseSelectorImpl): """Kqueue-based selector.""" def __init__(self): super().__init__() self._selector = select.kqueue() def fileno(self): return self._selector.fileno() def register(self, fileobj, events, data=None): key = super().register(fileobj, events, data) try: if events & EVENT_READ: kev = select.kevent(key.fd, select.KQ_FILTER_READ, select.KQ_EV_ADD) self._selector.control([kev], 0, 0) if events & EVENT_WRITE: kev = select.kevent(key.fd, select.KQ_FILTER_WRITE, select.KQ_EV_ADD) self._selector.control([kev], 0, 0) except: super().unregister(fileobj) raise return key def unregister(self, fileobj): key = super().unregister(fileobj) if key.events & EVENT_READ: kev = select.kevent(key.fd, select.KQ_FILTER_READ, select.KQ_EV_DELETE) try: self._selector.control([kev], 0, 0) except OSError: # This can happen if the FD was closed since it # was registered. pass if key.events & EVENT_WRITE: kev = select.kevent(key.fd, select.KQ_FILTER_WRITE, select.KQ_EV_DELETE) try: self._selector.control([kev], 0, 0) except OSError: # See comment above. pass return key def select(self, timeout=None): timeout = None if timeout is None else max(timeout, 0) # If max_ev is 0, kqueue will ignore the timeout. For consistent # behavior with the other selector classes, we prevent that here # (using max). See https://bugs.python.org/issue29255 max_ev = max(len(self._fd_to_key), 1) ready = [] try: kev_list = self._selector.control(None, max_ev, timeout) except InterruptedError: return ready for kev in kev_list: fd = kev.ident flag = kev.filter events = 0 if flag == select.KQ_FILTER_READ: events |= EVENT_READ if flag == select.KQ_FILTER_WRITE: events |= EVENT_WRITE key = self._key_from_fd(fd) if key: ready.append((key, events & key.events)) return ready def close(self): self._selector.close() super().close() def _can_use(method): """Check if we can use the selector depending upon the operating system. """ # Implementation based upon https://github.com/sethmlarson/selectors2/blob/master/selectors2.py selector = getattr(select, method, None) if selector is None: # select module does not implement method return False # check if the OS and Kernel actually support the method. Call may fail with # OSError: [Errno 38] Function not implemented try: selector_obj = selector() if method == 'poll': # check that poll actually works selector_obj.poll(0) else: # close epoll, kqueue, and devpoll fd selector_obj.close() return True except OSError: return False # Choose the best implementation, roughly: # epoll|kqueue|devpoll > poll > select. # select() also can't accept a FD > FD_SETSIZE (usually around 1024) if _can_use('kqueue'): DefaultSelector = KqueueSelector elif _can_use('epoll'): DefaultSelector = EpollSelector elif _can_use('devpoll'): DefaultSelector = DevpollSelector elif _can_use('poll'): DefaultSelector = PollSelector else: DefaultSelector = SelectSelector
gpl-2.0
-1,971,390,149,032,414,000
30.560582
99
0.560657
false
jquesnelle/pulp-or
examples/furniture.py
3
1043
""" The Furniture problem from EngSci391 for the PuLP Modeller Author: Dr Stuart Mitchell 2007 """ from pulp import * Chairs = ["A","B"] costs = {"A":100, "B":150} Resources = ["Lathe","Polisher"] capacity = {"Lathe" : 40, "Polisher" : 48} activity = [ #Chairs #A B [1, 2], #Lathe [3, 1.5] #Polisher ] activity = makeDict([Resources,Chairs],activity) prob = LpProblem("Furniture Manufacturing Problem", LpMaximize) vars = LpVariable.dicts("Number of Chairs",Chairs, lowBound = 0) #objective prob += lpSum([costs[c]*vars[c] for c in Chairs]) for r in Resources: prob += lpSum([activity[r][c]*vars[c] for c in Chairs]) <= capacity[r], \ "capacity_of_%s"%r prob.writeLP("furniture.lp") prob.solve() # Each of the variables is printed with it's value for v in prob.variables(): print(v.name, "=", v.varValue) # The optimised objective function value is printed to the screen print("Total Revenue from Production = ", value(prob.objective))
mit
-877,327,377,745,038
32.677419
77
0.627996
false
pymedusa/SickRage
ext/adba/aniDBcommands.py
4
17703
#!/usr/bin/env python # coding=utf-8 # # This file is part of aDBa. # # aDBa is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # aDBa is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with aDBa. If not, see <http://www.gnu.org/licenses/>. from threading import Lock from .aniDBresponses import * from .aniDBerrors import * class Command: queue = {None: None} def __init__(self, command, **parameters): self.command = command self.parameters = parameters self.raw = self.flatten(command, parameters) self.mode = None self.callback = None self.waiter = Lock() self.waiter.acquire() def __repr__(self): return "Command(%r,%r) %r\n%s\n" % (self.tag, self.command, self.parameters, self.raw_data()) def authorize(self, mode, tag, session, callback): self.mode = mode self.callback = callback self.tag = tag self.session = session self.parameters['tag'] = tag self.parameters['s'] = session def handle(self, resp): self.resp = resp if self.mode == 1: self.waiter.release() elif self.mode == 2: self.callback(resp) def wait_response(self): self.waiter.acquire() def flatten(self, command, parameters): tmp = [] for key, value in parameters.items(): if value is None: continue tmp.append("%s=%s" % (self.escape(key), self.escape(value))) return ' '.join([command, '&'.join(tmp)]) @staticmethod def escape(data): return str(data).replace('&', '&amp;') def raw_data(self): self.raw = self.flatten(self.command, self.parameters) return self.raw def cached(self, interface, database): return None def cache(self, interface, database): pass # first run class AuthCommand(Command): def __init__(self, username, password, protover, client, clientver, nat=None, comp=None, enc=None, mtu=None): parameters = {'user': username, 'pass': password, 'protover': protover, 'client': client, 'clientver': clientver, 'nat': nat, 'comp': comp, 'enc': enc, 'mtu': mtu} Command.__init__(self, 'AUTH', **parameters) class LogoutCommand(Command): def __init__(self): Command.__init__(self, 'LOGOUT') # third run (at the same time as second) class PushCommand(Command): def __init__(self, notify, msg, buddy=None): parameters = {'notify': notify, 'msg': msg, 'buddy': buddy} Command.__init__(self, 'PUSH', **parameters) class PushAckCommand(Command): def __init__(self, nid): parameters = {'nid': nid} Command.__init__(self, 'PUSHACK', **parameters) class NotifyAddCommand(Command): def __init__(self, aid=None, gid=None, type=None, priority=None): if not (aid or gid) or (aid and gid): raise AniDBIncorrectParameterError("You must provide aid OR gid for NOTIFICATIONADD command") parameters = {'aid': aid, "gid": gid, "type": type, "priority": priority} Command.__init__(self, 'NOTIFICATIONADD', **parameters) class NotifyCommand(Command): def __init__(self, buddy=None): parameters = {'buddy': buddy} Command.__init__(self, 'NOTIFY', **parameters) class NotifyListCommand(Command): def __init__(self): Command.__init__(self, 'NOTIFYLIST') class NotifyGetCommand(Command): def __init__(self, type, id): parameters = {'type': type, 'id': id} Command.__init__(self, 'NOTIFYGET', **parameters) class NotifyAckCommand(Command): def __init__(self, type, id): parameters = {'type': type, 'id': id} Command.__init__(self, 'NOTIFYACK', **parameters) class BuddyAddCommand(Command): def __init__(self, uid=None, uname=None): if not (uid or uname) or (uid and uname): raise AniDBIncorrectParameterError("You must provide <u(id|name)> for BUDDYADD command") parameters = {'uid': uid, 'uname': uname.lower()} Command.__init__(self, 'BUDDYADD', **parameters) class BuddyDelCommand(Command): def __init__(self, uid): parameters = {'uid': uid} Command.__init__(self, 'BUDDYDEL', **parameters) class BuddyAcceptCommand(Command): def __init__(self, uid): parameters = {'uid': uid} Command.__init__(self, 'BUDDYACCEPT', **parameters) class BuddyDenyCommand(Command): def __init__(self, uid): parameters = {'uid': uid} Command.__init__(self, 'BUDDYDENY', **parameters) class BuddyListCommand(Command): def __init__(self, startat): parameters = {'startat': startat} Command.__init__(self, 'BUDDYLIST', **parameters) class BuddyStateCommand(Command): def __init__(self, startat): parameters = {'startat': startat} Command.__init__(self, 'BUDDYSTATE', **parameters) # first run class AnimeCommand(Command): def __init__(self, aid=None, aname=None, amask=None): if not (aid or aname): raise AniDBIncorrectParameterError("You must provide <a(id|name)> for ANIME command") parameters = {'aid': aid, 'aname': aname, 'amask': amask} Command.__init__(self, 'ANIME', **parameters) class EpisodeCommand(Command): def __init__(self, eid=None, aid=None, aname=None, epno=None): if not (eid or ((aname or aid) and epno)) or (aname and aid) or (eid and (aname or aid or epno)): raise AniDBIncorrectParameterError("You must provide <eid XOR a(id|name)+epno> for EPISODE command") parameters = {'eid': eid, 'aid': aid, 'aname': aname, 'epno': epno} Command.__init__(self, 'EPISODE', **parameters) class FileCommand(Command): def __init__(self, fid=None, size=None, ed2k=None, aid=None, aname=None, gid=None, gname=None, epno=None, fmask=None, amask=None): if not (fid or (size and ed2k) or ((aid or aname) and (gid or gname) and epno)) or (fid and (size or ed2k or aid or aname or gid or gname or epno)) or ((size and ed2k) and (fid or aid or aname or gid or gname or epno)) or (((aid or aname) and (gid or gname) and epno) and (fid or size or ed2k)) or (aid and aname) or (gid and gname): raise AniDBIncorrectParameterError("You must provide <fid XOR size+ed2k XOR a(id|name)+g(id|name)+epno> for FILE command") parameters = {'fid': fid, 'size': size, 'ed2k': ed2k, 'aid': aid, 'aname': aname, 'gid': gid, 'gname': gname, 'epno': epno, 'fmask': fmask, 'amask': amask} Command.__init__(self, 'FILE', **parameters) class GroupCommand(Command): def __init__(self, gid=None, gname=None): if not (gid or gname) or (gid and gname): raise AniDBIncorrectParameterError("You must provide <g(id|name)> for GROUP command") parameters = {'gid': gid, 'gname': gname} Command.__init__(self, 'GROUP', **parameters) class GroupstatusCommand(Command): def __init__(self, aid=None, status=None): if not aid: raise AniDBIncorrectParameterError("You must provide aid for GROUPSTATUS command") parameters = {'aid': aid, 'status': status} Command.__init__(self, 'GROUPSTATUS', **parameters) class ProducerCommand(Command): def __init__(self, pid=None, pname=None): if not (pid or pname) or (pid and pname): raise AniDBIncorrectParameterError("You must provide <p(id|name)> for PRODUCER command") parameters = {'pid': pid, 'pname': pname} Command.__init__(self, 'PRODUCER', **parameters) def cached(self, intr, db): pid = self.parameters['pid'] pname = self.parameters['pname'] codes = ('pid', 'name', 'shortname', 'othername', 'type', 'pic', 'url') names = ','.join([code for code in codes if code != '']) ruleholder = (pid and 'pid=%s' or '(name=%s OR shortname=%s OR othername=%s)') rulevalues = (pid and [pid] or [pname, pname, pname]) rows = db.select('ptb', names, ruleholder + " AND status&8", *rulevalues) if len(rows) > 1: raise AniDBInternalError("It shouldn't be possible for database to return more than 1 line for PRODUCER cache") elif not len(rows): return None else: resp = ProducerResponse(self, None, '245', 'CACHED PRODUCER', [list(rows[0])]) resp.parse() return resp def cache(self, intr, db): if self.resp.rescode != '245' or self.cached(intr, db): return codes = ('pid', 'name', 'shortname', 'othername', 'type', 'pic', 'url') if len(db.select('ptb', 'pid', 'pid=%s', self.resp.datalines[0]['pid'])): sets = 'status=status|15,' + ','.join([code + '=%s' for code in codes if code != '']) values = [self.resp.datalines[0][code] for code in codes if code != ''] + [self.resp.datalines[0]['pid']] db.update('ptb', sets, 'pid=%s', *values) else: names = 'status,' + ','.join([code for code in codes if code != '']) valueholders = '0,' + ','.join(['%s' for code in codes if code != '']) values = [self.resp.datalines[0][code] for code in codes if code != ''] db.insert('ptb', names, valueholders, *values) class MyListCommand(Command): def __init__(self, lid=None, fid=None, size=None, ed2k=None, aid=None, aname=None, gid=None, gname=None, epno=None): if not (lid or fid or (size and ed2k) or (aid or aname)) or (lid and (fid or size or ed2k or aid or aname or gid or gname or epno)) or (fid and (lid or size or ed2k or aid or aname or gid or gname or epno)) or ((size and ed2k) and (lid or fid or aid or aname or gid or gname or epno)) or ((aid or aname) and (lid or fid or size or ed2k)) or (aid and aname) or (gid and gname): raise AniDBIncorrectParameterError("You must provide <lid XOR fid XOR size+ed2k XOR a(id|name)+g(id|name)+epno> for MYLIST command") parameters = {'lid': lid, 'fid': fid, 'size': size, 'ed2k': ed2k, 'aid': aid, 'aname': aname, 'gid': gid, 'gname': gname, 'epno': epno} Command.__init__(self, 'MYLIST', **parameters) def cached(self, intr, db): lid = self.parameters['lid'] fid = self.parameters['fid'] size = self.parameters['size'] ed2k = self.parameters['ed2k'] aid = self.parameters['aid'] aname = self.parameters['aname'] gid = self.parameters['gid'] gname = self.parameters['gname'] epno = self.parameters['epno'] names = ','.join([code for code in MylistResponse(None, None, None, None, []).codetail if code != '']) if lid: ruleholder = "lid=%s" rulevalues = [lid] elif fid or size or ed2k: resp = intr.file(fid=fid, size=size, ed2k=ed2k) if resp.rescode != '220': resp = NoSuchMylistFileResponse(self, None, '321', 'NO SUCH ENTRY (FILE NOT FOUND)', []) resp.parse() return resp fid = resp.datalines[0]['fid'] ruleholder = "fid=%s" rulevalues = [fid] else: resp = intr.anime(aid=aid, aname=aname) if resp.rescode != '230': resp = NoSuchFileResponse(self, None, '321', 'NO SUCH ENTRY (ANIME NOT FOUND)', []) resp.parse() return resp aid = resp.datalines[0]['aid'] resp = intr.group(gid=gid, gname=gname) if resp.rescode != '250': resp = NoSuchFileResponse(self, None, '321', 'NO SUCH ENTRY (GROUP NOT FOUND)', []) resp.parse() return resp gid = resp.datalines[0]['gid'] resp = intr.episode(aid=aid, epno=epno) if resp.rescode != '240': resp = NoSuchFileResponse(self, None, '321', 'NO SUCH ENTRY (EPISODE NOT FOUND)', []) resp.parse() return resp eid = resp.datalines[0]['eid'] ruleholder = "aid=%s AND eid=%s AND gid=%s" rulevalues = [aid, eid, gid] rows = db.select('ltb', names, ruleholder + " AND status&8", *rulevalues) if len(rows) > 1: # resp=MultipleFilesFoundResponse(self,None,'322','CACHED MULTIPLE FILES FOUND',/*get fids from rows, not gonna do this as you haven't got a real cache out of these..*/) return None elif not len(rows): return None else: resp = MylistResponse(self, None, '221', 'CACHED MYLIST', [list(rows[0])]) resp.parse() return resp def cache(self, intr, db): if self.resp.rescode != '221' or self.cached(intr, db): return codes = MylistResponse(None, None, None, None, []).codetail if len(db.select('ltb', 'lid', 'lid=%s', self.resp.datalines[0]['lid'])): sets = 'status=status|15,' + ','.join([code + '=%s' for code in codes if code != '']) values = [self.resp.datalines[0][code] for code in codes if code != ''] + [self.resp.datalines[0]['lid']] db.update('ltb', sets, 'lid=%s', *values) else: names = 'status,' + ','.join([code for code in codes if code != '']) valueholders = '15,' + ','.join(['%s' for code in codes if code != '']) values = [self.resp.datalines[0][code] for code in codes if code != ''] db.insert('ltb', names, valueholders, *values) class MyListAddCommand(Command): def __init__(self, lid=None, fid=None, size=None, ed2k=None, aid=None, aname=None, gid=None, gname=None, epno=None, edit=None, state=None, viewed=None, source=None, storage=None, other=None): if not (lid or fid or (size and ed2k) or ((aid or aname) and (gid or gname))) or (lid and (fid or size or ed2k or aid or aname or gid or gname or epno)) or (fid and (lid or size or ed2k or aid or aname or gid or gname or epno)) or ((size and ed2k) and (lid or fid or aid or aname or gid or gname or epno)) or (((aid or aname) and (gid or gname)) and (lid or fid or size or ed2k)) or (aid and aname) or (gid and gname) or (lid and not edit): raise AniDBIncorrectParameterError("You must provide <lid XOR fid XOR size+ed2k XOR a(id|name)+g(id|name)+epno> for MYLISTADD command") parameters = {'lid': lid, 'fid': fid, 'size': size, 'ed2k': ed2k, 'aid': aid, 'aname': aname, 'gid': gid, 'gname': gname, 'epno': epno, 'edit': edit, 'state': state, 'viewed': viewed, 'source': source, 'storage': storage, 'other': other} Command.__init__(self, 'MYLISTADD', **parameters) class MyListDelCommand(Command): def __init__(self, lid=None, fid=None, aid=None, aname=None, gid=None, gname=None, epno=None): if not (lid or fid or ((aid or aname) and (gid or gname) and epno)) or (lid and (fid or aid or aname or gid or gname or epno)) or (fid and (lid or aid or aname or gid or gname or epno)) or (((aid or aname) and (gid or gname) and epno) and (lid or fid)) or (aid and aname) or (gid and gname): raise AniDBIncorrectParameterError("You must provide <lid+edit=1 XOR fid XOR a(id|name)+g(id|name)+epno> for MYLISTDEL command") parameters = {'lid': lid, 'fid': fid, 'aid': aid, 'aname': aname, 'gid': gid, 'gname': gname, 'epno': epno} Command.__init__(self, 'MYLISTDEL', **parameters) class MyListStatsCommand(Command): def __init__(self): Command.__init__(self, 'MYLISTSTATS') class VoteCommand(Command): def __init__(self, type, id=None, name=None, value=None, epno=None): if not (id or name) or (id and name): raise AniDBIncorrectParameterError("You must provide <(id|name)> for VOTE command") parameters = {'type': type, 'id': id, 'name': name, 'value': value, 'epno': epno} Command.__init__(self, 'VOTE', **parameters) class RandomAnimeCommand(Command): def __init__(self, type): parameters = {'type': type} Command.__init__(self, 'RANDOMANIME', **parameters) class PingCommand(Command): def __init__(self): Command.__init__(self, 'PING') # second run class EncryptCommand(Command): def __init__(self, user, apipassword, type): self.apipassword = apipassword parameters = {'user': user.lower(), 'type': type} Command.__init__(self, 'ENCRYPT', **parameters) class EncodingCommand(Command): def __init__(self, name): parameters = {'name': type} Command.__init__(self, 'ENCODING', **parameters) class SendMsgCommand(Command): def __init__(self, to, title, body): if len(title) > 50 or len(body) > 900: raise AniDBIncorrectParameterError("Title must not be longer than 50 chars and body must not be longer than 900 chars for SENDMSG command") parameters = {'to': to.lower(), 'title': title, 'body': body} Command.__init__(self, 'SENDMSG', **parameters) class UserCommand(Command): def __init__(self, user): parameters = {'user': user} Command.__init__(self, 'USER', **parameters) class UptimeCommand(Command): def __init__(self): Command.__init__(self, 'UPTIME') class VersionCommand(Command): def __init__(self): Command.__init__(self, 'VERSION')
gpl-3.0
-1,268,931,044,067,858,200
40.654118
448
0.599955
false
GENI-NSF/gram
pi_gram/src/gram/am/__init__.py
6
1218
#---------------------------------------------------------------------- # Copyright (c) 2013-2016 Raytheon BBN Technologies # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and/or hardware specification (the "Work") to # deal in the Work without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Work, and to permit persons to whom the Work # is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Work. # # THE WORK IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE WORK OR THE USE OR OTHER DEALINGS # IN THE WORK. #----------------------------------------------------------------------
mit
-577,395,658,159,688,800
51.956522
72
0.681445
false
mdittmer/chromium-dashboard
models.py
1
21219
import datetime import logging import time from google.appengine.api import memcache from google.appengine.api import users from google.appengine.ext import db #from google.appengine.ext.db import djangoforms #from django.forms import ModelForm from collections import OrderedDict from django import forms import settings SIMPLE_TYPES = (int, long, float, bool, dict, basestring, list) WEBCOMPONENTS = 1 MISC = 2 SECURITY = 3 MULTIMEDIA = 4 DOM = 5 FILE = 6 OFFLINE = 7 DEVICE = 8 COMMUNICATION = 9 JAVASCRIPT = 10 NETWORKING = 11 INPUT = 12 PERFORMANCE = 13 GRAPHICS = 14 CSS = 15 FEATURE_CATEGORIES = { CSS: 'CSS', WEBCOMPONENTS: 'Web Components', MISC: 'Misc', SECURITY: 'Security', MULTIMEDIA: 'Multimedia', DOM: 'DOM', FILE: 'File APIs', OFFLINE: 'Offline / Storage', DEVICE: 'Device', COMMUNICATION: 'Realtime / Communication', JAVASCRIPT: 'JavaScript', NETWORKING: 'Network / Connectivity', INPUT: 'User input', PERFORMANCE: 'Performance', GRAPHICS: 'Graphics', } NO_ACTIVE_DEV = 1 PROPOSED = 2 IN_DEVELOPMENT = 3 BEHIND_A_FLAG = 4 ENABLED_BY_DEFAULT = 5 DEPRECATED = 6 REMOVED = 7 EXPERIMENTAL_FRAMEWORK = 8 NO_LONGER_PURSUING = 1000 # insure bottom of list IMPLEMENTATION_STATUS = OrderedDict() IMPLEMENTATION_STATUS[NO_ACTIVE_DEV] = 'No active development' IMPLEMENTATION_STATUS[PROPOSED] = 'Proposed' IMPLEMENTATION_STATUS[IN_DEVELOPMENT] = 'In development' IMPLEMENTATION_STATUS[BEHIND_A_FLAG] = 'Behind a flag' IMPLEMENTATION_STATUS[EXPERIMENTAL_FRAMEWORK] = 'In experimental framework' IMPLEMENTATION_STATUS[ENABLED_BY_DEFAULT] = 'Enabled by default' IMPLEMENTATION_STATUS[DEPRECATED] = 'Deprecated' IMPLEMENTATION_STATUS[REMOVED] = 'Removed' IMPLEMENTATION_STATUS[NO_LONGER_PURSUING] = 'No longer pursuing' MAJOR_NEW_API = 1 MAJOR_MINOR_NEW_API = 2 SUBSTANTIVE_CHANGES = 3 MINOR_EXISTING_CHANGES = 4 EXTREMELY_SMALL_CHANGE = 5 FOOTPRINT_CHOICES = { MAJOR_NEW_API: ('A major new independent API (e.g. adding a large # ' 'independent concepts with many methods/properties/objects)'), MAJOR_MINOR_NEW_API: ('Major changes to an existing API OR a minor new ' 'independent API (e.g. adding a large # of new ' 'methods/properties or introducing new concepts to ' 'augment an existing API)'), SUBSTANTIVE_CHANGES: ('Substantive changes to an existing API (e.g. small ' 'number of new methods/properties)'), MINOR_EXISTING_CHANGES: ( 'Minor changes to an existing API (e.g. adding a new keyword/allowed ' 'argument to a property/method)'), EXTREMELY_SMALL_CHANGE: ('Extremely small tweaks to an existing API (e.g. ' 'how existing keywords/arguments are interpreted)'), } MAINSTREAM_NEWS = 1 WARRANTS_ARTICLE = 2 IN_LARGER_ARTICLE = 3 SMALL_NUM_DEVS = 4 SUPER_SMALL = 5 VISIBILITY_CHOICES = { MAINSTREAM_NEWS: 'Likely in mainstream tech news', WARRANTS_ARTICLE: 'Will this feature generate articles on sites like html5rocks.com', IN_LARGER_ARTICLE: 'Covered as part of a larger article but not on its own', SMALL_NUM_DEVS: 'Only a very small number of web developers will care about', SUPER_SMALL: "So small it doesn't need to be covered in this dashboard.", } SHIPPED = 1 IN_DEV = 2 PUBLIC_SUPPORT = 3 MIXED_SIGNALS = 4 NO_PUBLIC_SIGNALS = 5 PUBLIC_SKEPTICISM = 6 OPPOSED = 7 VENDOR_VIEWS = { SHIPPED: 'Shipped', IN_DEV: 'In development', PUBLIC_SUPPORT: 'Public support', MIXED_SIGNALS: 'Mixed public signals', NO_PUBLIC_SIGNALS: 'No public signals', PUBLIC_SKEPTICISM: 'Public skepticism', OPPOSED: 'Opposed', } DEFACTO_STD = 1 ESTABLISHED_STD = 2 WORKING_DRAFT = 3 EDITORS_DRAFT = 4 PUBLIC_DISCUSSION = 5 NO_STD_OR_DISCUSSION = 6 STANDARDIZATION = { DEFACTO_STD: 'De-facto standard', ESTABLISHED_STD: 'Established standard', WORKING_DRAFT: 'Working draft or equivalent', EDITORS_DRAFT: "Editor's draft", PUBLIC_DISCUSSION: 'Public discussion', NO_STD_OR_DISCUSSION: 'No public standards discussion', } DEV_STRONG_POSITIVE = 1 DEV_POSITIVE = 2 DEV_MIXED_SIGNALS = 3 DEV_NO_SIGNALS = 4 DEV_NEGATIVE = 5 DEV_STRONG_NEGATIVE = 6 WEB_DEV_VIEWS = { DEV_STRONG_POSITIVE: 'Strongly positive', DEV_POSITIVE: 'Positive', DEV_MIXED_SIGNALS: 'Mixed signals', DEV_NO_SIGNALS: 'No signals', DEV_NEGATIVE: 'Negative', DEV_STRONG_NEGATIVE: 'Strongly negative', } class DictModel(db.Model): # def to_dict(self): # return dict([(p, unicode(getattr(self, p))) for p in self.properties()]) def format_for_template(self): return self.to_dict() def to_dict(self): output = {} for key, prop in self.properties().iteritems(): value = getattr(self, key) if value is None or isinstance(value, SIMPLE_TYPES): output[key] = value elif isinstance(value, datetime.date): # Convert date/datetime to ms-since-epoch ("new Date()"). #ms = time.mktime(value.utctimetuple()) #ms += getattr(value, 'microseconds', 0) / 1000 #output[key] = int(ms) output[key] = unicode(value) elif isinstance(value, db.GeoPt): output[key] = {'lat': value.lat, 'lon': value.lon} elif isinstance(value, db.Model): output[key] = to_dict(value) elif isinstance(value, users.User): output[key] = value.email() else: raise ValueError('cannot encode ' + repr(prop)) return output # UMA metrics. class StableInstance(DictModel): created = db.DateTimeProperty(auto_now_add=True) updated = db.DateTimeProperty(auto_now=True) property_name = db.StringProperty(required=True) bucket_id = db.IntegerProperty(required=True) date = db.DateProperty(verbose_name='When the data was fetched', required=True) #hits = db.IntegerProperty(required=True) #total_pages = db.IntegerProperty() day_percentage = db.FloatProperty() rolling_percentage = db.FloatProperty() class AnimatedProperty(StableInstance): pass class FeatureObserver(StableInstance): pass # Feature dashboard. class Feature(DictModel): """Container for a feature.""" DEFAULT_MEMCACHE_KEY = '%s|features' % (settings.MEMCACHE_KEY_PREFIX) def format_for_template(self): d = self.to_dict() d['id'] = self.key().id() d['category'] = FEATURE_CATEGORIES[self.category] d['visibility'] = VISIBILITY_CHOICES[self.visibility] d['impl_status_chrome'] = IMPLEMENTATION_STATUS[self.impl_status_chrome] d['meta'] = { 'experimentalframework': self.impl_status_chrome == EXPERIMENTAL_FRAMEWORK, 'needsflag': self.impl_status_chrome == BEHIND_A_FLAG, 'milestone_str': self.shipped_milestone or d['impl_status_chrome'] } d['ff_views'] = {'value': self.ff_views, 'text': VENDOR_VIEWS[self.ff_views]} d['ie_views'] = {'value': self.ie_views, 'text': VENDOR_VIEWS[self.ie_views]} d['safari_views'] = {'value': self.safari_views, 'text': VENDOR_VIEWS[self.safari_views]} d['standardization'] = {'value': self.standardization, 'text': STANDARDIZATION[self.standardization]} d['web_dev_views'] = {'value': self.web_dev_views, 'text': WEB_DEV_VIEWS[self.web_dev_views]} #d['owner'] = ', '.join(self.owner) return d def format_for_edit(self): d = self.to_dict() #d['id'] = self.key().id d['owner'] = ', '.join(self.owner) d['doc_links'] = '\r\n'.join(self.doc_links) d['sample_links'] = '\r\n'.join(self.sample_links) d['search_tags'] = ', '.join(self.search_tags) return d @classmethod def get_all(self, limit=None, order='-updated', filterby=None, update_cache=False): KEY = '%s|%s|%s' % (Feature.DEFAULT_MEMCACHE_KEY, order, limit) # TODO(ericbidelman): Support more than one filter. if filterby is not None: s = ('%s%s' % (filterby[0], filterby[1])).replace(' ', '') KEY += '|%s' % s feature_list = memcache.get(KEY) if feature_list is None or update_cache: query = Feature.all().order(order) #.order('name') # TODO(ericbidelman): Support more than one filter. if filterby: query.filter(filterby[0], filterby[1]) features = query.fetch(limit) feature_list = [f.format_for_template() for f in features] memcache.set(KEY, feature_list) return feature_list @classmethod def get_all_with_statuses(self, statuses, update_cache=False): if not statuses: return [] KEY = '%s|%s' % (Feature.DEFAULT_MEMCACHE_KEY, sorted(statuses)) feature_list = memcache.get(KEY) if feature_list is None or update_cache: # There's no way to do an OR in a single datastore query, and there's a # very good chance that the self.get_all() results will already be in # memcache, so use an array comprehension to grab the features we # want from the array of everything. feature_list = [feature for feature in self.get_all(update_cache=update_cache) if feature['impl_status_chrome'] in statuses] memcache.set(KEY, feature_list) return feature_list @classmethod def get_feature(self, feature_id, update_cache=False): KEY = '%s|%s' % (Feature.DEFAULT_MEMCACHE_KEY, feature_id) feature = memcache.get(KEY) if feature is None or update_cache: unformatted_feature = Feature.get_by_id(feature_id) if unformatted_feature: feature = unformatted_feature.format_for_template() feature['updated_display'] = unformatted_feature.updated.strftime("%Y-%m-%d") memcache.set(KEY, feature) return feature @classmethod def get_chronological(self, limit=None, update_cache=False): KEY = '%s|%s|%s' % (Feature.DEFAULT_MEMCACHE_KEY, 'cronorder', limit) feature_list = memcache.get(KEY) if feature_list is None or update_cache: q = Feature.all() q.order('-shipped_milestone') q.order('name') features = q.fetch(None) features = [f for f in features if (IN_DEVELOPMENT < f.impl_status_chrome < NO_LONGER_PURSUING)] # Append no active, in dev, proposed features. q = Feature.all() q.order('impl_status_chrome') q.order('name') q.filter('impl_status_chrome <=', IN_DEVELOPMENT) pre_release = q.fetch(None) pre_release.extend(features) # Append no longer pursuing features. q = Feature.all() q.order('impl_status_chrome') q.order('name') q.filter('impl_status_chrome =', NO_LONGER_PURSUING) no_longer_pursuing = q.fetch(None) pre_release.extend(no_longer_pursuing) feature_list = [f.format_for_template() for f in pre_release] memcache.set(KEY, feature_list) return feature_list @classmethod def get_shipping_samples(self, limit=None, update_cache=False): KEY = '%s|%s|%s' % (Feature.DEFAULT_MEMCACHE_KEY, 'samples', limit) feature_list = memcache.get(KEY) if feature_list is None or update_cache: # Get all shipping features. Ordered by shipping milestone (latest first). q = Feature.all() q.filter('impl_status_chrome IN', [ENABLED_BY_DEFAULT, EXPERIMENTAL_FRAMEWORK]) q.order('-impl_status_chrome') q.order('-shipped_milestone') q.order('name') features = q.fetch(None) # Get non-shipping features (sans removed or deprecated ones) and # append to bottom of list. q = Feature.all() q.filter('impl_status_chrome <', ENABLED_BY_DEFAULT) q.order('-impl_status_chrome') q.order('-shipped_milestone') q.order('name') others = q.fetch(None) features.extend(others) # Filter out features without sample links. feature_list = [f.format_for_template() for f in features if len(f.sample_links)] memcache.set(KEY, feature_list) return feature_list # Metadata. created = db.DateTimeProperty(auto_now_add=True) updated = db.DateTimeProperty(auto_now=True) updated_by = db.UserProperty(auto_current_user=True) created_by = db.UserProperty(auto_current_user_add=True) # General info. category = db.IntegerProperty(required=True) name = db.StringProperty(required=True) summary = db.StringProperty(required=True, multiline=True) # Chromium details. bug_url = db.LinkProperty() impl_status_chrome = db.IntegerProperty(required=True) shipped_milestone = db.IntegerProperty() shipped_android_milestone = db.IntegerProperty() shipped_ios_milestone = db.IntegerProperty() shipped_webview_milestone = db.IntegerProperty() shipped_opera_milestone = db.IntegerProperty() shipped_opera_android_milestone = db.IntegerProperty() owner = db.ListProperty(db.Email) footprint = db.IntegerProperty() visibility = db.IntegerProperty(required=True) #webbiness = db.IntegerProperty() # TODO: figure out what this is # Standards details. standardization = db.IntegerProperty(required=True) spec_link = db.LinkProperty() prefixed = db.BooleanProperty() ff_views = db.IntegerProperty(required=True, default=NO_PUBLIC_SIGNALS) ie_views = db.IntegerProperty(required=True, default=NO_PUBLIC_SIGNALS) safari_views = db.IntegerProperty(required=True, default=NO_PUBLIC_SIGNALS) ff_views_link = db.LinkProperty() ie_views_link = db.LinkProperty() safari_views_link = db.LinkProperty() # Web dev details. web_dev_views = db.IntegerProperty(required=True) doc_links = db.StringListProperty() sample_links = db.StringListProperty() #tests = db.StringProperty() search_tags = db.StringListProperty() comments = db.StringProperty(multiline=True) class PlaceholderCharField(forms.CharField): def __init__(self, *args, **kwargs): #super(forms.CharField, self).__init__(*args, **kwargs) attrs = {} if kwargs.get('placeholder'): attrs['placeholder'] = kwargs.get('placeholder') del kwargs['placeholder'] label = kwargs.get('label') or '' if label: del kwargs['label'] self.max_length = kwargs.get('max_length') or None super(forms.CharField, self).__init__(label=label, widget=forms.TextInput(attrs=attrs), *args, **kwargs) # class PlaceholderForm(forms.Form): # def __init__(self, *args, **kwargs): # super(PlaceholderForm, self).__init__(*args, **kwargs) # for field_name in self.fields: # field = self.fields.get(field_name) # if field: # if type(field.widget) in (forms.TextInput, forms.DateInput): # field.widget = forms.TextInput(attrs={'placeholder': field.label}) class FeatureForm(forms.Form): SHIPPED_HELP_TXT = ('First milestone the feature shipped with this status ' '(either enabled by default, experimental, or deprecated)') #name = PlaceholderCharField(required=True, placeholder='Feature name') name = forms.CharField(required=True, label='Feature') summary = forms.CharField(label='', required=True, max_length=500, widget=forms.Textarea(attrs={'cols': 50, 'placeholder': 'Summary description', 'maxlength': 500})) # owner = PlaceholderCharField( # required=False, placeholder='Owner(s) email', # help_text='Comma separated list of full email addresses (@chromium.org preferred).') category = forms.ChoiceField(required=True, choices=sorted(FEATURE_CATEGORIES.items(), key=lambda x: x[1])) owner = forms.CharField( required=False, label='Owner(s) email', help_text='Comma separated list of full email addresses. Prefer @chromium.org.') bug_url = forms.URLField(required=False, label='Bug URL', help_text='OWP Launch Tracking, crbug, etc.') impl_status_chrome = forms.ChoiceField(required=True, label='Status in Chrome', choices=IMPLEMENTATION_STATUS.items()) #shipped_milestone = PlaceholderCharField(required=False, # placeholder='First milestone the feature shipped with this status (either enabled by default or experimental)') shipped_milestone = forms.IntegerField(required=False, label='', help_text='Chrome for desktop: ' + SHIPPED_HELP_TXT) shipped_android_milestone = forms.IntegerField(required=False, label='', help_text='Chrome for Android: ' + SHIPPED_HELP_TXT) shipped_ios_milestone = forms.IntegerField(required=False, label='', help_text='Chrome for iOS: ' + SHIPPED_HELP_TXT) shipped_webview_milestone = forms.IntegerField(required=False, label='', help_text='Chrome for Android web view: ' + SHIPPED_HELP_TXT) shipped_opera_milestone = forms.IntegerField(required=False, label='', help_text='Opera for desktop: ' + SHIPPED_HELP_TXT) shipped_opera_android_milestone = forms.IntegerField(required=False, label='', help_text='Opera for Android: ' + SHIPPED_HELP_TXT) prefixed = forms.BooleanField( required=False, initial=False, label='Prefixed?') standardization = forms.ChoiceField( label='Standardization', choices=STANDARDIZATION.items(), initial=EDITORS_DRAFT, help_text=("The standardization status of the API. In bodies that don't " "use this nomenclature, use the closest equivalent.")) spec_link = forms.URLField(required=False, label='Spec link', help_text="Prefer editor's draft.") doc_links = forms.CharField(label='Doc links', required=False, max_length=500, widget=forms.Textarea(attrs={'cols': 50, 'placeholder': 'Links to documentation (one per line)', 'maxlength': 500}), help_text='One URL per line') sample_links = forms.CharField(label='Samples links', required=False, max_length=500, widget=forms.Textarea(attrs={'cols': 50, 'placeholder': 'Links to samples (one per line)', 'maxlength': 500}), help_text='One URL per line') footprint = forms.ChoiceField(label='Technical footprint', choices=FOOTPRINT_CHOICES.items(), initial=MAJOR_MINOR_NEW_API) visibility = forms.ChoiceField( label='Developer visibility', choices=VISIBILITY_CHOICES.items(), initial=WARRANTS_ARTICLE, help_text=('How much press / media / web developer buzz will this ' 'feature generate?')) web_dev_views = forms.ChoiceField( label='Web developer views', choices=WEB_DEV_VIEWS.items(), initial=DEV_NO_SIGNALS, help_text=('How positive has the reaction from developers been? If ' 'unsure, default to "No signals".')) safari_views = forms.ChoiceField(label='Safari views', choices=VENDOR_VIEWS.items(), initial=NO_PUBLIC_SIGNALS) safari_views_link = forms.URLField(required=False, label='', help_text='Citation link.') ff_views = forms.ChoiceField(label='Firefox views', choices=VENDOR_VIEWS.items(), initial=NO_PUBLIC_SIGNALS) ff_views_link = forms.URLField(required=False, label='', help_text='Citation link.') ie_views = forms.ChoiceField(label='Edge', choices=VENDOR_VIEWS.items(), initial=NO_PUBLIC_SIGNALS) ie_views_link = forms.URLField(required=False, label='', help_text='Citation link.') search_tags = forms.CharField(label='Search tags', required=False, help_text='Comma separated keywords used only in search') comments = forms.CharField(label='', required=False, max_length=500, widget=forms.Textarea( attrs={'cols': 50, 'placeholder': 'Additional comments, caveats, info...', 'maxlength': 500})) class Meta: model = Feature #exclude = ('shipped_webview_milestone',) def __init__(self, *args, **keyargs): super(FeatureForm, self).__init__(*args, **keyargs) meta = getattr(self, 'Meta', None) exclude = getattr(meta, 'exclude', []) for field_name in exclude: if field_name in self.fields: del self.fields[field_name] for field, val in self.fields.iteritems(): if val.required: self.fields[field].widget.attrs['required'] = 'required' class AppUser(DictModel): """Describes a user for whitelisting.""" #user = db.UserProperty(required=True, verbose_name='Google Account') email = db.EmailProperty(required=True) #is_admin = db.BooleanProperty(default=False) created = db.DateTimeProperty(auto_now_add=True) updated = db.DateTimeProperty(auto_now=True) def format_for_template(self): d = self.to_dict() d['id'] = self.key().id() return d class HistogramModel(db.Model): """Container for a histogram.""" bucket_id = db.IntegerProperty(required=True) property_name = db.StringProperty(required=True) @classmethod def get_all(self): output = {} buckets = self.all().fetch(None) for bucket in buckets: output[bucket.bucket_id] = bucket.property_name return output class CssPropertyHistogram(HistogramModel): pass class FeatureObserverHistogram(HistogramModel): pass
apache-2.0
-64,401,349,025,948,410
32.680952
155
0.66186
false
pferreir/indico-backup
indico/MaKaC/registration.py
1
207929
# -*- coding: utf-8 -*- ## ## ## This file is part of Indico. ## Copyright (C) 2002 - 2014 European Organization for Nuclear Research (CERN). ## ## Indico is free software; you can redistribute it and/or ## modify it under the terms of the GNU General Public License as ## published by the Free Software Foundation; either version 3 of the ## License, or (at your option) any later version. ## ## Indico is distributed in the hope that it will be useful, but ## WITHOUT ANY WARRANTY; without even the implied warranty of ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ## General Public License for more details. ## ## You should have received a copy of the GNU General Public License ## along with Indico;if not, see <http://www.gnu.org/licenses/>. from flask import request import random, time from uuid import uuid4 from hashlib import md5 from datetime import datetime, timedelta from pytz import timezone from pytz import all_timezones from MaKaC.common.timezoneUtils import nowutc from persistent import Persistent from persistent.mapping import PersistentMapping from persistent.list import PersistentList import MaKaC from indico.core.db import eticket from MaKaC.common.Counter import Counter from MaKaC.errors import FormValuesError, MaKaCError from MaKaC.common.Locators import Locator from indico.core.config import Config from MaKaC.common.TemplateExec import inlineContextHelp import MaKaC.webinterface.urlHandlers as urlHandlers from MaKaC.common.info import HelperMaKaCInfo from MaKaC.webinterface.common.tools import strip_ml_tags from MaKaC.trashCan import TrashCanManager from MaKaC.webinterface.mail import GenericMailer, GenericNotification from MaKaC.i18n import _ from indico.util.i18n import i18nformat from indico.util.date_time import format_datetime, format_date from indico.util.string import safe_upper from MaKaC.webinterface.common.countries import CountryHolder import re import tempfile, os import string from MaKaC.webinterface.common.person_titles import TitlesRegistry from indico.util.fossilize import Fossilizable, fossilizes from indico.core.fossils.registration import IRegFormTextInputFieldFossil, IRegFormTelephoneInputFieldFossil, \ IRegFormTextareaInputFieldFossil, IRegFormNumberInputFieldFossil, IRegFormLabelInputFieldFossil, \ IRegFormCheckboxInputFieldFossil, IRegFormYesNoInputFieldFossil, IRegFormFileInputFieldFossil, \ IRegFormRadioItemFossil, IRegFormRadioGroupInputFieldFossil, IRegFormCountryInputFieldFossil, \ IRegFormDateInputFieldFossil, IRegFormGeneralFieldFossil, IRegFormGeneralSectionFossil, \ IRegFormFurtherInformationSectionFossil, IRegFormAccommodationTypeItemFossil, IRegFormAccommodationSectionFossil, \ IRegFormReasonParticipationSectionFossil, IRegFormRegistrationSessionItemFossil, IRegFormSessionSectionFossil, \ IRegFormSocialEventItemFossil, IRegFormSocialEventSectionFossil, IRegFormRegistrantFossil, \ IRegFormRegistrantBasicFossil, IRegFormRegistrantFullFossil, IRegFormSocialEventFossil, IRegFormMiscellaneousInfoGroupFossil PRICE_PATTERN = re.compile(r'^(\d+(?:[\.,]\d+)?)$') def stringToDate(str): months = {"January": 1, "February": 2, "March": 3, "April": 4, "May": 5, "June": 6, "July": 7, "August": 8, "September": 9, "October": 10, "November": 11, "December": 12} [day, month, year] = str.split("-") return datetime(int(year), months[month], int(day)) class RegistrationForm(Persistent): def __init__(self, conf, groupData=None, skipPersonalData=False): self._conf = conf if groupData is None: self.activated = False self.title = "Registration Form" self.announcement = "" self.usersLimit = 0 self.contactInfo = "" self.setStartRegistrationDate(nowutc()) self.setEndRegistrationDate(nowutc()) self.setModificationEndDate(None) self.setCurrency("not selected") else: self.activated = groupData.get("activated", False) self.title = groupData.get("name", "") self.announcement = groupData.get("announcement", "") self.usersLimit = groupData.get("limit", "") self.startRegistrationDate = groupData.get("startRegistrationDate", None) if self.startRegistrationDate is None: self.setStartRegistrationDate(nowutc()) self.endRegistrationDate = groupData.get("endRegistrationDate", None) if self.endRegistrationDate is None: self.setEndRegistrationDate(nowutc()) self._endExtraTimeAmount = 0 self._endExtraTimeUnit = 'days' self.modificationEndDate = groupData.get("modificationEndDate", None) #if self.modificationEndDate is None: # self.setModificationEndDate(nowutc()) self.contactInfo = groupData.get("contactInfo", "") self.setCurrency(groupData.get("Currency", "")) self.notification = Notification() self._eTicket = eticket.ETicket() # Status definition self._statuses = {} self._statusesGenerator = Counter() #Multiple-Subforms if not skipPersonalData: self.personalData = PersonalDataForm(self) #Simple-SubForms self.sessionsForm = SessionsForm() self.accommodationForm = AccommodationForm(self) self.reasonParticipationForm = ReasonParticipationForm() self.furtherInformation = FurtherInformationForm() self.socialEventForm = SocialEventForm(self) #General-SubForms self._generalSectionGenerator = Counter() self.generalSectionForms = {} if not skipPersonalData: self.addGeneralSectionForm(self.personalData, True) #All SortedForms self._sortedForms = [] if not skipPersonalData: self.addToSortedForms(self.personalData) self.addToSortedForms(self.reasonParticipationForm) self.addToSortedForms(self.sessionsForm) self.addToSortedForms(self.accommodationForm) self.addToSortedForms(self.socialEventForm) self.addToSortedForms(self.furtherInformation) self.setAllSessions() def clone(self, conference): form = RegistrationForm(conference, skipPersonalData=True) form.setConference(conference) form.setAnnouncement(self.getAnnouncement()) form.setContactInfo(self.getContactInfo()) form.setCurrency(self.getCurrency()) registrationPeriodEnd = self.getConference().getStartDate() - self.getEndRegistrationDate() registrationPeriodStart = self.getConference().getStartDate() - self.getStartRegistrationDate() form.setEndRegistrationDate(conference.getStartDate() - registrationPeriodEnd) form.setEndExtraTimeAmount(self.getEndExtraTimeAmount()) form.setEndExtraTimeUnit(self.getEndExtraTimeUnit()) form.setStartRegistrationDate(conference.getStartDate() - registrationPeriodStart) if self.getModificationEndDate(): registrationPeriodModifEndDate = self.getConference().getStartDate() - self.getModificationEndDate() form.setModificationEndDate(conference.getStartDate() - registrationPeriodModifEndDate) form.setTitle(self.getTitle()) form.setUsersLimit(self.getUsersLimit()) form.setActivated(self.isActivated()) form.setMandatoryAccount(self.isMandatoryAccount()) form.setNotificationSender(self.getNotificationSender()) form.setSendRegEmail(self.isSendRegEmail()) form.setSendReceiptEmail(self.isSendReceiptEmail()) form.setSendPaidEmail(self.isSendPaidEmail()) form.setAllSessions() form.notification = self.getNotification().clone() form._eTicket = self.getETicket().clone() form.personalData = self.getPersonalData().clone(form) form.generalSectionForms[form.personalData.getId()] = form.personalData acf = self.getAccommodationForm() if acf is not None: form.accommodationForm = acf.clone(form) fif = self.getFurtherInformationForm() if fif is not None: form.furtherInformation = fif.clone() rpf = self.getReasonParticipationForm() if rpf is not None: form.reasonParticipationForm = rpf.clone() form.setAllSessions() ses = self.getSessionsForm() if ses is not None: form.sessionsForm = ses.clone(form.sessionsForm.getSessionList()) sef = self.getSocialEventForm() if sef is not None: form.socialEventForm = sef.clone(form) form._sortedForms = [] for item in self.getSortedForms(): clonedItem = form.getSectionById(item.getId()) if clonedItem is None: # General Section, not cloned yet clonedItem = item.clone(form) form.generalSectionForms[clonedItem.getId()] = clonedItem form.addToSortedForms(clonedItem) return form def getCurrency(self): try: return self._currency except: self.setCurrency("not selected") return self._currency def setCurrency(self, currency): self._currency = currency def getConference(self): return self._conf getOwner = getConference def getTimezone(self): return self.getConference().getTimezone() def setConference(self, conf): self._conf = conf setOwner = setConference def setAllSessions(self): for ses in self._conf.getSessionList(): rs = RegistrationSession(ses, self) self.sessionsForm.addSession(rs) def isActivated(self): return self.activated def activate(self): self.activated = True def deactivate(self): self.activated = False def setActivated(self, value): self.activated = value def isMandatoryAccount(self): try: if self._mandatoryAccount: pass except AttributeError, e: self._mandatoryAccount = True return self._mandatoryAccount def setMandatoryAccount(self, v=True): self._mandatoryAccount = v def setNotificationSender(self, sender): self._notificationSender = sender def getNotificationSender(self): sender = None try: if self._notificationSender: sender = self._notificationSender except AttributeError, e: pass if not sender: self._notificationSender = self._conf.getSupportInfo().getEmail(returnNoReply=True).split(',', 1)[0] return self._notificationSender def isSendRegEmail(self): try: if self._sendRegEmail: pass except AttributeError, e: self._sendRegEmail = True return self._sendRegEmail def setSendRegEmail(self, v=True): self._sendRegEmail = v def isSendReceiptEmail(self): try: if self._sendReceiptEmail: pass except AttributeError, e: self._sendReceiptEmail = False return self._sendReceiptEmail def setSendReceiptEmail(self, v=True): self._sendReceiptEmail = v def isSendPaidEmail(self): try: if self._sendPaidEmail: pass except AttributeError, e: self._sendPaidEmail = False return self._sendPaidEmail def setSendPaidEmail(self, v=True): self._sendPaidEmail = v def setTitle(self, newName): self.title = newName.strip() def getTitle(self): return self.title def setAnnouncement(self, newDesc): self.announcement = newDesc.strip() def getAnnouncement(self): return self.announcement def setUsersLimit(self, newLimit): if isinstance(newLimit, int): self.usersLimit = newLimit elif isinstance(newLimit, str): if newLimit.strip() == "": self.usersLimit = 0 else: self.usersLimit = int(newLimit.strip()) if self.usersLimit < 0: self.usersLimit = 0 def getUsersLimit(self): return self.usersLimit def isFull(self): if self.usersLimit != 0: return len(self.getConference().getRegistrants()) >= self.usersLimit return False def setStartRegistrationDate(self, sd): self.startRegistrationDate = datetime(sd.year, sd.month, sd.day, 0, 0, 0) def getStartRegistrationDate(self): return timezone(self.getTimezone()).localize(self.startRegistrationDate) def setEndRegistrationDate(self, ed): self.endRegistrationDate = datetime(ed.year, ed.month, ed.day, 23, 59, 59) def getEndRegistrationDate(self): return timezone(self.getTimezone()).localize(self.endRegistrationDate) def getAllowedEndRegistrationDate(self): if self.getEndExtraTimeUnit() == 'days': delta = timedelta(days=self.getEndExtraTimeAmount()) else: delta = timedelta(weeks=self.getEndExtraTimeAmount()) return timezone(self.getTimezone()).localize(self.endRegistrationDate + delta) def setEndExtraTimeAmount(self, value): self._endExtraTimeAmount = value def getEndExtraTimeAmount(self): try: return self._endExtraTimeAmount except AttributeError: self._endExtraTimeAmount = 0 return self._endExtraTimeAmount def setEndExtraTimeUnit(self, value): self._endExtraTimeUnit = value def getEndExtraTimeUnit(self): try: return self._endExtraTimeUnit except AttributeError: self._endExtraTimeUnit = 'days' return self._endExtraTimeUnit def setModificationEndDate(self, ed): if ed: self.modificationEndDate = datetime(ed.year, ed.month, ed.day, 23, 59, 59) else: self.modificationEndDate = None def getModificationEndDate(self): try: if self.modificationEndDate: return timezone(self.getTimezone()).localize(self.modificationEndDate) except AttributeError, e: pass return None def inModificationPeriod(self): if self.getModificationEndDate() is None: return False date = nowutc() sd = self.getStartRegistrationDate() ed = self.getModificationEndDate() return date <= ed and date >= sd def inRegistrationPeriod(self, date=None): if date is None: date = nowutc() sd = self.getStartRegistrationDate() ed = self.getAllowedEndRegistrationDate() return date <= ed and date >= sd def setContactInfo(self, ci): self.contactInfo = ci def getContactInfo(self): return self.contactInfo def getStatuses(self): try: if self._statuses: pass except AttributeError, e: self._statuses = {} return self._statuses def _generateStatusId(self): try: if self._statusesGenerator: pass except AttributeError, e: self._statusesGenerator = Counter() return self._statusesGenerator def getStatusesList(self, sort=True): v = self.getStatuses().values() if sort: v.sort(Status._cmpCaption) return v def getStatusById(self, id): if self.getStatuses().has_key(id): return self.getStatuses()[id] return None def addStatus(self, st): st.setId(str(self._generateStatusId().newCount())) self.getStatuses()[st.getId()] = st self.notifyModification() def removeStatus(self, st): if self.getStatuses().has_key(st.getId()): del self.getStatuses()[st.getId()] self.notifyModification() def getNotification(self): try: if self.notification: pass except: self.notification = Notification() return self.notification def _convertPersonalData(self): if isinstance(self.personalData, PersonalDataForm): return pd = PersonalDataForm(self) self.addGeneralSectionForm(pd, True, 0) for f in pd.getSortedFields(): f.setDisabled(not self.personalData.getDataItem(f.getPDField()).isEnabled()) f.setMandatory(self.personalData.getDataItem(f.getPDField()).isMandatory()) for registrant in self.getConference().getRegistrants().itervalues(): mg = MiscellaneousInfoGroup(registrant, pd) registrant.addMiscellaneousGroup(mg) for f in pd.getSortedFields(): val = getattr(registrant, '_' + f.getPDField()) # radiobuttons are numerically indexed if f.getCaption() == "Title": try: val = str(TitlesRegistry._items.index(val)) except ValueError: # can happen for older events with obsolete titles val = "0" fakeParams = {f.getInput().getHTMLName(): val} f.getInput().setResponseValue(mg.getResponseItemById(f.getId()), fakeParams, registrant, mg, override=True, validate=False) self.personalData = pd def getPersonalData(self): self._convertPersonalData() return self.personalData def getFurtherInformationForm(self): return self.furtherInformation def getSessionsForm(self): return self.sessionsForm def getAccommodationForm(self): return self.accommodationForm def getSocialEventForm(self): return self.socialEventForm def getReasonParticipationForm(self): return self.reasonParticipationForm def getSectionById(self, id): if id == "reasonParticipation": return self.getReasonParticipationForm() if id == "sessions": return self.getSessionsForm() if id == "accommodation": return self.getAccommodationForm() if id == "socialEvents": return self.getSocialEventForm() if id == "furtherInformation": return self.getFurtherInformationForm() return self.getGeneralSectionFormById(id) def _getGeneralSectionGenerator(self): try: if self._generalSectionGenerator: pass except AttributeError, e: self._generalSectionGenerator = Counter() return self._generalSectionGenerator def getGeneralSectionForms(self): try: if self.generalSectionForms: pass except AttributeError, e: self.generalSectionForms = {} return self.generalSectionForms def getGeneralSectionFormById(self, id): return self.getGeneralSectionForms().get(id, None) def getGeneralSectionFormsList(self): return self.getGeneralSectionForms().values() def addGeneralSectionForm(self, gsf, preserveTitle=False, pos=None): id = str(self._getGeneralSectionGenerator().newCount()) while self.getGeneralSectionFormById(id) is not None: id = str(self._getGeneralSectionGenerator().newCount()) gsf.setId(id) if not preserveTitle: gsf.setTitle("Miscellaneous information %s" % gsf.getId()) self.generalSectionForms[gsf.getId()] = gsf self.addToSortedForms(gsf, pos) self.notifyModification() def removeGeneralSectionForm(self, gsf): if self.hasGeneralSectionForm(gsf): del self.generalSectionForms[gsf.getId()] self.removeFromSortedForms(gsf) self.notifyModification() def hasGeneralSectionForm(self, gsf): return self.getGeneralSectionForms().has_key(gsf.getId()) def getSortedForms(self): try: if self._sortedForms: pass except AttributeError, e: self._sortedForms = [] self.addToSortedForms(self.reasonParticipationForm) self.addToSortedForms(self.sessionsForm) self.addToSortedForms(self.accommodationForm) self.addToSortedForms(self.socialEventForm) self.addToSortedForms(self.furtherInformation) for gs in self.getGeneralSectionFormsList(): self.addToSortedForms(gs) return self._sortedForms def addToSortedForms(self, form, i=None): if i is None: i = len(self.getSortedForms()) try: self.getSortedForms().remove(form) except ValueError, e: pass self.getSortedForms().insert(i, form) self.notifyModification() return True def removeFromSortedForms(self, form): try: self.getSortedForms().remove(form) except ValueError, e: return False self.notifyModification() return True def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the RegistrationForm instance """ if self.getConference() is None: return Locator() lconf = self.getConference().getLocator() return lconf def notifyRegistrantRemoval(self, reg): acco = reg.getAccommodation() if acco is not None: accoType = acco.getAccommodationType() if accoType is not None: accoType.decreaseNoPlaces() for se in reg.getSocialEvents(): se.delete() # It'll decrease the no of places for mg in reg.getMiscellaneousGroupList(): for item in mg.getResponseItemList(): item.getGeneralField().getInput()._beforeValueChange(item, False) for attachment in reg.getAttachments().keys(): reg.deleteFile(attachment) def delete(self): self.getSessionsForm().clearSessionList() TrashCanManager().add(self) def recover(self): TrashCanManager().remove(self) def notifyModification(self): self._p_changed = 1 self._conf.notifyModification() def getETicket(self): try: return self._eTicket except AttributeError: self._eTicket = eticket.ETicket() return self._eTicket class Notification(Persistent): def __init__(self): self._toList = PersistentList() self._ccList = PersistentList() def clone(self): n = Notification() for t in self.getToList(): n.addToList(t) for c in self.getCCList(): n.addCCList(c) return n def getToList(self): return self._toList def setToList(self, tl): self._toList = tl def addToList(self, to): self._toList.append(to) def clearToList(self): self._toList = PersistentList() def getCCList(self): return self._ccList def setCCList(self, cl): self._ccList = cl def addCCList(self, cc): self._ccList.append(cc) def clearCCList(self): self._ccList = PersistentList() def _printSessions(self, sessionForm, sessionList): text = "" if sessionForm.isEnabled(): if sessionForm.getType() == "2priorities": session1 = i18nformat("""--_("not selected")--""") if len(sessionList) > 0: session1 = sessionList[0].getTitle() session2 = i18nformat("""--_("not selected")--""") if len(sessionList) > 1: session2 = sessionList[1].getTitle() text = i18nformat("""%s - _("First priority"): %s - _("Other option"): %s """) % (self._printTitle(sessionForm.getTitle()), session1, session2) else: sessionListText = [] for s in sessionList: sessionListText.append("\n%s" % s.getTitle()) text = """%s%s """ % (self._printTitle(sessionForm.getTitle()), "".join(sessionListText)) return text def _printAccommodation(self, accommodationForm, accommodation): text = "" if accommodationForm.isEnabled(): accoType = i18nformat("""--_("not selected")--""") if accommodation.getAccommodationType() is not None: accoType = accommodation.getAccommodationType().getCaption() text = i18nformat("""%s- _("Arrival date"): %s - _("Departure date"): %s - _("Accommodation type"): %s""") % (self._printTitle(accommodationForm.getTitle()), \ accommodation.getArrivalDate().strftime("%d %B %Y"), \ accommodation.getDepartureDate().strftime("%d %B %Y"), \ accoType) return text def _printSocialEvents(self, socialEventForm, socialEvents): text = "" if socialEventForm.isEnabled(): se = [] for item in socialEvents: se.append(_("- %s [%s place(s) needed]") % (item.getCaption(), item.getNoPlaces())) text = "" if se != []: text = """%s %s """ % (self._printTitle(socialEventForm.getTitle()), "\n".join(se) or i18nformat("""--_("No social events selected")--""")) return text def _printReasonParticipation(self, reasonParticipationForm, reasonParticipation): text = "" if reasonParticipationForm.isEnabled(): text = """%s%s """ % (self._printTitle(reasonParticipationForm.getTitle()), reasonParticipation) return text def _printTitle(self, title): sep = '-----------------------------------' return "\n%s\n%s\n%s\n\n" % (sep, title, sep) def _formatValue(self, fieldInput, value): try: value = str(fieldInput.getValueDisplay(value)) except: value = str(value).strip() if len(value) > 50: value = '\n\n%s\n' % value return value def _printMiscellaneousInfo(self, gs, mig): text = [] if gs.isEnabled(): if mig is not None: noitems = True text.append(self._printTitle(mig.getTitle())) #Mods to support sorting fields #for f in gs.getFields(): for f in gs.getSortedFields(): mii = mig.getResponseItemById(f.getId()) if mii is not None: noitems = False caption = mii.getCaption() value = mii.getValue() fieldInput = mii.getGeneralField().getInput() isLabel = isinstance(fieldInput, LabelInput) if isLabel and mii.isBillable(): value = "%s %s" % (mii.getPrice(), mii.getCurrency()) elif isLabel: value = "" if isLabel and not value: text.append("""- %s\n""" % caption) else: text.append("""- %s: %s\n""" % (caption, self._formatValue(fieldInput, value))) if noitems: text.append("""-- no values --\n""") text.append("\n") return "".join(text) def _printAllSections(self, regForm, rp): sects = [] for formSection in regForm.getSortedForms(): if formSection.getId() == "reasonParticipation": sects.append("""\n%s""" % self._printReasonParticipation(formSection, rp.getReasonParticipation())) elif formSection.getId() == "sessions": sects.append("""\n%s""" % self._printSessions(formSection, rp.getSessionList())) elif formSection.getId() == "accommodation": sects.append("""\n%s""" % self._printAccommodation(formSection, rp.getAccommodation())) elif formSection.getId() == "socialEvents": sects.append("""\n%s""" % self._printSocialEvents(formSection, rp.getSocialEvents())) elif formSection.getId() == "furtherInformation": pass else: sects.append("""%s""" % self._printMiscellaneousInfo(formSection, rp.getMiscellaneousGroupById(formSection.getId()))) return "".join(s.decode('utf-8') for s in sects).encode('utf-8') def _cleanBody(self, body): # format the line-breaks in unix-style body = re.sub(r'\r\n', '\n', body) # clean the extra lines and space body = re.sub(r'\n(\s*\n){2,}', '\n\n', body) return body def createEmailNewRegistrant(self, regForm, rp): """ Creates an email to be sent to the user after registration """ fromAddr = regForm.getNotificationSender() url = urlHandlers.UHConferenceDisplay.getURL(regForm.getConference()) # if rp.getConference().getModPay().isActivated(): if rp.getConference().getModPay().isActivated() and rp.doPay(): epaymentLink = "If you haven't paid for your registration yet, you can do it at %s" % urlHandlers.UHConfRegistrationFormCreationDone.getURL(rp) paymentWarning = ", but please, do not forget to proceed with the payment if you haven't done it yet (see the link at the end of this email)." else: epaymentLink = "" paymentWarning = "." subject = _("""New registrant in '%s': %s""") % (strip_ml_tags(regForm.getConference().getTitle()), rp.getFullName()) body = i18nformat(""" _("Event"): %s _("Registrant Id"): %s %s """) % (url, rp.getId(), \ self._printAllSections(regForm, rp)) # send mail to organisers if self.getToList() != [] or self.getCCList() != []: bodyOrg = _(""" There is a new registrant (%s) in '%s'. See information below: %s """) % (rp.getFullName(), strip_ml_tags(regForm.getConference().getTitle()), body) bodyOrg = self._cleanBody(bodyOrg) maildata = {"fromAddr": fromAddr, "toList": self.getToList(), "ccList": self.getCCList(), "subject": subject, "body": bodyOrg} GenericMailer.send(GenericNotification(maildata)) # send mail to participant bodyReg = _(""" Congratulations, your registration to %s was successful%s See your information below: %s %s """) % (strip_ml_tags(regForm.getConference().getTitle()), paymentWarning, body, epaymentLink) return { "fromAddr": fromAddr, "toList": [rp.getEmail().strip()], "subject": subject, "body": self._cleanBody(bodyReg) } def sendEmailNewRegistrant(self, regForm, rp): """ Creates and sends an email to the user after registration. Returns True if suceeded otherwise False. """ email = self.createEmailNewRegistrant(regForm, rp) if email: GenericMailer.send(GenericNotification(email)) return True else: return False def sendEmailNewRegistrantDetailsPay(self, regForm, registrant): if not registrant.getConference().getModPay().isEnableSendEmailPaymentDetails(): return fromAddr = regForm.getNotificationSender() date = registrant.getConference().getStartDate() getTitle = strip_ml_tags(registrant.getConference().getTitle()) idRegistrant = registrant.getIdPay() detailPayment = registrant.getConference().getModPay().getPaymentDetails() subject = _("""Payment summary for '%s': %s""") % (strip_ml_tags(registrant.getConference().getTitle()), registrant.getFullName()) body = _(""" Please use this information for your payment (except for e-payment):\n - date conference : %s - name conference : %s - registration id : %s - detail of payment : \n%s """) % (date, getTitle, idRegistrant, strip_ml_tags(detailPayment)) booking = [] total = 0 booking.append(_("""{0}{1}{2}{3}""".format("Quantity".ljust(20), "Item".ljust(50), "Unit price".ljust(15), "Cost".ljust(20)))) #All billable general fields for gsf in registrant.getMiscellaneousGroupList(): miscGroup = registrant.getMiscellaneousGroupById(gsf.getId()) if miscGroup is not None: for miscItem in miscGroup.getResponseItemList(): price = 0.0 quantity = 0 caption = miscItem.getCaption() currency = miscItem.getCurrency() value = "" if miscItem is not None: v = miscItem.getValue() if miscItem.isBillable(): value = miscItem.getValue() price = string.atof(miscItem.getPrice()) quantity = miscItem.getQuantity() total += price * quantity if value != "": value = ":%s" % value if(quantity > 0): booking.append("{0}{1}{2}{3}".format(str(quantity).ljust(20), "{0} : {1}{2}".format(miscGroup.getTitle(), caption, value).ljust(50), str(price).ljust(15), "{0} {1}".format(price * quantity, currency).ljust(20))) #All billable standard fields (accommodation, sessions, social events) for bf in registrant.getBilledForms(): for item in bf.getBilledItems(): caption = item.getCaption() currency = item.getCurrency() price = item.getPrice() quantity = item.getQuantity() total += price * quantity if quantity > 0: booking.append("\n{0}{1}{2}{3}".format(str(quantity).ljust(20), caption.ljust(50), str(price).ljust(15), "{0} {1}".format(price * quantity, currency).ljust(20))) booking.append("{0}{1}".format("TOTAL".ljust(85), "{0}{1}".format(total, regForm.getCurrency()).ljust(20))) # send email to organisers #if self.getToList() != [] or self.getCCList() != []: # bodyOrg = """ # There is a new registrant in '%s'. See information below: # # %s # """%(strip_ml_tags(registrant.getConference().getTitle()), \ # body) # maildata = { "fromAddr": fromAddr, "toList": self.getToList(), "ccList": self.getCCList(), "subject": subject, "body": bodyOrg } # GenericMailer.send(GenericNotification(maildata)) # send email to participants paymentMsg = _("If you haven't paid for your registration yet, you can do it at %s") % urlHandlers.UHConfRegistrationFormCreationDone.getURL(registrant) if registrant.getEmail().strip() != "": bodyReg = _("""%s\n\n%s\n\n%s\n\n%s""") % ( registrant.getConference().getModPay().getPaymentReceiptMsg(), "\n".join(booking), body, paymentMsg) to = registrant.getEmail().strip() maildata = { "fromAddr": fromAddr, "toList": [to], "subject": subject, "body": bodyReg } GenericMailer.send(GenericNotification(maildata)) def sendEmailNewRegistrantConfirmPay(self, regForm, registrant): fromAddr = regForm.getNotificationSender() date = registrant.getConference().getStartDate() getTitle = strip_ml_tags(registrant.getConference().getTitle()) idRegistrant = registrant.getIdPay() subject = _("""Payment successful for '%s': %s""") % (strip_ml_tags(registrant.getConference().getTitle()), registrant.getFullName()) body = _("""- detail of payment : \n%s - date conference : %s - name conference : %s - registration id : %s""") % (registrant.getTransactionInfo().getTransactionTxt(), date, getTitle, idRegistrant) booking = [] total = 0 booking.append("""Quantity\t\tItem\t\tunit.price\t\tCost""") for gsf in registrant.getMiscellaneousGroupList(): miscGroup = registrant.getMiscellaneousGroupById(gsf.getId()) if miscGroup is not None: for miscItem in miscGroup.getResponseItemList(): price = 0.0 quantity = 0 caption = miscItem.getCaption() currency = miscItem.getCurrency() v = "" if miscItem is not None: v = miscItem.getValue() if miscItem.isBillable(): v = miscItem.getValue() price = string.atof(miscItem.getPrice()) quantity = miscItem.getQuantity() total += price * quantity if v != "": v = ":%s" % v if(quantity > 0): booking.append("""%i\t\t%s : %s%s\t\t%s\t\t%s %s""" % \ (quantity, gsf.getTitle(), caption, v, price, price * quantity, currency)) for bf in registrant.getBilledForms(): for item in bf.getBilledItems(): caption = item.getCaption() currency = item.getCurrency() price = item.getPrice() quantity = item.getQuantity() total += price * quantity if quantity > 0: booking.append("""%i\t\t%s\t\t%s\t\t%s %s""" % (quantity, caption, price, price * quantity, currency)) booking.append("""\nTOTAL\t\t\t\t\t\t\t%s %s""" % (total, regForm.getCurrency())) # send email to organisers if self.getToList() != [] or self.getCCList() != []: bodyOrg = _(""" There is a new registrant (%s) in '%s'. See information below: %s """) % (registrant.getFullName(), strip_ml_tags(registrant.getConference().getTitle()), body) maildata = { "fromAddr": fromAddr, "toList": self.getToList(), "ccList": self.getCCList(), "subject": subject, "body": bodyOrg } GenericMailer.send(GenericNotification(maildata)) # send email to participant if regForm.isSendPaidEmail() and registrant.getEmail().strip() != "": bodyReg = _("""%s\n\n%s\n\n%s""") % (registrant.getConference().getModPay().getPaymentSuccessMsg(), "\n".join(booking), body) to = registrant.getEmail().strip() maildata = { "fromAddr": fromAddr, "toList": [to], "subject": subject, "body": bodyReg } GenericMailer.send(GenericNotification(maildata)) def sendEmailModificationRegistrant(self, regForm, rp): fromAddr = regForm.getNotificationSender() subject = _("""Registration modified for '%s': %s""") % (strip_ml_tags(regForm.getConference().getTitle()), rp.getFullName()) body = i18nformat(""" _("Registrant Id"): %s _("Title"): %s _("Family Name"): %s _("First Name"): %s _("Position"): %s _("Institution"): %s _("Address"): %s _("City"): %s _("Country"): %s _("Phone"): %s _("Fax"): %s _("Email"): %s _("Personal Homepage"): %s %s """) % (rp.getId(), \ rp.getTitle(), \ rp.getFamilyName(), \ rp.getFirstName(), \ rp.getPosition(), \ rp.getInstitution(), \ rp.getAddress(), \ rp.getCity(), \ rp.getCountry(), \ rp.getPhone(), \ rp.getFax(), \ rp.getEmail(), \ rp.getPersonalHomepage(), \ self._printAllSections(regForm, rp)) if self.getToList() != [] or self.getCCList() != []: bodyOrg = _(""" A registrant (%s) has modified his/her registration for '%s'. See information below: %s """) % (rp.getFullName(), strip_ml_tags(regForm.getConference().getTitle()), body) bodyOrg = self._cleanBody(bodyOrg) maildata = { "fromAddr": fromAddr, "toList": self.getToList(), "ccList": self.getCCList(), "subject": subject, "body": bodyOrg } GenericMailer.send(GenericNotification(maildata)) def exportXml(self, xmlGen): """Write xml tags about this object in the given xml generator of type XMLGen.""" xmlGen.openTag("notification") xmlGen.writeTag("toList", ", ".join(self.getToList())) xmlGen.writeTag("ccList", ", ".join(self.getCCList())) xmlGen.closeTag("notification") class BaseForm(Persistent): """ Base class for registration forms It includes iterators/getters, provided if the class attribute _iterableContainer is present. _iterableContainer is a simple workaround for the problem of having a generic iterator interface over all the forms, even if the initial design didn't unify the form container into a BaseForm attribute. Since it is too late now for redesigning the DB schema, this attribute kind of fixes it. """ # should be overloaded if iteration is to be provided _iterableContainer = None def __init__(self): self._enabled = True # it means that the form cannot be used either in the registration display or in the management area. def setEnabled(self, v): self._enabled = v def isEnabled(self): try: if self._enabled: pass except AttributeError, e: self._enabled = True return self._enabled def __iter__(self): return getattr(self, self._iterableContainer).__iter__(); def __getitem__(self, key): return getattr(self, self._iterableContainer)[key] class FieldInputType(Persistent): _id = "" _useLabelCol = True _wholeRow = False def __init__(self, field): self._parent = field def getValues(self): return {} def setValues(self, data): pass def getParent(self): return self._parent def setId(cls, id): cls._id = id setId = classmethod(setId) def getId(cls): return cls._id getId = classmethod(getId) def getName(cls): return cls._id getName = classmethod(getName) def getHTMLName(self): """ This method returns the indentifier of the field item in the web form. """ return "*genfield*%s-%s" % (self.getParent().getParent().getId(), self.getParent().getId()) def getModifLabelCol(self): if not self._useLabelCol: return "" return self._parent.getCaption() def useWholeRow(self): return self._wholeRow def getMandatoryCol(self, item): mandatory = "" if (item is not None and item.isMandatory()) or self.getParent().isMandatory(): mandatory = """<span class="regFormMandatoryField">*</span>""" return mandatory def getModifHTML(self, item, registrant, default=""): """ Method that display the form web which represents this object. """ return "<table><tr>%s</tr></table>" % (self._getModifHTML(item, registrant, default)) def _getModifHTML(self, item, registrant, default=""): """ Method that should be overwritten by the classes inheriting from this one in order to display the form web which represents this object. """ return "" def setResponseValue(self, item, params, registrant, mg=None, override=False, validate=True): """ This method shouldn't be called from the classes inheriting from this one (FieldInputType). This method fills the attribute "item" (MiscellaneousInfoSimpleItem) with the value the user wrote in the registration form. """ if item is None: item = MiscellaneousInfoSimpleItem(mg, self.getParent()) mg.addResponseItem(item) self._beforeValueChange(item, True) else: self._beforeValueChange(item, False) self._setResponseValue(item, params, registrant, override=override, validate=validate) self._afterValueChange(item) def _beforeValueChange(self, item, newItem): # if the item had a quantity, make the place available again if not newItem and item.getQuantity(): self.getParent().decreaseNoPlaces() def _afterValueChange(self, item): # if the item has a quantity now, make the place unavailable if item.getQuantity(): self.getParent().increaseNoPlaces() def _setResponseValue(self, item, registrant, params, override=False, validate=True): """ Method that should be overwritten by the classes inheriting from this one in order to get the value written in the form. """ pass def _getSpecialOptionsHTML(self): price = self._parent.getPrice() billable = self._parent.isBillable() checked = "" if billable: checked = "checked=\"checked\"" html = i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">Is Billable</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="checkbox" name="billable" size="60" %s> _("(uncheck if it is not billable)") </td> </tr> <tr> <td class="titleCellTD"><span class="titleCellFormat"> _("Price")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="price" size="60" value=%s> </td> </tr> """) % (checked, price) return "".join(html) def _getDescriptionHTML(self, description): return """<span class="inputDescription">%s</span>""" % description def clone(self, gf): fi = FieldInputs().getAvailableInputKlassById(self.getId())(gf) return fi class TextInput(FieldInputType, Fossilizable): fossilizes(IRegFormTextInputFieldFossil) _id = "text" def getName(cls): return "Text" getName = classmethod(getName) def __init__(self, field): FieldInputType.__init__(self, field) self._length = '' def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() htmlName = self.getHTMLName() v = default if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() htmlName = item.getHTMLName() disable = "" if (registrant is not None and billable and registrant.getPayed()): disable = "disabled=\"true\"" #pass if self._parent.getPDField() == 'email': param = """<script>addParam($E('%s'), 'email', %s);</script>""" % (htmlName, 'false' if self._parent.isMandatory() else 'true') elif self._parent.isMandatory(): param = """<script>addParam($E('%s'), 'text', false);</script>""" % htmlName else: param = '' if self.getLength(): length = 'size="%s"' % self.getLength() else: length = 'size="60"' tmp = """<input type="text" id="%s" name="%s" value="%s" %s %s >%s""" % (htmlName, htmlName, v , disable, length, param) tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp if billable: tmp = """%s&nbsp;&nbsp;%s&nbsp;&nbsp;%s</td> """ % (tmp, price, currency) else: tmp = """%s </td> """ % tmp if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable()): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return v = params.get(self.getHTMLName(), "") if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) item.setQuantity(0) item.setValue(v) #item.setBillable(self._parent.isBillable()) #item.setPrice(self._parent.getPrice()) #item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): return i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Size in chars")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="length" value="%s" /> </td> </tr>""" % self.getLength()) def clone(self, gf): ti = FieldInputType.clone(self, gf) ti.setLength(self.getLength()) return ti def getValues(self): d = {} d["length"] = self.getLength() return d def setValues(self, data): if data.has_key("length"): self.setLength(data.get("length")) def getLength(self): try: if self._length: pass except AttributeError: self._length = '' return self._length def setLength(self, value): self._length = value class TelephoneInput(FieldInputType, Fossilizable): fossilizes(IRegFormTelephoneInputFieldFossil) _id = "telephone" _REGEX = r'^(\(\+\d*\)|\+)?\s*(\d(\s*|\-))+$' _PATTERN = re.compile(_REGEX) def getName(cls): return "Telephone" getName = classmethod(getName) def __init__(self, field): FieldInputType.__init__(self, field) self._length = '' def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() htmlName = self.getHTMLName() v = default if item is not None: v = item.getValue() htmlName = item.getHTMLName() disable = "" if self._parent.isMandatory(): param = """<script> addParam($E('%s'), 'text', false, function(value) { if (!/%s/.test(value)) { return "Invalid phone number format"; } }); </script>""" % (htmlName, TelephoneInput._REGEX) else: param = '' if self.getLength(): length = 'size="%s"' % self.getLength() else: length = 'size="30"' format = """&nbsp;<span class="inputDescription">(+) 999 99 99 99</span>""" tmp = """<input type="text" id="%s" name="%s" value="%s" %s %s>%s%s""" % (htmlName, htmlName, v , disable, length, format, param) tmp = """ <td>%s</td>""" % tmp if description: tmp = """%s</tr><tr><td>%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): v = params.get(self.getHTMLName(), "") if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) if validate and v.strip() != '' and not TelephoneInput._PATTERN.match(v): raise FormValuesError(_("The field \"%s\" is in wrong format. Please fill it in the correct format: (+) 999 99 99 99") % self.getParent().getCaption()) v = re.sub(r'\s+|\-+', '', v) item.setQuantity(0) item.setValue(v) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): return i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Size in chars")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="length" value="%s" /> </td> </tr>""" % self.getLength()) def clone(self, gf): ti = FieldInputType.clone(self, gf) ti.setLength(self.getLength()) return ti def getValues(self): d = {} d["length"] = self.getLength() return d def setValues(self, data): if data.has_key("length"): self.setLength(data.get("length")) def getLength(self): try: if self._length: pass except AttributeError: self._length = '' return self._length def setLength(self, value): self._length = value class TextareaInput(FieldInputType, Fossilizable): fossilizes(IRegFormTextareaInputFieldFossil) _id = "textarea" def getName(cls): return "Textarea" getName = classmethod(getName) def __init__(self, field): FieldInputType.__init__(self, field) self._numberOfRows = '' self._numberOfColumns = '' def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() htmlName = self.getHTMLName() v = default if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() htmlName = item.getHTMLName() disable = "" if (registrant is not None and billable and registrant.getPayed()): disable = "disabled=\"true\"" #pass if description: desc = """%s<br/>""" % self._getDescriptionHTML(description) else: desc = '' if self._parent.isMandatory(): param = """<script>addParam($E('%s'), 'text', false);</script>""" % htmlName else: param = '' cols = self.getNumberOfColumns() if not cols: cols = 60 rows = self.getNumberOfRows() if not rows: rows = 4 tmp = """%s<textarea id="%s" name="%s" cols="%s" rows="%s" %s >%s</textarea>%s""" % (desc, htmlName, htmlName, cols, rows, disable, v, param) tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp tmp = """%s </td> """ % tmp return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable()): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return v = params.get(self.getHTMLName(), "") if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) item.setQuantity(0) item.setValue(v) #item.setBillable(self._parent.isBillable()) #item.setPrice(self._parent.getPrice()) #item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): html = [i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Number of rows")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="numberOfRows" value="%s" /> </td> </tr>""") % self.getNumberOfRows()] html.append(i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Row length")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="numberOfColumns" value="%s" /> </td> </tr>""") % self.getNumberOfColumns()) return "".join(html) def clone(self, gf): ti = FieldInputType.clone(self, gf) ti.setNumberOfRows(self.getNumberOfRows()) ti.setNumberOfColumns(self.getNumberOfColumns()) return ti def getValues(self): d = {} d["numberOfRows"] = self.getNumberOfRows() d["numberOfColumns"] = self.getNumberOfColumns() return d def setValues(self, data): if data.has_key("numberOfRows"): self.setNumberOfRows(data.get("numberOfRows")) if data.has_key("numberOfColumns"): self.setNumberOfColumns(data.get("numberOfColumns")) def getNumberOfRows(self): try: if self._numberOfRows: pass except AttributeError: self._numberOfRows = '' return self._numberOfRows def setNumberOfRows(self, value): self._numberOfRows = value def getNumberOfColumns(self): try: if self._numberOfColumns: pass except AttributeError: self._numberOfColumns = '' return self._numberOfColumns def setNumberOfColumns(self, value): self._numberOfColumns = value class NumberInput(FieldInputType, Fossilizable): fossilizes(IRegFormNumberInputFieldFossil) _id = "number" _useLabelCol = False def getName(cls): return "Number" getName = classmethod(getName) def __init__(self, field): FieldInputType.__init__(self, field) self._length = '' self._minValue = 0 def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() htmlName = self.getHTMLName() v = default or self.getMinValue() if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() htmlName = item.getHTMLName() mandat = "false" if self._parent.isMandatory() else "true" if self.getMinValue() != 0: extra_check = "IndicoUtil.validate_number({minimum:%s})" % self.getMinValue() else: extra_check = "function(){}" param = """<script>addParam($E('%s'), 'non_negative_int', %s, %s);</script>""" % (htmlName, mandat, extra_check) disable = "" if (registrant is not None and billable and registrant.getPayed()): disable = "disabled=\"true\"" #pass if self.getLength(): length = 'size="%s"' % self.getLength() else: length = 'size="6"' onkeyup = "" if billable: onkeyup = """onkeyup=" var value = ((isNaN(parseInt(this.value, 10)) || parseInt(this.value, 10) < 0) ? 0 : parseInt(this.value, 10)) * %s; $E('subtotal-%s').dom.innerHTML = parseInt(value) === parseFloat(value) ? value : value.toFixed(2);" """ % (price, htmlName) tmp = """<input type="text" id="%s" name="%s" value="%s" %s %s %s /> %s""" % (htmlName, htmlName, v, onkeyup, disable, length, param) tmp = """ <td>%s</td>""" % tmp if billable: subTotal = (float(price) * int(v) or 0) tmp = """%s<td align="right" align="bottom">&nbsp;&nbsp;<span>%s&nbsp;%s</span><span class="regFormSubtotal">Total: <span id="subtotal-%s">%s</span>&nbsp;%s</span></td> """ % (tmp, price, currency, htmlName, subTotal, currency) if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): v = params.get(self.getHTMLName(), "") quantity = 0 if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable() ): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) if not override and self.getParent().isMandatory() and (not v.isalnum() or int(v) < 0): raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it with a number.") % self.getParent().getCaption()) if not v.isalnum() or int(v) < 1: quantity = 0 else: quantity = int(v) if v.strip() != '' and quantity < self.getMinValue(): raise FormValuesError(_("The field \"%s\" needs to be filled with a number greater than or equal to %d.") % (self.getParent().getCaption(), self.getMinValue())) item.setQuantity(quantity) item.setValue(quantity) item.setBillable(self._parent.isBillable()) item.setPrice(self._parent.getPrice()) item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): price = self._parent.getPrice() billable = self._parent.isBillable() checked = "" if billable: checked = "checked=\"checked\"" return i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Min. value")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="minValue" value="%s" /> </td> </tr> <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Size in chars")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="length" value="%s" /> </td> </tr> <tr> <td class="titleCellTD"><span class="titleCellFormat">Is Billable</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="checkbox" name="billable" size="60" %s> _("(uncheck if it is not billable)") </td> </tr> <tr> <td class="titleCellTD"><span class="titleCellFormat"> _("Price (multiplied with entered number)")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="price" size="60" value=%s> </td> </tr>""" % (self.getMinValue(), self.getLength(), checked, price)) def clone(self, gf): ni = FieldInputType.clone(self, gf) ni.setLength(self.getLength()) ni.setMinValue(self.getMinValue()) return ni def getValues(self): d = {} d["length"] = self.getLength() d["minValue"] = self.getMinValue() return d def setValues(self, data): if data.has_key("length"): self.setLength(data.get("length")) if data.has_key("minValue"): self.setMinValue(int(data.get("minValue") or 0)) def getLength(self): try: if self._length: pass except AttributeError: self._length = '' return self._length def setLength(self, value): self._length = value def getMinValue(self): try: if self._minValue: pass except AttributeError: self._minValue = 0 return self._minValue def setMinValue(self, value): self._minValue = value def getModifLabelCol(self): return self._parent.getCaption() class LabelInput(FieldInputType, Fossilizable): fossilizes(IRegFormLabelInputFieldFossil) _id = "label" _wholeRow = True def getName(cls): return "Label" getName = classmethod(getName) def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() v = default if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() #pass tmp = """ <td align="right" valign="bottom">""" if billable: tmp = """%s&nbsp;&nbsp;%s&nbsp;%s</td> """ % (tmp, price, currency) else: tmp = """%s </td> """ % tmp if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable()): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return #item.setQuantity(0) #else: item.setQuantity(1) item.setValue("") item.setBillable(self._parent.isBillable()) item.setPrice(self._parent.getPrice()) item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) #v=params.get(self.getHTMLName(),"") #if self.getParent().isMandatory() and v.strip()=="": # raise FormValuesError("The field \"%s\" is mandatory. Please fill it."%self.getParent().getCaption()) #item.setValue(v) class CheckboxInput(FieldInputType, Fossilizable): fossilizes(IRegFormCheckboxInputFieldFossil) _id = "checkbox" _useLabelCol = False def getName(cls): return "Multiple choices/checkbox" getName = classmethod(getName) def _getModifHTML(self, item, registrant, default=""): disable = "" checked = "" mandatory = "" caption = self._parent.getCaption() description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() htmlName = self.getHTMLName() v = default quantity = 0 if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() htmlName = item.getHTMLName() quantity = item.getQuantity() mandatory = """<span class="regFormMandatoryField">*</span>""" if self._parent.isMandatory() else "" if (registrant is not None and billable and registrant.getPayed()) or (not self.getParent().hasAvailablePlaces() and not quantity): disable = "disabled=\"disabled\"" if v == "yes": checked = "checked=\"checked\"" pm = '' if self._parent.isMandatory(): pm = """<script>addParam($E('%s'), 'checkBox', false);</script>""" % htmlName tmp = """<input type="checkbox" id="%s" name="%s" %s %s> %s %s%s""" % (htmlName, htmlName, checked, disable, caption, mandatory, pm) tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp if billable: tmp = """%s&nbsp;&nbsp;%s&nbsp;%s """ % (tmp, price, currency) if self.getParent().getPlacesLimit(): tmp += """&nbsp;<span class='placesLeft'>[%s place(s) left]</span>""" % (self.getParent().getNoPlacesLeft()) tmp += """</td>""" if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable()): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return if params.has_key(self.getHTMLName()): item.setValue("yes") item.setQuantity(1) elif not override and self.getParent().isMandatory(): raise FormValuesError(_('The checkbox "%s" is mandatory. Please enable it.') % self.getParent().getCaption()) else: item.setValue("no") item.setQuantity(0) item.setBillable(self._parent.isBillable()) item.setPrice(self._parent.getPrice()) item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): html = FieldInputType._getSpecialOptionsHTML(self) html += i18nformat("""<tr> <td class="titleCellTD"><span class="titleCellFormat"> _("Places (0 for unlimited)")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="placesLimit" size="60" value=%s> </td> </tr>""") % (self._parent.getPlacesLimit()) return html class YesNoInput(FieldInputType, Fossilizable): fossilizes(IRegFormYesNoInputFieldFossil) _id = "yes/no" def getName(cls): return "Yes/No" getName = classmethod(getName) def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() price = self._parent.getPrice() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() htmlName = self.getHTMLName() v = default if item is not None: v = item.getValue() price = item.getPrice() billable = item.isBillable() currency = item.getCurrency() htmlName = item.getHTMLName() disable = "" if self._parent.isMandatory(): param = """<script>addParam($E('%s'), 'text', false);</script>""" % htmlName else: param = '' checkedYes = "" checkedNo = "" if (registrant is not None and billable and registrant.getPayed()): disable = "disabled=\"true\"" #pass if v == "yes": checkedYes = "selected" elif v == "no": checkedNo = "selected" placesInfo = "" if self.getParent().getPlacesLimit(): placesInfo = """&nbsp;[%s place(s) left]""" % (self.getParent().getNoPlacesLeft()) if v != "yes" and not self.getParent().hasAvailablePlaces(): checkedYes += " disabled" tmp = """<select id="%s" name="%s" %s><option value="">-- Choose a value --</option><option value="yes" %s>yes%s</option><option value="no" %s>no</option></select>%s""" % (htmlName, htmlName, disable, checkedYes, placesInfo, checkedNo, param) tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp if billable: tmp = """%s&nbsp;&nbsp;%s&nbsp;%s</td> """ % (tmp, price, currency) else: tmp = """%s </td> """ % tmp if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if ( item is not None and item.isBillable()): # return ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return v = params.get(self.getHTMLName()) if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) if v == "yes": item.setQuantity(1) else: item.setQuantity(0) item.setValue(v) item.setBillable(self._parent.isBillable()) item.setPrice(self._parent.getPrice()) item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): html = FieldInputType._getSpecialOptionsHTML(self) html += i18nformat("""<tr> <td class="titleCellTD"><span class="titleCellFormat"> _("Places (0 for unlimited)")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="placesLimit" size="60" value=%s> </td> </tr>""") % (self._parent.getPlacesLimit()) return html class FileInput(FieldInputType, Fossilizable): fossilizes(IRegFormFileInputFieldFossil) _id = "file" def getName(cls): return "File" getName = classmethod(getName) def getValueDisplay(self, value): uh = (urlHandlers.UHRegistrantAttachmentFileAccess if request.blueprint == 'event_mgmt' else urlHandlers.UHFileAccess) return """<a href="%s">%s</a>""" % (uh.getURL(value), value.getFileName()) def _getModifHTML(self, item, registrant, default=None): from MaKaC.webinterface.pages.registrationForm import WFileInputField wc = WFileInputField(self, item, default) return wc.getHTML() def _setResponseValue(self, item, params, registrant, override=False, validate=True): v = params.get(self.getHTMLName(), "") newValueEmpty = v.strip() == "" if isinstance(v, str) else v.filename == "" if not override and self.getParent().isMandatory() and newValueEmpty: raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) # There was no file saved on DB if item.getValue() is None: if not newValueEmpty: # user submits a new file f = registrant.saveFile(v) item.setValue(f) # There was already a file on DB # if 'str': it means that we are receiving the name of the already existing file. Do not modify. # if file descriptor: replace previous file with new one # if 'empty' value: just remove elif not isinstance(v, str): # delete registrant.deleteFile(item.getValue().getId()) item.setValue(None) # new file if not newValueEmpty: f = registrant.saveFile(v) item.setValue(f) def _getSpecialOptionsHTML(self): return "" def clone(self, gf): ti = FieldInputType.clone(self, gf) return ti class RadioItem(Persistent, Fossilizable): fossilizes(IRegFormRadioItemFossil) def __init__(self, parent): self._parent = parent self._id = "" self._caption = "" self._billable = False self._price = "" self._enabled = True self._placesLimit = 0 self._currentNoPlaces = 0 def setValues(self, data): if data.has_key("caption"): self.setCaption(data["caption"]) if data.has_key("isBillable"): self.setBillable(data["isBillable"]) if data.has_key("price"): self.setPrice(data["price"]) if data.has_key("isEnabled"): self.setEnabled(data["isEnabled"]) if data.has_key("placesLimit"): self.setPlacesLimit(data["placesLimit"]) def getId(self): return self._id def setId(self, id): self._id = id def getCaption(self): return self._caption def setCaption(self, cap): if self._caption != cap: self.updateRegistrantSelection(cap) self._caption = cap def setEnabled(self, en=True): self._enabled = en def isEnabled(self): try: return self._enabled except: self.setEnabled() return self._enabled def isBillable(self): try: return self._billable except: self._billable = False return self._billable def setBillable(self, v): self._billable = v def getPrice(self): try: return self._price except: self.setPrice(False) return self._price def setPrice(self, price): if price: match = PRICE_PATTERN.match(price) if match: price = match.group(1) else: raise MaKaCError(_('The price is in incorrect format!')) self._price = price def getPlacesLimit(self): try: if self._placesLimit: pass except AttributeError, e: self._placesLimit = 0 return self._placesLimit def setPlacesLimit(self, limit): if limit == "": limit = "0" try: l = int(limit) except ValueError: raise FormValuesError(_("Please enter a number for the limit of places")) self._placesLimit = l self.updateCurrentNoPlaces() def getCurrentNoPlaces(self): try: if self._currentNoPlaces: pass except AttributeError: self._currentNoPlaces = 0 return self._currentNoPlaces def hasAvailablePlaces(self): if not self.getPlacesLimit(): return True return (self.getCurrentNoPlaces() < self.getPlacesLimit()) def getNoPlacesLeft(self): return self.getPlacesLimit() - self.getCurrentNoPlaces() def increaseNoPlaces(self): if self.getPlacesLimit() > 0 : if self.getCurrentNoPlaces() >= self.getPlacesLimit(): raise FormValuesError(_("""The place limit has been exceeded.""")) self._currentNoPlaces += 1 def decreaseNoPlaces(self): if self.getPlacesLimit() > 0 and self.getCurrentNoPlaces() > 0: self._currentNoPlaces -= 1 def updateCurrentNoPlaces(self): # self -> RadioGroupInput -> GeneralField -> GeneralSectionForm gf = self._parent._parent self._currentNoPlaces = 0 gsf = gf._parent regform = gsf.getRegistrationForm() for reg in regform.getConference().getRegistrantsList(): mg = reg.getMiscellaneousGroupById(gsf.getId()) if not mg: continue gf.getId() # for some reason it's empty when calling it for the first time item = mg.getResponseItemById(gf.getId()) if item is not None and item.getQuantity() and item.getValue() == self.getCaption(): self.increaseNoPlaces() def updateRegistrantSelection(self, caption): gf = self._parent._parent self._currentNoPlaces = 0 gsf = gf._parent regform = gsf.getRegistrationForm() for reg in regform.getConference().getRegistrantsList(): mg = reg.getMiscellaneousGroupById(gsf.getId()) if not mg: continue item = mg.getResponseItemById(gf.getId()) if item is not None and item.getQuantity() and item.getValue() == self.getCaption(): item.setValue(caption) self.increaseNoPlaces() def clone(self, parent): ri = RadioItem(parent) ri.setCaption(self.getCaption()) ri.setBillable(self.isBillable()) ri.setPrice(self.getPrice()) ri.setEnabled(self.isEnabled()) ri.setPlacesLimit(self.getPlacesLimit()) return ri def _cmpCaption(r1, r2): return cmp(r1.getCaption(), r2.getCaption()) _cmpCaption = staticmethod(_cmpCaption) class RadioGroupInput(FieldInputType, Fossilizable): fossilizes(IRegFormRadioGroupInputFieldFossil) _id = "radio" def getName(cls): return "Multiple options/One choice" getName = classmethod(getName) def __init__(self, field): FieldInputType.__init__(self, field) self._items = [] self._radioItemGenerator = Counter() self._defaultItem = None self._inputType = "radiogroup" self._emptyCaption = '-- Choose a value --' def getValues(self): d = {} d["radioitems"] = [] for i in self.getItemsList(): tmp = {} tmp["caption"] = i.getCaption() tmp["billable"] = i.isBillable() tmp["price"] = i.getPrice() tmp["isEnabled"] = i.isEnabled() tmp["placesLimit"] = i.getPlacesLimit() tmp["id"] = i.getId() d["radioitems"].append(tmp) d["defaultItem"] = self.getDefaultItem() d["inputType"] = self.getInputType() d["emptyCaption"] = self.getEmptyCaption() return d def setValues(self, data): if "radioitems" in data: for i, itemValues in enumerate(data.get("radioitems", [])): item = self.getItemById(itemValues.get('id')) if item is None: self.createItem(itemValues, i) else: # remove else set and move if 'remove' in itemValues: self.removeItem(item) else: item.setValues(itemValues) self.addItem(item, i) if "defaultItem" in data: self.setDefaultItem(data.get("defaultItem", None)) if "inputType" in data: self._inputType = data.get("inputType") if "emptyCaption" in data: self._emptyCaption = data["emptyCaption"] def _beforeValueChange(self, item, newItem): # if the item had a quantity, make the place available again selected = self.getSelectedItem(item) if not newItem and selected: selected.decreaseNoPlaces() def _afterValueChange(self, item): # if the item has a quantity now, make the place unavailable selected = self.getSelectedItem(item) if selected: selected.increaseNoPlaces() def getSelectedItem(self, item): for val in self.getItemsList(): if val.getCaption() == item.getValue(): return val return None def getDefaultItem(self): try: if self._defaultItem: pass except AttributeError, e: self._defaultItem = None return self._defaultItem def setDefaultItem(self, caption): if caption == "": self._defaultItem = None else: self._defaultItem = caption def setDefaultItemById(self, id): item = self.getItemById(id) if item in self.getItemsList(): self.setDefaultItem(item.getCaption()) def changeItemById(self, id, caption=None, billable=None, price=None, places=None): item = self.getItemById(id) if item in self.getItemsList(): if caption: item.setCaption(caption) if billable and price: item.setBillable(billable) item.setPrice(price) if places or places == 0: # empty string doesn't change it, 0 does item.setPlacesLimit(places) def removePriceById(self, id): item = self.getItemById(id) if item in self.getItemsList(): item.setBillable(False) item.setPrice("") def setInputType(self, inputType): self._inputType = inputType def getInputType(self): try: if self._inputType: pass except AttributeError: self._inputType = "radiogroup" return self._inputType def getItemsList(self): if type(self._items) == dict: self._items = self._items.values() return self._items def addItem(self, item, i=None): if i is None: i = len(self.getItemsList()) if item in self.getItemsList(): self.removeItem(item) else: item.setId(str(self._getRadioItemGenerator().newCount())) self.getItemsList().insert(i, item) self.notifyModification() return True def createItem(self, itemValues, i=None): item = RadioItem(self) item.setValues(itemValues) self.addItem(item, i) def removeItem(self, item): if item in self.getItemsList(): self.getItemsList().remove(item) self.notifyModification() def removeItemById(self, id): return self.removeItem(self.getItemById(id)) def disableItemById(self, id): item = self.getItemById(id) if item in self.getItemsList(): item.setEnabled(not item.isEnabled()) self.notifyModification() def getItemById(self, id): for f in self.getItemsList(): if f.getId() == id: return f return None def notifyModification(self): self._p_changed = 1 def clone(self, gf): rgi = FieldInputType.clone(self, gf) for item in self.getItemsList(): rgi.addItem(item.clone(rgi)) rgi.setDefaultItem(self.getDefaultItem()) rgi.setInputType(self.getInputType()) return rgi def _getRadioItemGenerator(self): return self._radioItemGenerator def getEmptyCaption(self): try: return self._emptyCaption except: self._emptyCaption = '-- Choose a value --' return self._emptyCaption def _getRadioGroupModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() caption = self._parent.getCaption() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() value = default if item is not None: billable = item.isBillable() currency = item.getCurrency() value = item.getValue() tmp = ["""<td align="right" align="bottom" colspan="2"></td>"""] counter = 0 for val in self.getItemsList(): counter += 1 itemId = "%s_%s" % (self.getHTMLName(), counter) disable = "" if not val.isEnabled(): disable = "disabled=\"disabled\"" if (registrant is not None and (val.isBillable() or billable) and registrant.getPayed()): disable = "disabled=\"disabled\"" elif (not val.hasAvailablePlaces() and val.getCaption() != value): disable = "disabled=\"disabled\"" checked = "" if val.getCaption() == value: checked = "checked" elif not value and val.getCaption() == self.getDefaultItem(): checked = "checked" tmp.append("""<tr><td></td><td><input type="radio" id="%s" name="%s" value="%s" %s %s> %s</td><td align="right" style="vertical-align: bottom;" >""" % (itemId, self.getHTMLName(), val.getId(), checked, disable, val.getCaption())) if val.isBillable(): tmp.append("""&nbsp;&nbsp;%s&nbsp;%s""" % (val.getPrice(), currency)) tmp.append("""</td><td align="right" style="vertical-align: bottom;" >""") if val.getPlacesLimit(): tmp.append("""&nbsp;<span class='placesLeft'>[%s place(s) left]</span>""" % (val.getNoPlacesLeft())) tmp.append(""" </td></tr> """) if description: tmp.append("""<tr><td></td><td colspan="2">%s</td></tr>""" % (self._getDescriptionHTML(description))) if self._parent.isMandatory(): validator = """ for (var i=1; i<=%s; i++) { var item = $E('%s_' + i); if (item.dom.checked) { return true; } } new AlertPopup($T("Warning"), $T('You must select option for "%s"!')).open(); return false; """ % (counter, self.getHTMLName(), caption) script = """<script>addValidator(function() {%s});</script>""" % validator tmp.append(script) return "".join(tmp) def _getDropDownModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() billable = self._parent.isBillable() currency = self._parent.getParent().getRegistrationForm().getCurrency() value = default if item is not None: billable = item.isBillable() currency = item.getCurrency() value = item.getValue() if not value: value = self.getDefaultItem() if self._parent.isMandatory(): param = """<script>addParam($E('%s'), 'text', false);</script>""" % self.getHTMLName() else: param = '' tmp = [] tmp.append("""<td><select id="%s" name="%s">""" % (self.getHTMLName(), self.getHTMLName())) tmp.append("""<option value="">%s</option>""" % self.getEmptyCaption()) for radioItem in self.getItemsList(): if radioItem.isEnabled() and not (registrant is not None and (radioItem.isBillable() or billable) and registrant.getPayed()): placesInfo = "" if radioItem.getPlacesLimit(): placesInfo = """&nbsp;[%s place(s) left]""" % (radioItem.getNoPlacesLeft()) disabled = "" if (not radioItem.hasAvailablePlaces() and radioItem.getCaption() != value): disabled = " disabled='disabled'" selected = "" if radioItem.getCaption() == value: selected = " selected='selected'" else: selected = '' if radioItem.isBillable(): price = """&nbsp;&nbsp;%s&nbsp;%s """ % (radioItem.getPrice(), currency) else: price = '' tmp.append("""<option value="%s"%s%s>%s%s%s</option>""" % (radioItem.getId(), selected, disabled, radioItem.getCaption(), price, placesInfo)) tmp.append("""</select>%s</td>""" % param) if description: tmp.append("""<tr><td colspan="2">%s</td></tr>""" % (self._getDescriptionHTML(description))) return "".join(tmp) def _getModifHTML(self, item, registrant, default=""): if self.getInputType() == 'radiogroup': return self._getRadioGroupModifHTML(item, registrant, default) else: return self._getDropDownModifHTML(item, registrant, default) def _setResponseValue(self, item, params, registrant, override=False, validate=True): radioitemid = params.get(self.getHTMLName(), "") billable = False for val in self.getItemsList(): if val.isBillable(): billable = True if (registrant is not None and self._parent.isBillable() and registrant.getPayed()): #if (item is not None and billable): ####################### # if the registrant has already payed, Indico blocks all the modifications about new/removed items return if not override and self.getParent().isMandatory() and radioitemid.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) price = 0 quantity = 0 caption = "" if radioitemid.strip() != "": radioitem = self.getItemById(radioitemid) if radioitem is not None: caption = radioitem.getCaption() billable = radioitem.isBillable() price = radioitem.getPrice() quantity = 1 item.setCurrency(self._parent.getParent().getRegistrationForm().getCurrency()) item.setMandatory(self.getParent().isMandatory()) item.setValue(caption) item.setBillable(billable) item.setPrice(price) item.setQuantity(quantity) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): if self.getInputType() == 'radiogroup': radioSelected = ' selected="selected"' dropdownSelected = '' else: radioSelected = '' dropdownSelected = ' selected="selected"' if self.getParent().isLocked('input'): typeDisabled = ' disabled="disabled"' else: typeDisabled = '' html = [i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Type of input")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <select name="inputtype"%(typeDisabled)s> <option value="radiogroup"%(radioSelected)s>Radio group</option> <option value="dropdown"%(dropdownSelected)s>Drop-down menu</option> </select> </td> </tr> <tr> <td class="titleCellTD"><span class="titleCellFormat">Items</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <table>""") % dict(radioSelected=radioSelected, dropdownSelected=dropdownSelected, typeDisabled=typeDisabled)] html.append(i18nformat("""<tr> <td valign="top" align="left"> <table> <tr> <td class="blacktext"><span class="titleCellFormat"> _("Caption")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="newradioitem"> </td> </tr> <tr> <td class="blacktext"><span class="titleCellFormat"> _("Billable")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="checkbox" name="newbillable" > </td> </tr> <tr> <td class="blacktext"><span class="titleCellFormat"> _("Price")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="newprice"> </td> </tr> <tr> <td class="blacktext"><span class="titleCellFormat"> _("Places")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <input type="text" name="newplaces">%s </td> </tr> </table> </td> <td rowspan="2" valign="top" align="left"> <input type="submit" class="btn" name="addradioitem" value="_("add")" onfocus="addIsFocused = true;" onblur="addIsFocused = false;"><br> <input type="submit" class="btn" name="removeradioitem" value="_("remove")"><br> <input type="submit" class="btn" name="disableradioitem" value="_("enable/disable")"><br> <input type="submit" class="btn" name="defaultradioitem" value="_("set as default")"><br> <input type="submit" class="btn" name="changeradioitem" value="_("change")"><br> <input type="submit" class="btn" name="removeradioitemprice" value="_("remove price")"><br> </td> </tr> """) % inlineContextHelp(_('Use 0 for unlimited places'))) html.append("""<tr><td valign="top" align="left"><table>""") billable = False for v in self.getItemsList(): placesInfo = "" if v.getPlacesLimit(): placesInfo = " (%s places)" % (v.getPlacesLimit()) html.append(""" <tr> <td bgcolor="white" class="blacktext" ><input type="checkbox" name="radioitems" value="%s">%s%s</td> <td bgcolor="white" class="blacktext" > """ % (v.getId(), v.getCaption(), placesInfo)) if v.isBillable(): billable = True html.append(i18nformat("""<span class="titleCellFormat">&nbsp;&nbsp; _("Price"):%s</span>""") % (v.getPrice())) if not v.isEnabled(): html.append("""<span><font color="red">&nbsp;&nbsp;(""" + _("disabled") + """)</font></span>""") if v.getCaption() == self.getDefaultItem(): html.append("""<span><font color="green">&nbsp;&nbsp;(""" + _("default") + """)</font></span>""") html.append(""" </td> </tr> """) html.append("""</table></td></tr>""") if billable: html.append("""<input type="hidden" name="billable" value="">""") html.append("""</table></td></tr>""") return "".join(html) class CountryInput(FieldInputType, Fossilizable): fossilizes(IRegFormCountryInputFieldFossil) _id = "country" def getName(cls): return "Country" getName = classmethod(getName) def getValueDisplay(self, value): return CountryHolder().getCountryById(value) def getCountriesList(self): countryList = [] for countryKey in CountryHolder().getCountrySortedKeys(): country = {} country["countryKey"] = countryKey country["caption"] = CountryHolder().getCountryById(countryKey) countryList.append(country) return countryList def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() htmlName = self.getHTMLName() value = default if item is not None: value = item.getValue() htmlName = item.getHTMLName() disable = "" if self._parent.isMandatory(): param = """<script>addParam($E('%s'), 'text', false);</script>""" % htmlName else: param = '' inputHTML = i18nformat("""<option value="">-- _("Select a country") --</option>""") for countryKey in CountryHolder().getCountrySortedKeys(): selected = "" if value == countryKey: selected = "selected" inputHTML += """<option value="%s" %s>%s</option>""" % (countryKey, selected, CountryHolder().getCountryById(countryKey)) inputHTML = """<select id="%s" name="%s" %s>%s</select>%s""" % (htmlName, htmlName, disable, inputHTML, param) tmp = """ <td>%s</td>""" % inputHTML if description: tmp = """%s</tr><tr><td colspan="2">%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): v = params.get(self.getHTMLName(), "") if not override and self.getParent().isMandatory() and v.strip() == "": raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) item.setQuantity(0) item.setValue(v) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): return "" class DateInput(FieldInputType, Fossilizable): fossilizes(IRegFormDateInputFieldFossil) _id = "date" def __init__(self, field): FieldInputType.__init__(self, field) self.dateFormat = '' def getName(cls): return "Date" getName = classmethod(getName) def getValues(self): d = {} d["dateFormat"] = self.getDateFormat() return d def setValues(self, data): if data.has_key("dateFormat"): self.setDateFormat(data.get("dateFormat")) def clone(self, gf): di = FieldInputType.clone(self, gf) di.dateFormat = self.getDateFormat() return di def getDateFormat(self): if self.dateFormat == '': self.dateFormat = self.getDisplayFormats()[0][0] return self.dateFormat def setDateFormat(self, dateFormat): self.dateFormat = dateFormat def getDisplayFormats(self): return [('%d/%m/%Y %H:%M', 'DD/MM/YYYY hh:mm'), ('%d.%m.%Y %H:%M', 'DD.MM.YYYY hh:mm'), ('%m/%d/%Y %H:%M', 'MM/DD/YYYY hh:mm'), ('%m.%d.%Y %H:%M', 'MM.DD.YYYY hh:mm'), ('%Y/%m/%d %H:%M', 'YYYY/MM/DD hh:mm'), ('%Y.%m.%d %H:%M', 'YYYY.MM.DD hh:mm'), ('%d/%m/%Y', 'DD/MM/YYYY'), ('%d.%m.%Y', 'DD.MM.YYYY'), ('%m/%d/%Y', 'MM/DD/YYYY'), ('%m.%d.%Y', 'MM.DD.YYYY'), ('%Y/%m/%d', 'YYYY/MM/DD'), ('%Y.%m.%d', 'YYYY.MM.DD'), ('%m/%Y', 'MM/YYYY'), ('%m.%Y', 'MM.YYYY'), ('%Y', 'YYYY')] def getValueDisplay(self, value): if type(value) == datetime: return value.strftime(self.getDateFormat()) else: return value def getHTMLName(self): return "_genfield_%s_%s_" % (self.getParent().getParent().getId(), self.getParent().getId()) def _getModifHTML(self, item, registrant, default=""): description = self._parent.getDescription() if item is not None: date = item.getValue() htmlName = item.getHTMLName() else: date = default or None htmlName = self.getHTMLName() from MaKaC.webinterface.wcomponents import WDateField inputHTML = WDateField(htmlName, date, self.getDateFormat(), True, self._parent.isMandatory()).getHTML() dateFormat = self.getDateFormat() dateFormat = re.sub('%d', 'DD', dateFormat) dateFormat = re.sub('%m', 'MM', dateFormat) dateFormat = re.sub('%Y', 'YYYY', dateFormat) dateFormat = re.sub('%H', 'hh', dateFormat) dateFormat = re.sub('%M', 'mm', dateFormat) dformat = """&nbsp;<span class="inputDescription">%s</span>""" % dateFormat tmp = "%s %s" % (inputHTML, dformat) tmp = """ <td>%s</td><td align="right" align="bottom">""" % tmp tmp = """%s </td> """ % tmp if description: tmp = """%s</tr><tr><td>%s</td>""" % (tmp, self._getDescriptionHTML(description)) return tmp def _setResponseValue(self, item, params, registrant, override=False, validate=True): day = params.get('%sDay' % self.getHTMLName(), 1) or 1 month = params.get('%sMonth' % self.getHTMLName(), 1) or 1 year = params.get('%sYear' % self.getHTMLName()) hour = params.get('%sHour' % self.getHTMLName(), 0) or 0 minute = params.get('%sMin' % self.getHTMLName(), 0) or 0 if year: date = datetime(int(year), int(month), int(day), int(hour), int(minute)) item.setValue(date) elif not self._parent.isMandatory(): item.setValue(None) elif not override: raise FormValuesError(_("The field \"%s\" is mandatory. Please fill it.") % self.getParent().getCaption()) item.setMandatory(self.getParent().isMandatory()) item.setHTMLName(self.getHTMLName()) def _getSpecialOptionsHTML(self): formats = self.getDisplayFormats() html = [i18nformat(""" <tr> <td class="titleCellTD"><span class="titleCellFormat">_("Date format")</span></td> <td bgcolor="white" class="blacktext" width="100%%"> <select name="dateFormat">""")] for format, display in formats: if self.getDateFormat() == format: selected = ' selected="selected"' else: selected = '' html.append("""<option value="%s"%s>%s</option>""" % (format, selected, display)) html.append(_("""</select> </td> </tr>""")) return "".join(html) def _getFormatDisplayText(self): formats = self.getDisplayFormats() value = "" for dateFormat, display in formats: if self.getDateFormat() == dateFormat: value = display break return value class FieldInputs: _availableInputs = {TextInput.getId():TextInput, \ TextareaInput.getId(): TextareaInput, \ LabelInput.getId():LabelInput, \ NumberInput.getId():NumberInput, \ RadioGroupInput.getId():RadioGroupInput, \ CheckboxInput.getId():CheckboxInput, \ YesNoInput.getId(): YesNoInput, \ CountryInput.getId(): CountryInput, \ DateInput.getId(): DateInput, \ TelephoneInput.getId(): TelephoneInput, \ FileInput.getId(): FileInput } def getAvailableInputs(cls): return cls._availableInputs getAvailableInputs = classmethod(getAvailableInputs) def getAvailableInputKlassById(cls, id): return cls._availableInputs.get(id, None) getAvailableInputKlassById = classmethod(getAvailableInputKlassById) def getAvailableInputKeys(cls): return cls._availableInputs.keys() getAvailableInputKeys = classmethod(getAvailableInputKeys) class GeneralField(Persistent, Fossilizable): fossilizes(IRegFormGeneralFieldFossil) def __init__(self, parent, data=None): self._parent = parent self._id = "" if data is None: self._caption = "General Field" self._input = FieldInputs.getAvailableInputKlassById("text")(self) self._input.setValues(data) self._mandatory = False self._locked = () self._description = "" self._billable = False self._price = "0" self._placesLimit = 0 self._currentNoPlaces = 0 self._disabled = True self._pdField = None else: self._mandatory = False self.setValues(data, True) def clone(self, newsection): field = GeneralField(newsection, self.getValues()) return field def setValues(self, data, firstTime=False): caption = data.get("caption", "") if caption == "": caption = _("General Field") self.setCaption(caption) ## The following commented lines were removed, but it is unclear if they are not needed anymore. if firstTime: # or not self.isLocked('input'): self.setInput(FieldInputs.getAvailableInputKlassById(data.get("input", "text"))(self)) #else: # self.setInput(FieldInputs.getAvailableInputKlassById(self.getInput().getId())(self)) if data.has_key("inputObj"): self._input.setValues(data["inputObj"].getValues()) elif data.has_key('inputValues'): self._input.setValues(data["inputValues"]) else: self._input.setValues(data) if firstTime: self.setLocked(data.get("lock", ())) if self.isMandatory() and self.isLocked('mandatory'): self.setMandatory(True) else: self.setMandatory(data['mandatory'] if 'mandatory' in data else False) if self.isLocked('disable'): self.setDisabled(False) elif 'disabled' in data: self.setDisabled(data.get("disabled", False)) self.setBillable(data.get("billable", False)) self.setPrice(str(data.get("price", ""))) self.setPlacesLimit(data.get("placesLimit", "0")) self.setDescription(data.get("description", "")) if firstTime: self.setPDField(data.get("pd")) def getValues(self): values = {} values["caption"] = self.getCaption() values["input"] = self.getInput().getId() values["inputObj"] = self.getInput() values["lock"] = self.getLocked() values["mandatory"] = self.isMandatory() values["disabled"] = self.isDisabled() values["billable"] = self.isBillable() values["price"] = self.getPrice() values["placesLimit"] = self.getPlacesLimit() values["description"] = self.getDescription() values["pd"] = self.getPDField() return values def isTemporary(self): return False def setPDField(self, v): self._pdField = v def getPDField(self): try: return self._pdField except: self._pdField = None return self._pdField def isBillable(self): try: return self._billable except: self._billable = False return self._billable def setBillable(self, v): self._billable = v def getPrice(self): try: return self._price except: self._price = 0 return self._price def setPrice(self, price): if price: match = PRICE_PATTERN.match(price) if match: price = match.group(1) else: raise MaKaCError(_('The price is in incorrect format!')) self._price = price def getPlacesLimit(self): try: if self._placesLimit: pass except AttributeError, e: self._placesLimit = 0 return self._placesLimit def setPlacesLimit(self, limit): if limit == "": limit = "0" try: l = int(limit) except ValueError: raise FormValuesError(_("Please enter a number for the limit of places")) self._placesLimit = l self.updateCurrentNoPlaces() def getCurrentNoPlaces(self): try: if self._currentNoPlaces: pass except AttributeError: self._currentNoPlaces = 0 return self._currentNoPlaces def hasAvailablePlaces(self): if not self.getPlacesLimit(): return True return (self.getCurrentNoPlaces() < self.getPlacesLimit()) def getNoPlacesLeft(self): return self.getPlacesLimit() - self.getCurrentNoPlaces() def increaseNoPlaces(self): if self.getPlacesLimit() > 0: if self.getCurrentNoPlaces() >= self.getPlacesLimit(): raise FormValuesError(_("""The limit for the number of places is smaller than the current amount registered for this item.""")) self._currentNoPlaces += 1 def decreaseNoPlaces(self): if self.getPlacesLimit() > 0 and self.getCurrentNoPlaces() > 0: self._currentNoPlaces -= 1 def updateCurrentNoPlaces(self): self._currentNoPlaces = 0 if self._parent.getId() == '': # parent is not yet in the form return for reg in self._parent.getRegistrationForm().getConference().getRegistrantsList(): mg = reg.getMiscellaneousGroupById(self._parent.getId()) if mg: item = mg.getResponseItemById(self.getId()) if item is not None and item.getQuantity(): self.increaseNoPlaces() def getId(self): return self._id def setId(self, id): self._id = id def getCaption(self): return self._caption def setCaption(self, caption): self._caption = caption def getDescription(self): try: if self._description: pass except AttributeError: self._description = '' return self._description def setDescription(self, description): self._description = description def getInput(self): return self._input def setInput(self, input): self._input = input def isMandatory(self): return self._mandatory def setMandatory(self, v): self._mandatory = v def getLocked(self): try: return self._locked except: self._locked = () return self._locked def isLocked(self, what): return what in self.getLocked() def setLocked(self, v): self._locked = v def isDisabled(self): try: return self._disabled except: self._disabled = False return self._disabled def setDisabled(self, v): self._disabled = v def getParent(self): return self._parent def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the GeneralField instance """ if self.getParent() == None: return Locator() lconf = self.getParent().getLocator() lconf["sectionFieldId"] = self.getId() return lconf class GeneralSectionForm(BaseForm, Fossilizable): fossilizes(IRegFormGeneralSectionFossil) def __init__(self, regForm, data=None, required=False): BaseForm.__init__(self) self._regForm = regForm self._id = "" self._title = _("Miscellaneous information") self._description = "" self._required = required ##### #Mods to support sorting fields #self._fields=[] self._sortedFields = [] if data is not None: self._title = data.get("title", self._title) self._description = data.get("description", self._description) self._generalFieldGenerator = Counter() def setValues(self, data): title = data.get("title", "").strip() if title == "": title = _("Miscellaneous information %s") % self.getId() self.setTitle(title) self.setDescription(data.get("description", "")) if 'required' in data: self.setRequired(data['required']) def getValues(self): values = {} values["title"] = self.getTitle() values["description"] = self.getDescription() values["enabled"] = self.isEnabled() values["required"] = self.isRequired() return values def clone(self, regForm): gsf = GeneralSectionForm(regForm) gsf.setId(self.getId()) gsf.setValues(self.getValues()) gsf.setEnabled(self.isEnabled()) gsf.setRequired(self.isRequired()) #Mods to support sorting fields #for field in self.getFields(): for field in self.getSortedFields(): gsf.addToSortedFields(field.clone(gsf)) return gsf def getRegistrationForm(self): return self._regForm def getConference(self): return self._regForm.getConference() def _getGeneralFieldGenerator(self): return self._generalFieldGenerator def getId(self): return self._id def setId(self, id): self._id = id def getTitle(self): return self._title def setTitle(self, title): self._title = title def getDescription(self): return self._description def setDescription(self, description): self._description = description def isRequired(self): try: return self._required except: self._required = False return False def setRequired(self, required): self._required = required def getSortedFields(self): try: returnFields = self._sortedFields except AttributeError: self._sortedFields = self._fields returnFields = self._sortedFields return returnFields def addToSortedFields(self, f, i=None): if i is None: i = len(self.getSortedFields()) try: self.getSortedFields().remove(f) except ValueError, e: f.setId(str(self._getGeneralFieldGenerator().newCount())) self.getSortedFields().insert(i, f) self.notifyModification() return True def removeField(self, f): if f in self.getSortedFields(): self.getSortedFields().remove(f) self.notifyModification() def getFieldById(self, id): for f in self.getSortedFields(): if f.getId() == id: return f return None def getFieldPosById(self, id): for ind, f in enumerate(self.getSortedFields()): if f.getId() == id: return ind return None # #end mods ########## def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the GeneralSectionForm instance """ if self.getRegistrationForm().getConference() == None: return Locator() lconf = self.getRegistrationForm().getLocator() lconf["sectionFormId"] = self.getId() return lconf def notifyModification(self): self._p_changed = 1 class PersonalDataForm(GeneralSectionForm): def __init__(self, regForm, createFields=True): GeneralSectionForm.__init__(self, regForm, {'title': 'Personal Data'}, True) fields = ( { 'pd': 'title', 'caption': 'Title', 'input': 'radio', 'inputValues': { 'inputType':'dropdown', 'emptyCaption': '', 'radioitems': [{'caption':title} for title in TitlesRegistry.getList()] }, 'lock': ('input', 'delete') }, { 'pd':'firstName', 'caption':'First Name', 'mandatory':True, 'lock':('mandatory', 'input', 'delete', 'disable') }, { 'pd':'surname', 'caption':'Surname', 'mandatory':True, 'lock':('mandatory', 'input', 'delete', 'disable') }, { 'pd':'position', 'caption':'Position', 'lock':('input', 'delete') }, { 'pd':'institution', 'caption':'Institution', 'mandatory':True, 'lock':('input', 'delete') }, { 'pd':'address', 'caption':'Address', 'lock':('input', 'delete') }, { 'pd':'city', 'caption':'City', 'mandatory':True, 'lock':('input', 'delete') }, { 'pd':'country', 'caption':'Country', 'input':'country', 'mandatory':True, 'lock':('input', 'delete') }, { 'pd':'phone', 'caption':'Phone', 'input':'telephone', 'lock':('input', 'delete') }, { 'pd':'fax', 'caption':'Fax', 'input':'telephone', 'lock':('input', 'delete') }, { 'pd':'email', 'caption':'Email', 'mandatory':True, 'lock':('mandatory', 'input', 'delete', 'disable') }, { 'pd':'personalHomepage', 'caption':'Personal homepage', 'lock':('input', 'delete') }, ) self._pdMap = {} if createFields: for fieldInfo in fields: field = GeneralField(self, fieldInfo) self._pdMap[fieldInfo['pd']] = field self.addToSortedFields(field) def clone(self, regForm): pf = PersonalDataForm(regForm, False) pf.setId(self.getId()) pf.setValues(self.getValues()) pf.setEnabled(self.isEnabled()) pf.setRequired(self.isRequired()) for field in self.getSortedFields(): f = field.clone(pf) pf.addToSortedFields(f) if f.getPDField(): pf._pdMap[f.getPDField()] = f return pf def getValueFromParams(self, params, field): return params.get(self._pdMap[field].getInput().getHTMLName()) def getField(self, field): return self._pdMap[field] def getRegistrantValues(self, registrant): mg = registrant.getMiscellaneousGroupById(self.getId()) return dict((name, mg.getResponseItemById(field.getId()).getValue()) for name, field in self._pdMap.iteritems() if not field.isDisabled()) def getValuesFromAvatar(self, av): r = dict((k, '') for k in ['title', 'firstName', 'surname', 'institution', 'email', 'address', 'phone', 'fax']) if av is not None: r['title'] = av.getTitle() r['firstName'] = av.getFirstName() r['surname'] = av.getFamilyName() r['institution'] = av.getOrganisation() r['email'] = av.getEmail() r['address'] = av.getAddress() r['phone'] = av.getTelephone() faxes = av.getFaxes() fax = '' if len(faxes) > 0: fax = faxes[0] r['fax'] = fax return r def getFormValuesFromAvatar(self, av): r = {} if av is not None: r[self._pdMap['title'].getInput().getHTMLName()] = av.getTitle() r[self._pdMap['firstName'].getInput().getHTMLName()] = av.getFirstName() r[self._pdMap['surname'].getInput().getHTMLName()] = av.getFamilyName() r[self._pdMap['institution'].getInput().getHTMLName()] = av.getOrganisation() r[self._pdMap['email'].getInput().getHTMLName()] = av.getEmail() r[self._pdMap['address'].getInput().getHTMLName()] = av.getAddress() r[self._pdMap['phone'].getInput().getHTMLName()] = av.getTelephone() faxes = av.getFaxes() fax = '' if len(faxes) > 0: fax = faxes[0] r[self._pdMap['fax'].getInput().getHTMLName()] = fax return r def getValuesFromRegistrant(self, reg): r = {} r['title'] = reg.getTitle() r['firstName'] = reg.getFirstName() r['surname'] = reg.getFamilyName() r['position'] = reg.getPosition() r['institution'] = reg.getInstitution() r['address'] = reg.getAddress() r['city'] = reg.getCity() r['country'] = reg.getCountry() r['phone'] = reg.getPhone() r['fax'] = reg.getFax() r['email'] = reg.getEmail() r['personalHomepage'] = reg.getPersonalHomepage() return r class PersonalDataFormItem(Persistent): # old def __init__(self, data=None): if data is None: self._id = "" self._name = "" self._input = "" self._mandatory = False self._enabled = True else: self._id = data.get("id", "") self._name = data.get("name", "") self._input = data.get("input", "") self._mandatory = data.get("mandatory", False) self._enabled = data.get("enabled", True) def getId(self): return self._id def setId(self, id): self._id = id def getName(self): return self._name def setName(self, name): self._name = name def isEnabled(self): try: return self._enabled except: self.setEnabled() return self._enabled def setEnabled(self, enabled=True): self._enabled = enabled self._p_changed = 1 def getInput(self): return self._input def setInput(self, input): self._input = input def isMandatory(self): return self._mandatory def setMandatory(self, v): self._mandatory = v self._p_changed = 1 class PersonalData(Persistent): def __init__(self): self._initStandardPersonalData() def _initStandardPersonalData(self): self._data = PersistentMapping() self._sortedKeys = PersistentList() p = PersonalDataFormItem({'id':'title', 'name': "Title", 'input':'list', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'firstName', 'name': "First Name", 'input':'text', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'surname', 'name': "Surname", 'input':'text', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'position', 'name': "Position", 'input':'text', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'institution', 'name': "Institution", 'input':'text', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'address', 'name': "Address", 'input':'text', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'city', 'name': "City", 'input':'text', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'country', 'name': "Country/Region", 'input':'list', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'phone', 'name': "Phone", 'input':'text', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'fax', 'name': "Fax", 'input':'text', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'email', 'name': "Email", 'input':'hidden', 'mandatory':True}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) p = PersonalDataFormItem({'id':'personalHomepage', 'name': "Personal homepage", 'input':'text', 'mandatory':False}) self._data[p.getId()] = p self._sortedKeys.append(p.getId()) def clone(self): form = PersonalData() for key, item in self._data.iteritems(): newItem = form.getDataItem(key) newItem.setEnabled(item.isEnabled()) newItem.setMandatory(item.isMandatory()) return form def getValuesFromAvatar(self, av): r = {} r["title"] = "" r["firstName"] = "" r["surname"] = "" r["institution"] = "" r["email"] = "" r["address"] = "" r["phone"] = "" r["fax"] = "" if av is not None: r["title"] = av.getTitle() r["firstName"] = av.getFirstName() r["surname"] = av.getFamilyName() r["institution"] = av.getOrganisation() r["email"] = av.getEmail() r["address"] = av.getAddress() r["phone"] = av.getTelephone() faxes = av.getFaxes() fax = "" if len(faxes) > 0: fax = faxes[0] r["fax"] = fax return r def getValuesFromRegistrant(self, reg): r = {} r["title"] = reg.getTitle() r["firstName"] = reg.getFirstName() r["surname"] = reg.getFamilyName() r["position"] = reg.getPosition() r["institution"] = reg.getInstitution() r["address"] = reg.getAddress() r["city"] = reg.getCity() r["country"] = reg.getCountry() r["phone"] = reg.getPhone() r["fax"] = reg.getFax() r["email"] = reg.getEmail() r["personalHomepage"] = reg.getPersonalHomepage() return r def getData(self): return self._data def getSortedKeys(self): return self._sortedKeys def getMandatoryItems(self): r = [] for i in self.getSortedKeys(): if self.getData()[i].isMandatory() and self.getData()[i].isEnabled(): r.append(i) return r def getDataItem(self, key): return self._data.get(key, None) class FurtherInformationForm(BaseForm, Fossilizable): fossilizes(IRegFormFurtherInformationSectionFossil) def __init__(self, data=None): BaseForm.__init__(self) self._title = "Further information" self._content = "" if data is not None: self._title = data.get("title", self._title) self._content = data.get("content", self._content) self._id = "furtherInformation" def getId(self): try: if self._id: pass except AttributeError, e: self._id = "furtherInformation" return self._id def setValues(self, data): self.setTitle(data.get("title", "Further Information")) self.setContent(data.get("content", "")) def getValues(self): values = {} values["title"] = self.getTitle() values["content"] = self.getContent() values["enabled"] = self.isEnabled() return values def clone(self): fif = FurtherInformationForm() fif.setValues(self.getValues()) fif.setEnabled(self.isEnabled()) return fif def getTitle(self): return self._title def setTitle(self, title): self._title = title def getContent(self): return self._content def setContent(self, content): self._content = content # Fallback for setDescription setDescription = setContent def getItems(self): return "" class AccommodationType(Persistent, Fossilizable): fossilizes(IRegFormAccommodationTypeItemFossil) def __init__(self, rf, data=None): self._id = "" self._caption = "" self._regForm = rf self._cancelled = False self._placesLimit = 0 self._currentNoPlaces = 0 self._billable = False self._price = 0 def setValues(self, data): self.setCaption(data.get("caption", "--no caption--")) self.setCancelled(data.has_key("cancelled") and data["cancelled"]) self.setPlacesLimit(data.get("placesLimit", "0")) self.setBillable(data.has_key("billable") and data["billable"]) self.setPrice(data.get("price")) self._regForm.notifyModification() def getValues(self): values = {} values["caption"] = self.getCaption() if self.isCancelled(): values["cancelled"] = self.isCancelled() values["placesLimit"] = self.getPlacesLimit() if self.isBillable(): values["billable"] = True values["price"] = self.getPrice() return values def clone(self, registrationForm): act = AccommodationType(registrationForm) act.setValues(self.getValues()) return act def getId(self): return self._id def setId(self, id): self._id = id def getCaption(self): return self._caption def setCaption(self, c): self._caption = c def getPlacesLimit(self): try: if self._placesLimit: pass except AttributeError, e: self._placesLimit = 0 return self._placesLimit def setPlacesLimit(self, limit): if limit == "": limit = "0" try: l = int(limit) except ValueError, e: raise FormValuesError(_("Please introduce a number for the limit of places")) self._placesLimit = l self.updateCurrentNoPlaces() def getCurrentNoPlaces(self): try: if self._currentNoPlaces: pass except AttributeError, e: self._currentNoPlaces = 0 return self._currentNoPlaces def hasAvailablePlaces(self): if self.getPlacesLimit() == 0: #zero means no limit return True if self.getCurrentNoPlaces() >= self.getPlacesLimit(): return False return True def getNoPlacesLeft(self): return self.getPlacesLimit() - self.getCurrentNoPlaces() def increaseNoPlaces(self): if self.getPlacesLimit() > 0 : if self.getCurrentNoPlaces() >= self.getPlacesLimit(): raise FormValuesError(_("""The limit for the number of places is smaller than the current amount registered for this accommodation. Please, set a higher limit.""")) self._currentNoPlaces += 1 def decreaseNoPlaces(self): if self.getPlacesLimit() > 0 and self.getCurrentNoPlaces() > 0: self._currentNoPlaces -= 1 def updateCurrentNoPlaces(self): self._currentNoPlaces = 0 for reg in self._regForm.getConference().getRegistrantsList(): acco = reg.getAccommodation() if acco is not None: accoType = acco.getAccommodationType() if accoType is not None and accoType == self: self.increaseNoPlaces() def getRegistrationForm(self): return self._regForm def setRegistrationForm(self, rf): self._regForm = rf def isCancelled(self): try: if self._cancelled: pass except AttributeError, e: self._cancelled = False return self._cancelled def setCancelled(self, v): self._cancelled = v def isBillable(self): try: return self._billable except: self._billable = False return self._billable def setBillable(self, v): self._billable = v def getPrice(self): try: return self._price except: self.setPrice(0) return self._price def setPrice(self, price): if price: match = PRICE_PATTERN.match(price) if match: price = match.group(1) else: raise MaKaCError(_('The price is in incorrect format!')) self._price = price def getCurrency(self): return self._regForm.getCurrency() def remove(self): self.setCancelled(True) self.delete() def delete(self): self.setRegistrationForm(None) TrashCanManager().add(self) def recover(self, rf): self.setRegistrationForm(rf) TrashCanManager().remove(self) def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the AccommodationType instance """ if self.getRegistrationForm().getConference() is None: return Locator() lconf = self.getRegistrationForm().getLocator() lconf["accoTypeId"] = self.getId() return lconf class AccommodationForm(BaseForm, Fossilizable): fossilizes(IRegFormAccommodationSectionFossil) _iterableContainer = '_accommodationTypes' def __init__(self, regForm, data=None): BaseForm.__init__(self) self._accoTypeGenerator = Counter() self._regForm = regForm self._title = "Accommodation" self._description = "" self._accommodationTypes = PersistentMapping() if data is not None: self._title = data.get("title", self._title) self._description = data.get("description", self._description) self._setDefaultAccommodationTypes() self._id = "accommodation" self._arrivalOffsetDates = [-2, 0] self._departureOffsetDates = [1, 3] def getId(self): try: if self._id: pass except AttributeError, e: self._id = "accommodation" return self._id def getConference(self): return self._regForm.getConference() def getArrivalOffsetDates(self): try: return self._arrivalOffsetDates except: self.setDefaultArrivalOffsetDates() return self._arrivalOffsetDates def setDefaultArrivalOffsetDates(self): self._arrivalOffsetDates = [-2, 0] def getArrivalDates(self): offsets = self.getArrivalOffsetDates() conf = self.getConference() dates = [] curDate = startDate = conf.getStartDate() + timedelta(days=offsets[0]) endDate = conf.getEndDate() + timedelta(days=offsets[1]) if startDate > endDate: endDate = startDate while curDate <= endDate: dates.append(curDate) curDate += timedelta(days=1) return dates def setArrivalOffsetDates(self, dates): self._arrivalOffsetDates = dates def getDepartureOffsetDates(self): try: return self._departureOffsetDates except: self.setDefaultDepartureOffsetDates() return self._departureOffsetDates def setDefaultDepartureOffsetDates(self): self._departureOffsetDates = [1, 3] def getDepartureDates(self): offsets = self.getDepartureOffsetDates() conf = self.getConference() dates = [] curDate = startDate = conf.getStartDate() + timedelta(days=offsets[0]) endDate = conf.getEndDate() + timedelta(days=offsets[1]) if startDate > endDate: endDate = startDate while curDate <= endDate: dates.append(curDate) curDate += timedelta(days=1) return dates def setDepartureOffsetDates(self, dates): self._departureOffsetDates = dates def _setDefaultAccommodationTypes(self): a = AccommodationType(self._regForm) a.setId("cern") a.setCaption("CERN Hostel") self._accommodationTypes[a.getId()] = a a = AccommodationType(self._regForm) a.setId("own-accommodation") a.setCaption("I will arrange my own accommodation") self._accommodationTypes[a.getId()] = a a = AccommodationType(self._regForm) a.setId("geneva-hotel") a.setCaption("I prefer to book a room in a Geneva hotel") self._accommodationTypes[a.getId()] = a def setValues(self, data): self.setTitle(data.get("title", "Accommodation")) self.setDescription(data.get("description", "")) self.setArrivalOffsetDates([int(data.get("aoffset1", -2)), int(data.get("aoffset2", 0))]) self.setDepartureOffsetDates([int(data.get("doffset1", 1)), int(data.get("doffset2", 3))]) def getValues(self): values = {} values["title"] = self.getTitle() values["description"] = self.getDescription() values["enabled"] = self.isEnabled() values["aoffset1"] = self.getArrivalOffsetDates()[0] values["aoffset2"] = self.getArrivalOffsetDates()[1] values["doffset1"] = self.getDepartureOffsetDates()[0] values["doffset2"] = self.getDepartureOffsetDates()[1] return values def clone(self, registrationForm): acf = AccommodationForm(registrationForm) acf.setValues(self.getValues()) acf.setEnabled(self.isEnabled()) acf._accommodationTypes = PersistentMapping() for at in self.getAccommodationTypesList() : acf.addAccommodationType(at.clone(registrationForm)) return acf def getTitle(self): return self._title def setTitle(self, title): self._title = title def getDescription(self): return self._description def setDescription(self, description): self._description = description def getRegistrationForm(self): return self._regForm def _generateNewAccoTypeId(self): """Returns a new unique identifier for the current registration form """ try: return str(self._accoTypeGenerator.newCount()) except: self._accoTypeGenerator = Counter() return str(self._accoTypeGenerator.newCount()) def addAccommodationType(self, accom): id = accom.getId() if id == "": id = self._generateNewAccoTypeId() accom.setId(id) self._accommodationTypes[id] = accom def removeAccommodationType(self, accom): accom.remove() if self._accommodationTypes.has_key(accom.getId().strip()): del(self._accommodationTypes[accom.getId().strip()]) def recoverAccommodationType(self, accom): self.addAccommodationType(accom) accom.recover(self.getRegistrationForm()) def getAccommodationTypeById(self, id): if self._accommodationTypes.has_key(id.strip()): return self._accommodationTypes[id] return None def getAccommodationTypesList(self): return self._accommodationTypes.values() def clearAccommodationTypesList(self): for at in self.getAccommodationTypesList(): self.removeAccommodationType(at) class ReasonParticipationForm(BaseForm, Fossilizable): fossilizes(IRegFormReasonParticipationSectionFossil) def __init__(self, data=None): BaseForm.__init__(self) self._title = "Reason for participation" self._description = "Please, let us know why you are interested to participate in our event:" if data is not None: self._title = data.get("title", self._title) self._description = data.get("description", self._description) self._id = "reasonParticipation" def getId(self): try: if self._id: pass except AttributeError, e: self._id = "reasonParticipation" return self._id def setValues(self, data): self.setTitle(data.get("title", "Reason for participation")) self.setDescription(data.get("description", "")) def getValues(self): values = {} values["title"] = self.getTitle() values["description"] = self.getDescription() return values def clone(self): rpf = ReasonParticipationForm() rpf.setValues(self.getValues()) rpf.setEnabled(self.isEnabled()) return rpf def getTitle(self): return self._title def setTitle(self, title): self._title = title def getDescription(self): return self._description def setDescription(self, description): self._description = description def getItems(self): #No items for this form return "" class RegistrationSession(Persistent, Fossilizable): fossilizes(IRegFormRegistrationSessionItemFossil) def __init__(self, ses, regForm=None): self._session = ses self._session.setRegistrationSession(self) self._regForm = regForm self._price = 0 self._billable = False self._currency = regForm.getCurrency() def setValues(self, data): self.setBillable(data.has_key("billable") and data["billable"]) self.setPrice(data.get("price")) def getValues(self): data = {} if self.isBillable(): data["billable"] = True data["price"] = self.getPrice() return data def getSession(self): return self._session def setSession(self, ses): self._session = ses self._billable = ses.isBillable() self._price = ses.getPrice() def getRegistrationForm(self): return self._regForm def setRegistrationForm(self, rf): self._regForm = rf def getParent(self): # The parent of registration session is "session form" if self._regForm is not None: return self._regForm.getSessionsForm() return None def getConference(self): if self._regForm is not None: return self._regForm.getConference() return None def remove(self): #self._session.setRegistrationSession(None) self.setRegistrationForm(None) pass def isCancelled(self): ## return self._session is None or not self.getParent().hasSession(self.getId()) ## return not self.getParent().hasSession(self.getId()) return not self.getRegistrationForm() def getId(self): return self._session.getId() def getTitle(self): return self._session.getTitle() # for compatibility with other fields getCaption = getTitle def getStartDate(self): return self._session.getStartDate() def getCode(self): return self._session.getCode() def getPrice(self): try: return self._price except: self.setPrice(0) return self._price def setPrice(self, price): if price: match = PRICE_PATTERN.match(price) if match: price = match.group(1) else: raise MaKaCError(_('The price is in incorrect format!')) self._price = price def isBillable(self): try: return self._billable except: self._billable = False return self._billable def setBillable(self, v): self._billable = v def getCurrency(self): if not hasattr(self, "_currency") or not self._currency: # it may happen that _regForm doesn't exist (session was removed from it) if self._regForm: self._currency = self._regForm.getCurrency() else: self._currency = None return self._currency def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the RegistrationSession instance """ if self.getRegistrationForm().getConference() == None: return Locator() lconf = self.getRegistrationForm().getLocator() lconf["sessionId"] = self.getId() return lconf @staticmethod def _cmpTitle(s1, s2): if s1 is None and s2 is not None: return -1 elif s1 is not None and s2 is None: return 1 elif s1 is None and s2 is None: return 0 return cmp(s1.getTitle(), s2.getTitle()) class SessionsForm(BaseForm, Fossilizable): fossilizes(IRegFormSessionSectionFossil) _iterableContainer = '_sessions' def __init__(self, data=None): BaseForm.__init__(self) self._title = "Sessions" self._type = "2priorities" self._description = "" self._sessions = PersistentMapping() if data is not None: self._title = data.get("title", self._title) self._description = data.get("description", self._description) self._sessions = data.get("sessions", self._sessions) self._id = "sessions" def getId(self): try: if self._id: pass except AttributeError, e: self._id = "sessions" return self._id def clone(self, newSessions): sesf = SessionsForm() sesf.setTitle(self.getTitle()) sesf.setType(self.getType()) sesf.setDescription(self.getDescription()) sesf.setEnabled(self.isEnabled()) for s in newSessions: ses = self.getSessionById(s.getId()) if ses: s.setValues(ses.getValues()) sesf.addSession(s) return sesf def getValues(self): data = {} data["title"] = self.getTitle() data["description"] = self.getDescription() data["enabled"] = self.isEnabled() data["type"] = self.getType() return data def setValues(self, data): self.setTitle(data.get("title", "Sessions")) self.setDescription(data.get("description", "")) self.setType(data.get("sessionFormType", "2priorities")) def getTitle(self): return self._title def setTitle(self, title): self._title = title def getDescription(self): return self._description def setDescription(self, description): self._description = description def getType(self): try: if self._type: pass except AttributeError, e: self._type = "2priorities" return self._type def setType(self, type): self._type = type def getSessionsFromParams(self, params): sessions = [] if self.isEnabled(): if self.getType() == "2priorities": if params.get("session1", "nosession") == "nosession": raise FormValuesError(_("Please, choose at least one session in order to register")) if params.get("session1", "") == params.get("session2", "nosession"): raise FormValuesError(_("You cannot choose the same session twice")) sessions.append(self.getSessionById(params.get("session1"))) ses2 = self.getSessionById(params.get("session2", "nosession")) if ses2 is not None: sessions.append(ses2) elif self.getType() == "all": sess = params.get("sessions", []) if type(sess) != list: sess = [sess] for ses in sess: if self.hasSession(ses): sessions.append(self.getSessionById(ses)) return [RegistrantSession(ses) for ses in sessions] def getSessionList(self, doSort=False): lv = self._sessions.values() lv.sort(sortByStartDate) if doSort: lv.sort(RegistrationSession._cmpTitle) return lv def getSessions(self): return self._sessions def addSession(self, ses): if not self._sessions.has_key(ses.getId()): self._sessions[ses.getId()] = ses def removeSession(self, sesId): if self._sessions.has_key(sesId): self._sessions[sesId].remove() del self._sessions[sesId] def clearSessionList(self): for s in self.getSessionList(): self.removeSession(s) def hasSession(self, key): return self._sessions.has_key(key) def getSessionById(self, id): return self._sessions.get(id, None) def sortByStartDate(x, y): return cmp(x.getSession().getStartDate(), y.getSession().getStartDate()) class SocialEventItem(Persistent, Fossilizable): fossilizes(IRegFormSocialEventItemFossil) def __init__(self, rf, data=None): self._id = "" self._caption = "--no caption--" self._regForm = rf self._cancelled = False self._cancelledReason = "" self._maxPlacePerRegistrant = 10 self._placesLimit = 0 self._currentNoPlaces = 0 self._billable = False self._price = 0 self._pricePerPlace = False def setValues(self, data): if "caption" in data: self.setCaption(data["caption"]) if "cancelled" in data: self.setCancelled(data["cancelled"]) if "cancelledReason" in data: self.setCancelledReason(data["cancelledReason"]) if "maxPlace" in data: try: maxPlace = int(data["maxPlace"]) except ValueError: maxPlace = 0 if maxPlace < 0: maxPlace = 0 self.setMaxPlacePerRegistrant(maxPlace) if "placesLimit" in data: self.setPlacesLimit(data["placesLimit"]) if "billable" in data: self.setBillable(data["billable"]) if "billable" in data: self.setPricePerPlace(data["pricePerPlace"]) if "price" in data: self.setPrice(data["price"]) def getValues(self): data = {} data["caption"] = self.getCaption() if self.isCancelled(): data["cancelled"] = self.isCancelled() data["cancelledReason"] = self.getCancelledReason() data["maxPlace"] = self.getMaxPlacePerRegistrant() data["placesLimit"] = self.getPlacesLimit() if self.isBillable(): data["billable"] = True if self.isPricePerPlace(): data["pricePerPlace"] = True data["price"] = self.getPrice() return data def clone(self, regForm): newSEI = SocialEventItem(regForm) newSEI.setValues(self.getValues()) return newSEI def getId(self): return self._id def setId(self, id): self._id = id def getCaption(self): return self._caption def setCaption(self, c): self._caption = c def getPlacesLimit(self): try: if self._placesLimit: pass except AttributeError, e: self._placesLimit = 0 return self._placesLimit def setPlacesLimit(self, limit): if limit == "": limit = "0" try: l = int(limit) except ValueError, e: raise FormValuesError(_("Please introduce a number for the limit of places")) self._placesLimit = l self.updateCurrentNoPlaces() def getCurrentNoPlaces(self): try: if self._currentNoPlaces: pass except AttributeError, e: self._currentNoPlaces = 0 return self._currentNoPlaces def hasAvailablePlaces(self): if self.getCurrentNoPlaces() >= self.getPlacesLimit(): return False return True def getNoPlacesLeft(self): return self.getPlacesLimit() - self.getCurrentNoPlaces() def increaseNoPlaces(self, n): if self.getPlacesLimit() > 0 : if (self.getCurrentNoPlaces() + n) > self.getPlacesLimit(): raise FormValuesError(_("We are sorry but there are not enough places for the social event \"%s\". \ ") % (self.getCaption())) self._currentNoPlaces += n def decreaseNoPlaces(self, n): if self.getPlacesLimit() > 0 and self.getCurrentNoPlaces() > 0: if (self._currentNoPlaces - n) < 0: raise FormValuesError(_("Impossible to decrease %s places for \"%s\" because the current number of \ places would be less than zero") % (n, self.getCaption())) self._currentNoPlaces -= n def updateCurrentNoPlaces(self): self._currentNoPlaces = 0 for reg in self._regForm.getConference().getRegistrantsList(): for se in reg.getSocialEvents(): if se.getSocialEventItem() == self: self.increaseNoPlaces(se.getNoPlaces()) def getRegistrationForm(self): return self._regForm def setRegistrationForm(self, rf): self._regForm = rf def isCancelled(self): try: if self._cancelled: pass except AttributeError, e: self._cancelled = False return self._cancelled def setCancelled(self, v): self._cancelled = v def getCancelledReason(self): try: if self._cancelledReason: pass except AttributeError: self._cancelledReason = "" return self._cancelledReason def setCancelledReason(self, cr): self._cancelledReason = cr def getMaxPlacePerRegistrant(self): try: return self._maxPlacePerRegistrant except AttributeError: self._maxPlacePerRegistrant = 9 return self._maxPlacePerRegistrant def setMaxPlacePerRegistrant(self, numPlace): self._maxPlacePerRegistrant = numPlace def isBillable(self): try: return self._billable except: self._billable = False return self._billable def setBillable(self, v): self._billable = v def isPricePerPlace(self): try: return self._pricePerPlace except: self._pricePerPlace = False return self._pricePerPlace def setPricePerPlace(self, v): self._pricePerPlace = v def getPrice(self): try: return self._price except: self.setPrice(0) return self._price def setPrice(self, price): if price: match = PRICE_PATTERN.match(price) if match: price = match.group(1) else: raise MaKaCError(_('The price is in incorrect format!')) self._price = price def getCurrency(self): return self._regForm.getCurrency() def remove(self): self.setCancelled(True) self.delete() def delete(self): self.setRegistrationForm(None) TrashCanManager().add(self) def recover(self, rf): self.setRegistrationForm(rf) TrashCanManager().remove(self) def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the SocialEventItem instance """ if self.getRegistrationForm().getConference() == None: return Locator() lconf = self.getRegistrationForm().getLocator() lconf["socialEventId"] = self.getId() return lconf @staticmethod def _cmpCaption(se1, se2): return cmp(se1.getCaption().lower(), se2.getCaption().lower()) class SocialEventForm(BaseForm, Fossilizable): fossilizes(IRegFormSocialEventSectionFossil) _iterableContainer = '_socialEvents' def __init__(self, regForm, data=None): BaseForm.__init__(self) self._socialEventItemGenerator = Counter() self._regForm = regForm self._title = "Social Events" self._description = "" self._introSentence = self._getDefaultIntroValue() self._mandatory = False self._selectionType = "multiple" self._socialEvents = PersistentMapping() if data is not None: self._title = data.get("title", self._title) self._description = data.get("description", self._description) self._mandatory = data.get('mandatory', False) self._id = "socialEvents" def getId(self): try: if self._id: pass except AttributeError, e: self._id = "socialEvents" return self._id def setValues(self, data): self.setTitle(data.get("title", "Sessions")) self.setDescription(data.get("description", "")) self.setIntroSentence(data.get("intro", "")) self.setSelectionType(data.get("selectionType", "multiple")) self.setMandatory(data.get('mandatory', False)) def getValues(self): values = {} values["title"] = self.getTitle() values["description"] = self.getDescription() values["intro"] = self.getIntroSentence() values["selectionType"] = self.getSelectionTypeId() values["mandatory"] = self.getMandatory() return values def clone(self, registrationForm): sef = SocialEventForm(registrationForm) sef.setValues(self.getValues()) sef.setEnabled(self.isEnabled()) for se in self.getSocialEventList(): sef.addSocialEvent(se.clone(registrationForm)) return sef def getTitle(self): return self._title def setTitle(self, title): self._title = title def getDescription(self): return self._description def setDescription(self, description): self._description = description def getMandatory(self): try: return self._mandatory except AttributeError: self._mandatory = False return False def setMandatory(self, value): self._mandatory = value def getRegistrationForm(self): try: if self._regForm: pass except AttributeError, e: self._regForm = None return self._regForm def getConference(self): if self.getRegistrationForm() is not None: return self.getRegistrationForm().getConference() return None def _getDefaultIntroValue(self): return "Select the social events you would like to attend and how many places you will need" def getIntroSentence(self): try: if self._introSentence: pass except AttributeError, e: self._introSentence = self._getDefaultIntroValue() return self._introSentence def setIntroSentence(self, intro): self._introSentence = intro def getSelectionTypeList(self): try: if self._selectionTypeList: pass except AttributeError, e: self._selectionTypeList = {"multiple": "Multiple choice", "unique": "Unique choice"} return self._selectionTypeList def _getSelectionType(self): try: if self._selectionType: pass except AttributeError, e: self._selectionType = "multiple" return self._selectionType def getSelectionTypeId(self): return self._getSelectionType() def getSelectionTypeCaption(self): return self.getSelectionTypeList()[self._getSelectionType()] def setSelectionType(self, id): self._selectionType = id def _generateNewSocialEventItemId(self): """Returns a new unique identifier for the current registration form """ try: return str(self._socialEventItemGenerator.newCount()) except: self._socialEventItemGenerator = Counter() return str(self._socialEventItemGenerator.newCount()) def addSocialEvent(self, se): id = se.getId() if id == "": id = self._generateNewSocialEventItemId() se.setId(id) self._socialEvents[id] = se def removeSocialEvent(self, se): se.remove() if self._socialEvents.has_key(se.getId().strip()): del(self._socialEvents[se.getId().strip()]) def recoverSocialEvent(self, se): self.addSocialEvent(se) se.recover(self.getRegistrationForm()) def getSocialEventById(self, id): if self._socialEvents.has_key(id.strip()): return self._socialEvents[id] return None def getSocialEventList(self, sort=False): v = self._socialEvents.values() if sort: v.sort(SocialEventItem._cmpCaption) return v def clearSocialEventList(self): for se in self.getSocialEventList(): self.removeSocialEvent(se) def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the GeneralField instance """ if self.getConference() == None: return Locator() lconf = self.getConference().getLocator() lconf["sectionFieldId"] = self.getId() return lconf class StatusValue(Persistent): def __init__(self, st, data=None): self._status = st self._id = "" self._caption = "" if data is not None: self.setValues(data) def getValues(self): d = {} d["caption"] = self.getCaption() return d def setValues(self, d): self.setCaption(d.get("caption", "-- no caption --")) def getId(self): return self._id def setId(self, id): self._id = id def getCaption(self): return self._caption def setCaption(self, cp): self._caption = cp def clone(self, st): sv = StatusValue(st) sv.setCaption(self.getCaption()) return sv def _cmpCaption(sv1, sv2): return cmp(sv1.getCaption().strip().lower(), sv2.getCaption().strip().lower()) _cmpCaption = staticmethod(_cmpCaption) class Status(Persistent): def __init__(self, regForm, data=None): self._regForm = regForm self._statusValues = {} self._valuesGenerator = Counter() self._id = "" self._caption = "" self._defaultValue = None if data is not None: self.setValues(data) self.addStatusValue(StatusValue(self, {"caption":"Yes"})) self.addStatusValue(StatusValue(self, {"caption":"No"})) def setValues(self, d): self.setCaption(d.get("caption", "")) ids = [] defaultValueSet = False if d.has_key("values") and type(d.get("values", [])) == list: for vd in d.get("values", []): id = vd.get("id", "") if self.getStatusValueById(id) is not None: v = self.getStatusValueById(id) v.setValues(vd) else: v = StatusValue(self, vd) self.addStatusValue(v) if d.get("defaultvalue", "").strip() == id: defaultValueSet = True self.setDefaultValue(v) ids.append(v.getId()) if not defaultValueSet: self.setDefaultValue(None) for v in self.getStatusValuesList()[:]: if v.getId() not in ids: self.removeStatusValue(v) def getValues(self): d = {} d["caption"] = self.getCaption() return d def getConference(self): return self._regForm.getConference() def getId(self): return self._id def setId(self, i): self._id = i def getCaption(self): return self._caption def setCaption(self, c): self._caption = c def setDefaultValue(self, stval): self._defaultValue = stval def getDefaultValue(self): return self._defaultValue def _generateValueId(self): """Returns a new unique identifier for the current registration form """ try: return str(self._valuesGenerator.newCount()) except: self._valuesGenerator = Counter() return str(self._valuesGenerator.newCount()) def getStatusValues(self): return self._statusValues def getStatusValuesList(self, sort=False): r = self._statusValues.values() if sort: r.sort(StatusValue._cmpCaption) return r def hasStatusValue(self, v): if v is not None and self.getStatusValues().has_key(v.getId()): return True return False def getStatusValueById(self, id): if self.getStatusValues().has_key(id): return self.getStatusValues()[id] return None def addStatusValue(self, v): v.setId(self._generateValueId()) self.getStatusValues()[v.getId()] = v self.notifyModification() def removeStatusValue(self, v): if self.getStatusValues().has_key(v.getId()): del self.getStatusValues()[v.getId()] self.notifyModification() def _cmpCaption(s1, s2): return cmp(s1.getCaption().lower().strip(), s2.getCaption().lower().strip()) _cmpCaption = staticmethod(_cmpCaption) def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the Status instance """ if self.getConference() == None: return Locator() lconf = self.getConference().getLocator() lconf["statusId"] = self.getId() return lconf def notifyModification(self): """Method called to notify that the registration form has been modified. """ self._p_changed = 1 # Users --------- FINAL INFORMATION STORED FROM THE REGISTRATION FORM class Registrant(Persistent, Fossilizable): fossilizes(IRegFormRegistrantFossil, IRegFormRegistrantBasicFossil, IRegFormRegistrantFullFossil) def __init__(self): self._conf = None self._avatar = None self._id = "" self._complete = False self._registrationDate = nowutc() self._checkedIn = False self._checkInDate = None self._checkInUUID = str(uuid4()) self._title = "" self._firstName = "" self._surname = "" self._position = "" self._institution = "" self._address = "" self._city = "" self._country = "" self._phone = "" self._fax = "" self._email = "" self._personalHomepage = "" self._sessions = [] self._socialEvents = [] self._accommodation = Accommodation(self) self._reasonParticipation = "" self._miscellaneous = {} self._parmasReturn = {} self._statuses = {} self._total = 0 self._hasPay = False self._transactionInfo = None self._randomId = self._generateRandomId() self._attachmentsCounter = Counter() def __cmp__(self, other): if type(self) is not type(other): # This is actually dangerous and the ZODB manual says not to do this # because it relies on memory order. However, this branch should never # be taken anyway since we do not store different types in the same set # or use them as keys. return cmp(hash(self), hash(other)) if self.getConference() == other.getConference(): return cmp(self.getId(), other.getId()) return cmp(self.getConference(), other.getConference()) def isPayedText(self): if self.getPayed(): return "Yes" elif not self.doPay(): return "-" return "No" def getIdPay(self): return "c%sr%s" % (self._conf.getId(), self.getId()) def setTotal(self, total): self._total = total def getTotal(self): try: return self._total except: self.setTotal(0) return self._total def updateTotal(self): total = 0 for gs in self.getRegistrationForm().getGeneralSectionFormsList(): if gs.isEnabled(): mg = self.getMiscellaneousGroupById(gs.getId()) if mg != None: for miscItem in mg.getResponseItemList(): if miscItem.isBillable(): price = float(miscItem.getPrice() or 0) else: price = 0 quantity = miscItem.getQuantity() total += price * quantity for bf in self.getBilledForms(): for item in bf.getBilledItems(): total += item.getPrice() * item.getQuantity() self.setTotal(total) def doPay(self): return self.getTotal() > 0 and not self.getPayed() def setPersonalData(self, data): self.getConference().updateRegistrantIndexByEmail(self, data.get("email", "")) self.setTitle(data.get("title", "")) self.setFirstName(data.get("firstName", "")) self.setSurName(data.get("surname", "")) self.setPosition(data.get("position", "")) self.setInstitution(data.get("institution", "")) self.setAddress(data.get("address", "")) self.setCity(data.get("city", "")) self.setCountry(data.get("country", "")) self.setPhone(data.get("phone", "")) self.setFax(data.get("fax", "")) self.setEmail(data.get("email", "")) self.setPersonalHomepage(data.get("personalHomepage", "")) def setValues(self, data, av): self._avatar = av if self.getRegistrationForm().getReasonParticipationForm().isEnabled(): self.setReasonParticipation(data.get("reason", "")) if self.getRegistrationForm().getSessionsForm().isEnabled(): sessions = data.get("sessions", []) if not isinstance(sessions, list): sessions = [sessions] if not self.getPayed(): self.setSessions(sessions) else: # First keep all sessions which are billable (they are not submitted anymore) newSessions = [session for session in self.getSessionList() if session.isBillable()] # Then take all chosen sessions which are not billable newSessions += [session for session in sessions if not session.isBillable()] self.setSessions(newSessions) else: self.setSessions([]) self.setSessionBillingEnabled(self.getRegistrationForm().getSessionsForm().getType() != "2priorities") if self.getRegistrationForm().getAccommodationForm().isEnabled(): ad = data.get("arrivalDate", None) dd = data.get("departureDate", None) if ad == "nodate": raise FormValuesError(_("Arrival date cannot be empty.")) elif dd == "nodate": raise FormValuesError(_("Departure date cannot be empty.")) if ad is not None and dd is not None: ad = map(lambda x: int(x), ad.split("-")) ad = datetime(ad[2], ad[1], ad[0]) dd = map(lambda x: int(x), dd.split("-")) dd = datetime(dd[2], dd[1], dd[0]) if ad > dd: raise FormValuesError(_("Arrival date has to be earlier than departure date")) # Allow changing of the dates only if the current accomodation is not billable or the user hasn't paid yet currentAccoType = self._accommodation.getAccommodationType() if not self.getPayed() or currentAccoType is None or not currentAccoType.isBillable(): self._accommodation.setArrivalDate(ad) self._accommodation.setDepartureDate(dd) accoType = data.get("accommodationType", None) if accoType is not None and accoType.isCancelled(): accoType = None if self.getRegistrationForm().getAccommodationForm().getAccommodationTypesList() != []: # Only change the accommodation type if: # - the registrant hasn't paid yet OR # - neither the current nor the new accommodation is billable if not self.getPayed() or \ ((currentAccoType is None or not currentAccoType.isBillable()) and \ (accoType is None or not accoType.isBillable())): if self.getRegistrationForm().getAccommodationForm().getAccommodationTypesList() != [] and data.get("accommodation_type", None) is None: raise FormValuesError(_("It is mandatory to choose an accommodation in order to register")) self._accommodation.setAccommodationType(accoType) else: # AccommodationForm disabled self._accommodation.setAccommodationType(None) if self.getRegistrationForm().getSocialEventForm().isEnabled(): for seItem in self.getSocialEvents()[:]: # Remove all items which can be added back (i.e. if paid only non-billable ones) if not (self.getPayed() and seItem.isBillable()): self.removeSocialEventById(seItem.getId()) for seItem in data.get("socialEvents", []): # Only add item if the registrant hasn't paid yet or the item is not billable if seItem and (not self.getPayed() or not seItem.isBillable()): newSE = SocialEvent(seItem, int(data.get("places-%s" % seItem.getId(), "1"))) self.addSocialEvent(newSE) if self.getRegistrationForm().getSocialEventForm().getMandatory() and not self.getSocialEvents(): raise FormValuesError(_('You have to select at least one social event')) else: for seItem in self.getSocialEvents()[:]: self.removeSocialEventById(seItem.getId()) #if not self.getPayed(): # self._miscellaneous = {} total = 0 for gs in self.getRegistrationForm().getGeneralSectionFormsList(): if gs.isEnabled(): mg = self.getMiscellaneousGroupById(gs.getId()) if mg == None: mg = MiscellaneousInfoGroup(self, gs) self.addMiscellaneousGroup(mg) #Mods to support sorting fields #for f in gs.getFields(): for f in gs.getSortedFields(): if not f.isDisabled(): f.getInput().setResponseValue(mg.getResponseItemById(f.getId()), data, self, mg) for miscItem in mg.getResponseItemList(): if miscItem.isBillable(): price = float(miscItem.getPrice() or 0) else: price = 0 quantity = miscItem.getQuantity() total += price * quantity for bf in self.getBilledForms(): for item in bf.getBilledItems(): total += item.getPrice() * item.getQuantity() if not self.getPayed(): self.setTotal(total) self.setPersonalData(self.getRegistrationForm().getPersonalData().getRegistrantValues(self)) self._complete = True def isComplete(self): try: if self._complete: pass except AttributeError, e: self._complete = False return self._complete def isCheckedIn(self): try: if self._checkedIn: pass except AttributeError: self._checkedIn = False return self._checkedIn def setCheckedIn(self, checkedIn): if checkedIn: self._checkInDate = nowutc() else: self._checkInDate = None self._checkedIn = checkedIn def getCheckInUUID(self): try: if self._checkInUUID: pass except AttributeError: self._checkInUUID = str(uuid4()) return self._checkInUUID def getCheckInDate(self): try: if self._checkInDate: pass except AttributeError: self._checkInDate = None return self._checkInDate def getAdjustedCheckInDate(self,tz=None): if not tz: tz = self.getConference().getTimezone() if tz not in all_timezones: tz = 'UTC' checkInDate = self.getCheckInDate() if checkInDate: return checkInDate.astimezone(timezone(tz)) def getPayed(self): try: return self._hasPay except: self.setPayed(False) return self._hasPay def setPayed(self, hasPay): self._hasPay = hasPay def getTransactionInfo(self): try: return self._transactionInfo except: self.setTransactionInfo(False) return self._transactionInfo def setTransactionInfo(self, transactionInfo): self._transactionInfo = transactionInfo def _generateRandomId(self): n = datetime.now() return md5(str(random.random() + time.mktime(n.timetuple()))).hexdigest() def getRandomId(self): try: if self._randomId: pass except AttributeError, e: self._randomId = self._generateRandomId() return self._randomId def getId(self): return self._id def setId(self, id): self._id = str(id).strip() def getConference(self): return self._conf def setConference(self, c): self._conf = c def getOwner(self): return self.getConference() def setOwner(self, o): self.setConference(o) def getAvatar(self): return self._avatar def setAvatar(self, a): if isinstance(self._avatar, MaKaC.user.Avatar): self._avatar.unlinkTo(self, "registrant") self._avatar = a a.linkTo(self, "registrant") def getRegistrationForm(self): return self.getConference().getRegistrationForm() def getRegistrationDate(self): try: if self._registrationDate: pass except AttributeError, e: self._registrationDate = None return self._registrationDate def getAdjustedRegistrationDate(self, tz=None): if not tz: tz = self.getConference().getTimezone() if tz not in all_timezones: tz = 'UTC' return self.getRegistrationDate().astimezone(timezone(tz)) def getTitle(self): return self._title def setTitle(self, v): self._title = v def getFirstName(self): return self._firstName def setFirstName(self, v): self._firstName = v def getSurName(self): return self._surname getFamilyName = getSurName def setSurName(self, v): self._surname = v setFamilyName = setSurName def getFullName(self, title=True, firstNameFirst=False): if firstNameFirst: res = "%s %s" % (self.getFirstName(), self.getFamilyName()) res = res.strip() else: res = safe_upper(self.getFamilyName()) if self.getFirstName(): res = "%s, %s" % (res, self.getFirstName()) if title and self.getTitle(): res = "%s %s" % (self.getTitle(), res) return res def getPosition(self): return self._position def setPosition(self, v): self._position = v def getInstitution(self): return self._institution def setInstitution(self, v): self._institution = v def getAddress(self): return self._address def setAddress(self, v): self._address = v def getCity(self): return self._city def setCity(self, v): self._city = v def getCountry(self): return self._country def setCountry(self, v): self._country = v def getPhone(self): return self._phone def setPhone(self, v): self._phone = v def getFax(self): return self._fax def setFax(self, v): self._fax = v def getEmail(self): return self._email def setEmail(self, v): self._email = v def getPersonalHomepage(self): return self._personalHomepage def setPersonalHomepage(self, v): self._personalHomepage = v def getSessionList(self): return self._sessions def addSession(self, ses): self._sessions.append(ses) self.notifyModification() def removeSession(self, ses): self._sessions.remove(ses) self.notifyModification() def setSessions(self, sesList): self._sessions = sesList for ses in self._sessions: ses.setRegistrant(self) self.notifyModification() def setAccommodation(self, a): self._accommodation = a def getAccommodation(self): return self._accommodation def setReasonParticipation(self, a): self._reasonParticipation = a def getReasonParticipation(self): return self._reasonParticipation def getSocialEvents(self): try: if self._socialEvents: pass except AttributeError, e: self._socialEvents = [] return self._socialEvents def getSocialEventById(self, id): for se in self.getSocialEvents(): if id == se.getId(): return se return None def setSocialEvents(self, se): self._socialEvents = se self.notifyModification() def addSocialEvent(self, se): se.setRegistrant(self) self.getSocialEvents().append(se) self.notifyModification() def removeSocialEventById(self, id): se = self.getSocialEventById(id) se.delete() self.getSocialEvents().remove(se) self.notifyModification() def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the registrant instance """ if self.getConference() == None: return Locator() lconf = self.getConference().getLocator() lconf["registrantId"] = self.getId() return lconf def notifyModification(self): """Method called to notify the current registered participant has been modified. """ self._p_changed = 1 def _cmpFamilyName(r1, r2): if r1 is None and r2 is None: return 0 if r1 is None: return -1 if r2 is None: return 1 return cmp(r1.getFamilyName().lower(), r2.getFamilyName().lower()) _cmpFamilyName = staticmethod(_cmpFamilyName) def getMiscellaneousGroups(self): try: if self._miscellaneous: pass except AttributeError, e: self._miscellaneous = {} return self._miscellaneous def getMiscellaneousGroupList(self): return self.getMiscellaneousGroups().values() def getMiscellaneousGroupById(self, id): if self.getMiscellaneousGroups().has_key(id): return self.getMiscellaneousGroups()[id] return None def addMiscellaneousGroup(self, g): if not self.getMiscellaneousGroups().has_key(g.getId()): self.getMiscellaneousGroups()[g.getId()] = g self.notifyModification() def setSessionBillingEnabled(self, v): self._sessionBillingEnabled = v def isSessionBillingEnabled(self): try: return self._sessionBillingEnabled except: self.setSessionBillingEnabled(False) return self._sessionBillingEnabled def getBilledForms(self): """ """ forms = [] if self._accommodation: forms.append(BilledItemsWrapper([self._accommodation])) if self._socialEvents: forms.append(BilledItemsWrapper(self._socialEvents)) if self._sessions and self.isSessionBillingEnabled(): forms.append(BilledItemsWrapper(self._sessions)) return forms def getStatuses(self): try: if self._statuses: pass except AttributeError, e: self._statuses = {} return self._statuses def getStatusesList(self): return self.getStatuses().values() def addStatus(self, s): self.getStatuses()[s.getId()] = s self.notifyModification() def removeStatus(self, s): if self.getStatuses().has_key(s.getId()): del self.getStatuses()[s.getId()] self.notifyModification() def getStatusById(self, id): v = self.getStatuses().get(id, None) if v is None: st = self._conf.getRegistrationForm().getStatusById(id) v = RegistrantStatus(self, st) if st.getDefaultValue() is not None: v.setStatusValue(st.getDefaultValue()) self.addStatus(v) return v def setModificationDate(self): pass def getAttachments(self): try: if self._attachments: pass except AttributeError: self._attachments = {} return self._attachments def getAttachmentList(self): return self.getAttachments().values() def getAttachmentById(self, id): return self.getAttachments().get(id, None) def _getAttachmentsCounter(self): try: if self._attachmentsCounter: pass except AttributeError: self._attachmentsCounter = Counter() return self._attachmentsCounter.newCount() def __addFile(self, file): file.archive(self.getConference()._getRepository()) self.getAttachments()[file.getId()] = file self.notifyModification() def saveFile(self, fileUploaded): from MaKaC.conference import LocalFile cfg = Config.getInstance() tempPath = cfg.getUploadedFilesTempDir() tempFileName = tempfile.mkstemp(suffix="IndicoRegistrant.tmp", dir=tempPath)[1] f = open(tempFileName, "wb") f.write(fileUploaded.file.read()) f.close() file = LocalFile() file.setFileName(fileUploaded.filename) file.setFilePath(tempFileName) file.setOwner(self) file.setId(self._getAttachmentsCounter()) self.__addFile(file) return file def deleteFile(self, fileId): file = self.getAttachments()[fileId] file.delete() del self.getAttachments()[fileId] self.notifyModification() def removeResource(self, res): """Necessary because LocalFile.delete (see _deleteFile) is calling this method. In our case, nothing to do. """ pass def canUserModify(self, user): return self.getConference().canUserModify(user) or (user is not None and user == self.getAvatar()) class BilledItemsWrapper(object): def __init__(self, items): self._items = items def getBilledItems(self): return [item.getBilledItem() for item in self._items if item.isBillable() and not item.isCancelled()] class BilledItem(object): def __init__(self, caption, price, quantity, currency): self._caption = caption self._price = price self._quantity = quantity self._currency = currency def getCaption(self): return self._caption def getPrice(self): return float(self._price) def getQuantity(self): return self._quantity def getCurrency(self): return self._currency class Accommodation(Persistent): def __init__(self, reg=None): self._registrant = reg self._arrivalDate = None self._departureDate = None self._accommodationType = None self._price = 0 self._billable = False self._currency = "" def isCancelled(self): return self._accommodationType.isCancelled() def getRegistrant(self): try: return self._registrant except: return None def setRegistrant(self, reg): self._registrant = reg def getArrivalDate(self): return self._arrivalDate def setArrivalDate(self, ad): self._arrivalDate = ad def getDepartureDate(self): return self._departureDate def setDepartureDate(self, dd): self._departureDate = dd def getNights(self): return (self._departureDate - self._arrivalDate).days def getPrice(self): try: return self._price except: return 0 def isBillable(self): try: return self._billable except: return False def getCurrency(self): try: return self._currency except: self._currency = self._regForm.getCurrency() return self._currency def getBilledItem(self): return BilledItem(self._accommodationType.getCaption(), self.getPrice(), self.getNights(), self.getCurrency()) def getAccommodationType(self): return self._accommodationType def setAccommodationType(self, at): if self.getAccommodationType() != at: if self.getAccommodationType() is not None: self.getAccommodationType().decreaseNoPlaces() if at is not None: at.increaseNoPlaces() self._price = at.getPrice() self._billable = at.isBillable() self._currency = at.getCurrency() else: self._price = 0 self._billable = False self._currency = "" self._accommodationType = at class SocialEvent(Persistent, Fossilizable): fossilizes(IRegFormSocialEventFossil) def __init__(self, se, noPlaces, reg=None): self._registrant = None self.addSEItem(se, noPlaces) def addSEItem(self, se, noPlaces): self._socialEventItem = se self._noPlaces = noPlaces self._socialEventItem.increaseNoPlaces(noPlaces) self._price = self._socialEventItem.getPrice() self._pricePerPlace = self._socialEventItem.isPricePerPlace() self._billable = self._socialEventItem.isBillable() self._currency = self._socialEventItem.getCurrency() def getRegistrant(self): try: return self._registrant except: return None def setRegistrant(self, reg): self._registrant = reg def getNoPlaces(self): return self._noPlaces def getCurrency(self): try: return self._currency except: self._currency = self._socialEventItem.getCurrency() return self._currency def getPrice(self): try: return self._price except: return 0 def isBillable(self): try: return self._billable except: return False def isPricePerPlace(self): try: return self._pricePerPlace except: return False def getBilledItem(self): quantity = 1 if self._pricePerPlace: quantity = self.getNoPlaces() return BilledItem(self.getCaption(), self.getPrice(), quantity, self.getCurrency()) def getSocialEventItem(self): return self._socialEventItem def getId(self): return self._socialEventItem.getId() def isCancelled(self): return self._socialEventItem.isCancelled() def getCancelledReason(self): return self._socialEventItem.getCancelledReason() def getCaption(self): return self._socialEventItem.getCaption() def getMaxPlacePerRegistrant(self): return self._socialEventItem.getMaxPlacePerRegistrant() def delete(self): self._socialEventItem.decreaseNoPlaces(self._noPlaces) class RegistrantSession(Persistent): def __init__(self, ses, reg=None): self._regSession = ses self._registrant = reg self._price = self._regSession.getPrice() self._billable = self._regSession.isBillable() self._currency = self._regSession.getCurrency() def getRegistrant(self): return self._registrant def setRegistrant(self, reg): self._registrant = reg def getCurrency(self): if not hasattr(self, "_currency") or not self._currency: self._currency = self._regSession.getCurrency() return self._currency def getPrice(self): try: return self._price except: return 0 def isBillable(self): try: return self._billable except: return False def getBilledItem(self): return BilledItem(self.getCaption(), self.getPrice(), 1, self.getCurrency()) def getRegSession(self): return self._regSession def getSession(self): return self._regSession.getSession() def getId(self): return self._regSession.getId() def getCaption(self): return self._regSession.getCaption() getTitle = getCaption def getCode(self): return self._regSession.getCode() def isCancelled(self): return self._regSession.isCancelled() class MiscellaneousInfoGroup(Persistent, Fossilizable): fossilizes(IRegFormMiscellaneousInfoGroupFossil) def __init__(self, reg, gs): self._registrant = reg self._generalSection = gs self._id = gs.getId() self._responseItems = {} def getId(self): return self._id def getGeneralSection(self): return self._generalSection def getTitle(self): return self.getGeneralSection().getTitle() def getRegistrant(self): return self._registrant def getResponseItems(self): return self._responseItems def getResponseItemList(self): return self._responseItems.values() def addResponseItem(self, r): self._responseItems[r.getId()] = r self.notifyModification() def removeResponseItem(self, i): if self.getResponseItems().has_key(i.getId()): del self._responseItems[i.getId()] self.notifyModification() def getResponseItemById(self, id): if self._responseItems.has_key(id): return self._responseItems[id] return None def clearResponses(self, gs=None): if gs is None: self._responseItems = {} self.notifyModification() else: #Mods to support sorting fields #for f in gs.getFields(): for f in gs.getSortedFields(): self.removeResponseItem(f) def getLocator(self): """Gives back (Locator) a globaly unique identification encapsulated in a Locator object for the MiscellaneousInfoGroup instance """ lconf = self.getRegistrant().getLocator() lconf["miscInfoId"] = self.getId() return lconf def notifyModification(self): self._p_changed = 1 class MiscellaneousInfoSimpleItem(Persistent): def __init__(self, group, field): self._group = group self._generalField = field self._id = field.getId() self._value = None self._billable = False self._price = 0.0 self._quantity = 0 self._currency = "" self._mandatory = False # TODO: When migrate to new database, take into account that HTMLName cannot be empty string self._HTMLName = "" def getHTMLName(self): try: if self._HTMLName == "": self._HTMLName = self.getGeneralField().getInput().getHTMLName() except: self._HTMLName = "" return self._HTMLName def setHTMLName(self, HTMLName): self._HTMLName = HTMLName def isMandatory(self): try: return self._mandatory except: self._mandatory = False return self._mandatory def setMandatory(self, mandatory): self._mandatory = mandatory def getCurrency(self): try: return self._currency except: self.setCurrency("") return self._currency def setCurrency(self, currency): self._currency = currency def getQuantity(self): try: return self._quantity except: self.setQuantity(0) return self._quantity def setQuantity(self, quantity): self._quantity = quantity def isBillable(self): try: return self._billable except: self.setBillable(False) return self._billable def setBillable(self, v): self._billable = v def getPrice(self): try: return self._price except: self.setPrice(0) return self._price def setPrice(self, price): self._price = price def getId(self): return self._id def getGeneralField(self): return self._generalField def getCaption(self): return self._generalField.getCaption() def getOwner(self): return self._group getGroup = getOwner def getValue(self): return self._value def setValue(self, v): self._value = v class RegistrantStatus(Persistent): def __init__(self, reg, st, data=None): self._status = st self._registrant = reg self._value = None if data is not None: self.setValues() def setValues(self, d): self.setStatusValue(d.get("statusvalue", "")) def getValues(self): d = {} d["statusvalue"] = self.getStatusValue() return d def getId(self): return self._status.getId() def getCaption(self): return self._status.getCaption() def getStatusValue(self): if not self._status.hasStatusValue(self._value): self._value = self._status.getDefaultValue() return self._value def setStatusValue(self, v): self._value = v class RegistrantMapping(object): def __init__(self, registrant): self._registrant = registrant self._regDict = { "FirstName": self._registrant.getFirstName, "LastName": self._registrant.getSurName, "Institution": self._registrant.getInstitution, "Position": self._registrant.getPosition, "Phone": self._registrant.getPhone, "City": self._registrant.getCity, "Address": self._registrant.getAddress, "Email": self._registrant.getEmail, "isPayed": self._registrant.isPayedText, "idpayment": self._registrant.getIdPay, "Country": self._getCountry, "amountToPay": self._getAmountToPay, "Accommodation": self._getAccomodation, "SocialEvents": self._getSocialEvents, "ReasonParticipation": self._getReasonParticipation, "RegistrationDate": self._getRegistrationDate, "Sessions": self._getSessions, "DepartureDate": self._getDepartureDate, "ArrivalDate": self._getArrivalDate, "checkedIn": self._getCheckedIn, "checkInDate": self._getCheckInDate } def __getitem__(self, key): if self._regDict.has_key(key): return self._regDict[key]() elif re.match("s-[0-9]+$", key): return self._getStatus(key[2:]) elif re.match("[0-9]+$", key): return self._getGroup(key) elif re.match("[0-9]+-[0-9]+$", key): dashPos = key.find('-') return self._getItem(key[:dashPos], key[dashPos + 1:]) else: return "&nbsp;" def _getCountry(self): return CountryHolder().getCountryById(self._registrant.getCountry()) def _getAmountToPay(self): return "%.2f %s" % (self._registrant.getTotal(), self._registrant.getConference().getRegistrationForm().getCurrency()) def _getAccomodation(self): if self._registrant.getAccommodation() is not None: if self._registrant.getAccommodation().getAccommodationType() is not None: return self._registrant.getAccommodation().getAccommodationType().getCaption() return "" def _getDepartureDate(self): accomodation = self._registrant.getAccommodation() if accomodation is not None: departure_date = accomodation.getDepartureDate() if departure_date is not None: return format_date(departure_date) return "" def _getArrivalDate(self): accomodation = self._registrant.getAccommodation() if accomodation is not None: arrival_date = accomodation.getArrivalDate() if arrival_date is not None: return format_date(arrival_date) return "" def _getSocialEvents(self): events = self._registrant.getSocialEvents() items = ["%s (%s)" % (item.getCaption(), item.getNoPlaces()) for item in events ] return "<br>".join(items) def _getReasonParticipation(self): return self._registrant.getReasonParticipation() or "" def _getRegistrationDate(self): registration_date = self._registrant.getAdjustedRegistrationDate() if registration_date is not None: return format_datetime(registration_date) else: return i18nformat("""-- _("date unknown")--""") def _getSessions(self): sessions = self._registrant.getSessionList() return "<br>".join([sess.getTitle() for sess in sessions]) def _getStatus(self, id): st = self._registrant.getStatusById(id) if st.getStatusValue() is not None: return st.getStatusValue().getCaption() else: return i18nformat("""<span style="white-space:nowrap">-- _("not set") --</span>""") def _getGroup(self, groupId): if self._registrant.getMiscellaneousGroupById(groupId): return self._registrant.getMiscellaneousGroupById(groupId).getTitle() else: return "" def _formatValue(self, fieldInput, value): try: value = fieldInput.getValueDisplay(value) except: value = str(value).strip() return value def _getItem(self, groupId, itemId): if self._registrant.getMiscellaneousGroupById(groupId) and \ self._registrant.getMiscellaneousGroupById(groupId).getResponseItemById(itemId): item = self._registrant.getMiscellaneousGroupById(groupId).getResponseItemById(itemId) return self._formatValue(item.getGeneralField().getInput(), item.getValue()) else: return "" def _getCheckedIn(self): conf = self._registrant.getConference() if not conf.getRegistrationForm().getETicket().isEnabled(): return "-" elif self._registrant.isCheckedIn(): return _("Yes") else: return _("No") def _getCheckInDate(self): checkInDate = self._registrant.getAdjustedCheckInDate() if checkInDate: return format_datetime(checkInDate) else: return "-"
gpl-3.0
7,992,295,334,285,262,000
33.9931
250
0.575081
false
jake1036/spider
scrapy/contrib/spidermiddleware/offsite.py
23
2084
""" Offsite Spider Middleware See documentation in docs/topics/spider-middleware.rst """ import re from scrapy import signals from scrapy.http import Request from scrapy.utils.httpobj import urlparse_cached from scrapy import log class OffsiteMiddleware(object): def __init__(self, stats): self.stats = stats @classmethod def from_crawler(cls, crawler): o = cls(crawler.stats) crawler.signals.connect(o.spider_opened, signal=signals.spider_opened) return o def process_spider_output(self, response, result, spider): for x in result: if isinstance(x, Request): if x.dont_filter or self.should_follow(x, spider): yield x else: domain = urlparse_cached(x).hostname if domain and domain not in self.domains_seen: self.domains_seen.add(domain) log.msg(format="Filtered offsite request to %(domain)r: %(request)s", level=log.DEBUG, spider=spider, domain=domain, request=x) self.stats.inc_value('offsite/domains', spider=spider) self.stats.inc_value('offsite/filtered', spider=spider) else: yield x def should_follow(self, request, spider): regex = self.host_regex # hostname can be None for wrong urls (like javascript links) host = urlparse_cached(request).hostname or '' return bool(regex.search(host)) def get_host_regex(self, spider): """Override this method to implement a different offsite policy""" allowed_domains = getattr(spider, 'allowed_domains', None) if not allowed_domains: return re.compile('') # allow all by default regex = r'^(.*\.)?(%s)$' % '|'.join(re.escape(d) for d in allowed_domains if d is not None) return re.compile(regex) def spider_opened(self, spider): self.host_regex = self.get_host_regex(spider) self.domains_seen = set()
bsd-3-clause
-2,681,305,780,648,502,300
35.561404
99
0.601727
false
kball/ambry
ambry/database/partition.py
1
4876
""" Copyright (c) 2013 Clarinova. This file is licensed under the terms of the Revised BSD License, included in this distribution as LICENSE.txt """ from .sqlite import SqliteDatabase, SqliteAttachmentMixin #@UnresolvedImport from .relational import RelationalPartitionDatabaseMixin, RelationalDatabase #@UnresolvedImport from inserter import ValueInserter, ValueUpdater class PartitionDb(SqliteDatabase, RelationalPartitionDatabaseMixin, SqliteAttachmentMixin): '''a database for a partition file. Partition databases don't have a full schema and can load tables as they are referenced, by copying them from the prototype. ''' def __init__(self, bundle, partition, base_path, memory = False, **kwargs): '''''' RelationalPartitionDatabaseMixin._init(self,bundle,partition) self.memory = memory super(PartitionDb, self).__init__(base_path, memory=self.memory, **kwargs) self._session = None assert partition.identity.extension() == self.EXTENSION, ( "Identity extension '{}' not same as db extension '{}' for database {}".format( partition.identity.extension(), self.EXTENSION, type(self) )) def query(self,*args, **kwargs): """Convenience function for self.connection.execute()""" from sqlalchemy.exc import OperationalError from ..dbexceptions import QueryError if isinstance(args[0], basestring): fd = { x:x for x in self._attachments } args = (args[0].format(**fd),) + args[1:] try: return self.connection.execute(*args, **kwargs) except OperationalError as e: raise QueryError("Error while executing {} in database {} ({}): {}".format(args, self.dsn, type(self), e.message)) def inserter(self, table_or_name=None,**kwargs): if not self.exists(): raise Exception("Database doesn't exist yet: '{}'".format(self.dsn)) if table_or_name is None and self.partition.table is not None: table_or_name = self.partition.get_table() if isinstance(table_or_name, basestring): table_name = table_or_name if not table_name in self.inspector.get_table_names(): t_meta, table = self.bundle.schema.get_table_meta(table_name) #@UnusedVariable table.create(bind=self.engine) if not table_name in self.inspector.get_table_names(): raise Exception("Don't have table "+table_name) table = self.table(table_name) else: table = self.table(table_or_name.name) return ValueInserter(self, self.bundle, table , **kwargs) def updater(self, table_or_name=None,**kwargs): if table_or_name is None and self.partition.table is not None: table_or_name = self.partition.table if isinstance(table_or_name, basestring): table_name = table_or_name if not table_name in self.inspector.get_table_names(): t_meta, table = self.bundle.schema.get_table_meta(table_name) #@UnusedVariable table.create(bind=self.engine) if not table_name in self.inspector.get_table_names(): raise Exception("Don't have table "+table_name) table = self.table(table_name) else: table = self.table(table_or_name.name) return ValueUpdater(self, self.bundle, table , **kwargs) def _on_create_connection(self, connection): '''Called from get_connection() to update the database''' super(PartitionDb, self)._on_create_connection(connection) _on_connect_partition(connection, None) def _on_create_engine(self, engine): from sqlalchemy import event super(PartitionDb, self)._on_create_engine(engine) # This looks like it should be connected to the listener, but it causes # I/O errors, so it is in _on_create_connection #event.listen(self._engine, 'connect', _on_connect_partition) def create(self): from ambry.orm import Dataset '''Like the create() for the bundle, but this one also copies the dataset and makes and entry for the partition ''' self.require_path() SqliteDatabase._create(self) # Creates the database file if RelationalDatabase._create(self): self.post_create() def _on_connect_partition(dbapi_con, con_record): '''ISSUE some Sqlite pragmas when the connection is created''' from sqlite import _on_connect_bundle as ocb ocb(dbapi_con, con_record) #dbapi_con.enable_load_extension(True)
bsd-2-clause
4,705,634,450,038,241,000
35.38806
126
0.616694
false
songww/blog.flexops.org
manager.py
1
5281
#!/usr/bin/env python # coding:utf8 from gevent import monkey monkey.patch_all() import os import myweb import json from io import open from hashlib import md5 from md2html import md2html # , md2body from mdparser import FlexopsParser from datetime import datetime from config import configs, urls from utils import SQLAStore from models import Post, Tag, User, WebSession, load_sqla myweb.config.debug = False app = myweb.application(urls, globals()) app.add_processor(load_sqla) myweb.config.session_parameters['cookie_name'] = 'flexops' myweb.config.session_parameters['timeout'] = 600 myweb.config.session_parameters['ignore_expiry'] = True myweb.config.session_parameters['ignore_change_ip'] = False myweb.config.session_parameters['expired_message'] = 'Session expired' session = myweb.session.Session(app, SQLAStore(WebSession)) render = myweb.template.Template() # tags = myweb.ctx.orm.query(Tag).all() # render.global_vars({'tags': tags}) render.global_vars({'config': configs}) render.global_vars({'navs': myweb.utils.group(configs['navs'], 2)}) def markdown(text): FP = FlexopsParser(text) return FP.body() render.global_vars({'markdown': markdown}) def checkLogged(): if session.get('logined', 0) == 0: return False else: return True class Home: def GET(self): postsQuery = myweb.ctx.orm.query(Post).order_by('modified desc') page = myweb.input(page=1).page-1 pageSize = myweb.input(pageSize=10).pageSize if page > 1: posts = postsQuery.offset(page*pageSize).limit(pageSize).all() else: posts = postsQuery.limit(pageSize).all() return render.start(posts=posts) class Views: def GET(self, postId): post = myweb.ctx.orm.query(Post).filter_by(id=postId).first() if post: f = os.path.join('articles', post.filename) else: raise myweb.NotFound # mdFile = codecs.open(f, mode='r', encoding='utf8') mdFile = open(f, encoding='utf-8') content = mdFile.read() html = md2html(content) mdFile.close() # html = md2html('articles/' + post.filename) return render.view(html=html, post=post) class View: def GET(self, post_id): post = myweb.ctx.orm.query(Post).filter_by(id=post_id).first() if post: f = os.path.join('articles', post.filename) else: raise myweb.NotFound() # mdFile = codecs.open(f, mode='r', encoding='utf8') mdFile = open(f, encoding='utf-8') content = mdFile.read() FP = FlexopsParser(content) mdFile.close() # try: # html = FP.parse2html() # except Exception as exp: # print(exp) # FP = FlexopsParser(content) # html = {'body': FP.html()} html = FP.parse2html() return render.view(html=html, post=post) class GetTags: def GET(self, tag): posts = myweb.ctx.orm.query(Tag).filter_by(name=tag).first() return render.tags(posts=posts) class About: def GET(self): return render.about() class Admin: def GET(self): if checkLogged(): postsQuery = myweb.ctx.orm.query(Post).order_by('modified desc') posts = postsQuery.all() return render.admin(posts=posts) else: raise myweb.seeother('/login') def POST(self): pass class Login: def GET(self): return render.login() def POST(self): user = myweb.input().username passwd = myweb.input().passwd passwd = md5(passwd).hexdigest() check = myweb.ctx.orm.query(User).filter_by( email=user, passwd=passwd ).first() if check and passwd == check.passwd: session.logined = 1 session.user = user raise myweb.seeother('/server') else: session.logined = 0 raise myweb.seeother('/login') class AddPost: def POST(self): title = myweb.input().title tags = myweb.input().tags.split() mdName = myweb.input().filename mdSummary = myweb.input().summary fileSrc = myweb.input().mdfile.decode('utf8') newPost = Post( title=title, upload=datetime.now(), modified=datetime.now(), summary=mdSummary, filename=mdName ) myweb.ctx.orm.add(newPost) myweb.ctx.orm.flush() for tag in tags: checkTag = myweb.ctx.orm.query(Tag).filter_by(name=tag).all() if not checkTag: newTags = Tag(name=tag) myweb.ctx.orm.add(newTags) myweb.ctx.orm.flush() newPost.tags.append(newTags) fout = open('articles/'+mdName, 'w') fout.write(fileSrc) fout.close() return json.dumps({ 'success': True }) class EditPosts: def GET(self, id): return json.dumps({ 'success': True, 'action': 'action' }) application = app.wsgifunc() if __name__ == '__main__': from gevent.pywsgi import WSGIServer WSGIServer(('', 8000), application).serve_forever() # app.run()
gpl-3.0
-4,105,969,910,964,282,400
25.537688
76
0.592123
false
tongwang01/tensorflow
tensorflow/contrib/slim/python/slim/nets/resnet_v2.py
27
13235
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Contains definitions for the preactivation form of Residual Networks. Residual networks (ResNets) were originally proposed in: [1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Deep Residual Learning for Image Recognition. arXiv:1512.03385 The full preactivation 'v2' ResNet variant implemented in this module was introduced by: [2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun Identity Mappings in Deep Residual Networks. arXiv: 1603.05027 The key difference of the full preactivation 'v2' variant compared to the 'v1' variant in [1] is the use of batch normalization before every weight layer. Another difference is that 'v2' ResNets do not include an activation function in the main pathway. Also see [2; Fig. 4e]. Typical use: from tensorflow.contrib.slim.nets import resnet_v2 ResNet-101 for image classification into 1000 classes: # inputs has shape [batch, 224, 224, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)): net, end_points = resnet_v2.resnet_v2_101(inputs, 1000) ResNet-101 for semantic segmentation into 21 classes: # inputs has shape [batch, 513, 513, 3] with slim.arg_scope(resnet_v2.resnet_arg_scope(is_training)): net, end_points = resnet_v2.resnet_v2_101(inputs, 21, global_pool=False, output_stride=16) """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.contrib.slim.nets import resnet_utils slim = tf.contrib.slim resnet_arg_scope = resnet_utils.resnet_arg_scope @slim.add_arg_scope def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, outputs_collections=None, scope=None): """Bottleneck residual unit variant with BN before convolutions. This is the full preactivation residual unit variant proposed in [2]. See Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck variant which has an extra bottleneck layer. When putting together two consecutive ResNet blocks that use this unit, one should use stride = 2 in the last unit of the first block. Args: inputs: A tensor of size [batch, height, width, channels]. depth: The depth of the ResNet unit output. depth_bottleneck: The depth of the bottleneck layers. stride: The ResNet unit's stride. Determines the amount of downsampling of the units output compared to its input. rate: An integer, rate for atrous convolution. outputs_collections: Collection to add the ResNet unit output. scope: Optional variable_scope. Returns: The ResNet unit's output. """ with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc: depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4) preact = slim.batch_norm(inputs, activation_fn=tf.nn.relu, scope='preact') if depth == depth_in: shortcut = resnet_utils.subsample(inputs, stride, 'shortcut') else: shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride, normalizer_fn=None, activation_fn=None, scope='shortcut') residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1, scope='conv1') residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2') residual = slim.conv2d(residual, depth, [1, 1], stride=1, normalizer_fn=None, activation_fn=None, scope='conv3') output = shortcut + residual return slim.utils.collect_named_outputs(outputs_collections, sc.name, output) def resnet_v2(inputs, blocks, num_classes=None, global_pool=True, output_stride=None, include_root_block=True, reuse=None, scope=None): """Generator for v2 (preactivation) ResNet models. This function generates a family of ResNet v2 models. See the resnet_v2_*() methods for specific model instantiations, obtained by selecting different block instantiations that produce ResNets of various depths. Training for image classification on Imagenet is usually done with [224, 224] inputs, resulting in [7, 7] feature maps at the output of the last ResNet block for the ResNets defined in [1] that have nominal stride equal to 32. However, for dense prediction tasks we advise that one uses inputs with spatial dimensions that are multiples of 32 plus 1, e.g., [321, 321]. In this case the feature maps at the ResNet output will have spatial shape [(height - 1) / output_stride + 1, (width - 1) / output_stride + 1] and corners exactly aligned with the input image corners, which greatly facilitates alignment of the features to the image. Using as input [225, 225] images results in [8, 8] feature maps at the output of the last ResNet block. For dense prediction tasks, the ResNet needs to run in fully-convolutional (FCN) mode and global_pool needs to be set to False. The ResNets in [1, 2] all have nominal stride equal to 32 and a good choice in FCN mode is to use output_stride=16 in order to increase the density of the computed features at small computational and memory overhead, cf. http://arxiv.org/abs/1606.00915. Args: inputs: A tensor of size [batch, height_in, width_in, channels]. blocks: A list of length equal to the number of ResNet blocks. Each element is a resnet_utils.Block object describing the units in the block. num_classes: Number of predicted classes for classification tasks. If None we return the features before the logit layer. global_pool: If True, we perform global average pooling before computing the logits. Set to True for image classification, False for dense prediction. output_stride: If None, then the output will be computed at the nominal network stride. If output_stride is not None, it specifies the requested ratio of input to output spatial resolution. include_root_block: If True, include the initial convolution followed by max-pooling, if False excludes it. If excluded, `inputs` should be the results of an activation-less convolution. reuse: whether or not the network and its variables should be reused. To be able to reuse 'scope' must be given. scope: Optional variable_scope. Returns: net: A rank-4 tensor of size [batch, height_out, width_out, channels_out]. If global_pool is False, then height_out and width_out are reduced by a factor of output_stride compared to the respective height_in and width_in, else both height_out and width_out equal one. If num_classes is None, then net is the output of the last ResNet block, potentially after global average pooling. If num_classes is not None, net contains the pre-softmax activations. end_points: A dictionary from components of the network to the corresponding activation. Raises: ValueError: If the target output_stride is not valid. """ with tf.variable_scope(scope, 'resnet_v2', [inputs], reuse=reuse) as sc: end_points_collection = sc.original_name_scope + '_end_points' with slim.arg_scope([slim.conv2d, bottleneck, resnet_utils.stack_blocks_dense], outputs_collections=end_points_collection): net = inputs if include_root_block: if output_stride is not None: if output_stride % 4 != 0: raise ValueError('The output_stride needs to be a multiple of 4.') output_stride /= 4 # We do not include batch normalization or activation functions in conv1 # because the first ResNet unit will perform these. Cf. Appendix of [2]. with slim.arg_scope([slim.conv2d], activation_fn=None, normalizer_fn=None): net = resnet_utils.conv2d_same(net, 64, 7, stride=2, scope='conv1') net = slim.max_pool2d(net, [3, 3], stride=2, scope='pool1') net = resnet_utils.stack_blocks_dense(net, blocks, output_stride) # This is needed because the pre-activation variant does not have batch # normalization or activation functions in the residual unit output. See # Appendix of [2]. net = slim.batch_norm(net, activation_fn=tf.nn.relu, scope='postnorm') if global_pool: # Global average pooling. net = tf.reduce_mean(net, [1, 2], name='pool5', keep_dims=True) if num_classes is not None: net = slim.conv2d(net, num_classes, [1, 1], activation_fn=None, normalizer_fn=None, scope='logits') # Convert end_points_collection into a dictionary of end_points. end_points = slim.utils.convert_collection_to_dict(end_points_collection) if num_classes is not None: end_points['predictions'] = slim.softmax(net, scope='predictions') return net, end_points resnet_v2.default_image_size = 224 def resnet_v2_50(inputs, num_classes=None, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_50'): """ResNet-50 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_101(inputs, num_classes=None, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_101'): """ResNet-101 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 22 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_152(inputs, num_classes=None, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_152'): """ResNet-152 model of [1]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 7 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope) def resnet_v2_200(inputs, num_classes=None, global_pool=True, output_stride=None, reuse=None, scope='resnet_v2_200'): """ResNet-200 model of [2]. See resnet_v2() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', bottleneck, [(512, 128, 1)] * 23 + [(512, 128, 2)]), resnet_utils.Block( 'block3', bottleneck, [(1024, 256, 1)] * 35 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', bottleneck, [(2048, 512, 1)] * 3)] return resnet_v2(inputs, blocks, num_classes, global_pool, output_stride, include_root_block=True, reuse=reuse, scope=scope)
apache-2.0
-7,500,124,744,281,748,000
44.795848
80
0.636796
false
quarckster/cfme_tests
scripts/coverage_report_sprout.py
2
1609
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import argparse import diaper from cfme.test_framework.sprout.client import SproutClient from cfme.utils.appliance import IPAppliance from coverage_report_jenkins import main as coverage_report_jenkins if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('jenkins_url') parser.add_argument('jenkins_job_name') parser.add_argument('version') parser.add_argument('--jenkins-user', default=None) parser.add_argument('--jenkins-token', default=None) args = parser.parse_args() # TODO: Upstream support group = 'downstream-' + ''.join(args.version.split('.')[:2]) + 'z' sprout = SproutClient.from_config() print('requesting an appliance from sprout for {}/{}'.format(group, args.version)) pool_id = sprout.request_appliances(group, version=args.version) print('Requested pool {}'.format(pool_id)) result = None try: while not result or not (result['fulfilled'] and result['finished']): result = sprout.request_check(pool_id) appliance_ip = result['appliances'][0]['ip_address'] print('received an appliance with IP address: {}'.format(appliance_ip)) with IPAppliance(hostname=appliance_ip) as appliance: exit( coverage_report_jenkins( appliance, args.jenkins_url, args.jenkins_user, args.jenkins_token, args.jenkins_job_name)) finally: with diaper: sprout.destroy_pool(pool_id)
gpl-2.0
-8,014,877,579,074,386,000
37.309524
86
0.628962
false
trojkat/pylama_gjslint
pylama_gjslint/closure_linter/error_check.py
27
3768
#!/usr/bin/env python # # Copyright 2011 The Closure Linter Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Specific JSLint errors checker.""" import gflags as flags FLAGS = flags.FLAGS class Rule(object): """Different rules to check.""" # Documentations for specific rules goes in flag definition. BLANK_LINES_AT_TOP_LEVEL = 'blank_lines_at_top_level' INDENTATION = 'indentation' WELL_FORMED_AUTHOR = 'well_formed_author' NO_BRACES_AROUND_INHERIT_DOC = 'no_braces_around_inherit_doc' BRACES_AROUND_TYPE = 'braces_around_type' OPTIONAL_TYPE_MARKER = 'optional_type_marker' VARIABLE_ARG_MARKER = 'variable_arg_marker' UNUSED_PRIVATE_MEMBERS = 'unused_private_members' UNUSED_LOCAL_VARIABLES = 'unused_local_variables' # Rule to raise all known errors. ALL = 'all' # All rules that are to be checked when using the strict flag. E.g. the rules # that are specific to the stricter Closure style. CLOSURE_RULES = frozenset([BLANK_LINES_AT_TOP_LEVEL, INDENTATION, WELL_FORMED_AUTHOR, NO_BRACES_AROUND_INHERIT_DOC, BRACES_AROUND_TYPE, OPTIONAL_TYPE_MARKER, VARIABLE_ARG_MARKER]) flags.DEFINE_boolean('strict', False, 'Whether to validate against the stricter Closure style. ' 'This includes ' + (', '.join(Rule.CLOSURE_RULES)) + '.') flags.DEFINE_multistring('jslint_error', [], 'List of specific lint errors to check. Here is a list' ' of accepted values:\n' ' - ' + Rule.ALL + ': enables all following errors.\n' ' - ' + Rule.BLANK_LINES_AT_TOP_LEVEL + ': validates' 'number of blank lines between blocks at top level.\n' ' - ' + Rule.INDENTATION + ': checks correct ' 'indentation of code.\n' ' - ' + Rule.WELL_FORMED_AUTHOR + ': validates the ' '@author JsDoc tags.\n' ' - ' + Rule.NO_BRACES_AROUND_INHERIT_DOC + ': ' 'forbids braces around @inheritdoc JsDoc tags.\n' ' - ' + Rule.BRACES_AROUND_TYPE + ': enforces braces ' 'around types in JsDoc tags.\n' ' - ' + Rule.OPTIONAL_TYPE_MARKER + ': checks correct ' 'use of optional marker = in param types.\n' ' - ' + Rule.UNUSED_PRIVATE_MEMBERS + ': checks for ' 'unused private variables.\n') def ShouldCheck(rule): """Returns whether the optional rule should be checked. Computes different flags (strict, jslint_error, jslint_noerror) to find out if this specific rule should be checked. Args: rule: Name of the rule (see Rule). Returns: True if the rule should be checked according to the flags, otherwise False. """ if rule in FLAGS.jslint_error or Rule.ALL in FLAGS.jslint_error: return True # Checks strict rules. return FLAGS.strict and rule in Rule.CLOSURE_RULES
bsd-3-clause
-5,970,058,837,463,215,000
39.516129
80
0.596603
false
helixyte/TheLMA
thelma/repositories/rdb/schema/tables/supplierstructureannotation.py
1
1213
""" This file is part of the TheLMA (THe Laboratory Management Application) project. See LICENSE.txt for licensing, CONTRIBUTORS.txt for contributor information. Supplier structure annotation table. """ from sqlalchemy import Column from sqlalchemy import ForeignKey from sqlalchemy import Integer from sqlalchemy import String from sqlalchemy import Table __docformat__ = 'reStructuredText en' __all__ = ['create_table'] def create_table(metadata, supplier_molecule_design_tbl, chemical_structure_tbl): "Table factory." tbl = Table('supplier_structure_annotation', metadata, Column('supplier_molecule_design_id', Integer, ForeignKey( supplier_molecule_design_tbl.c.supplier_molecule_design_id, onupdate='CASCADE', ondelete='CASCADE'), nullable=False, primary_key=True), Column('chemical_structure_id', Integer, ForeignKey( chemical_structure_tbl.c.chemical_structure_id, onupdate='CASCADE', ondelete='CASCADE'), nullable=False, primary_key=True), Column('annotation', String, nullable=False), ) return tbl
mit
-9,079,166,523,909,066,000
34.676471
80
0.657049
false
smc/silpa
src/silpa/modules/calendar/calendar.py
3
6154
#! /usr/bin/env python # -*- coding: utf-8 -*- # Calendar Program # Copyright 2008 Santhosh Thottingal <[email protected]> # http://www.smc.org.in # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Library General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. # # If you find any bugs or have any suggestions email: [email protected] # URL: http://www.smc.org.in from common import * from utils import * import os,sys import datetime from sakacalendar import SakaCalendar from astral import Astral class Calendar(SilpaModule): WEEKDAYS =["Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday"] def __init__(self): self.template=os.path.join(os.path.dirname(__file__), 'calendar.html') self.astral =Astral() @ServiceMethod def date(self, calendar_system="Gregorian"): if calendar_system == "Gregorian": return dumps([datetime.date.today().year, datetime.date.today().month, datetime.date.today().day] ) if calendar_system == "Saka" : sakacalendar = SakaCalendar() greg= [datetime.date.today().year, datetime.date.today().month, datetime.date.today().day] return dumps(sakacalendar.gregorian_to_saka_date(greg)) @ServiceMethod def convert(self, from_calendar_system, to_calendar_system, year, month, day): if from_calendar_system == to_calendar_system: return dumps([year, month,day]) sakacalendar = SakaCalendar() jd=None year = int(year) month = int(month) day = int(day) if from_calendar_system == "Gregorian": jd=sakacalendar.gregorian_to_julian_date(year, month,day) if from_calendar_system == "Saka": jd=sakacalendar.saka_to_julian_date(year, month,day) if to_calendar_system == "Gregorian": return dumps(sakacalendar.julian_date_to_gregorian(jd)) if to_calendar_system == "Saka": return dumps(sakacalendar.gregorian_to_saka_date(sakacalendar.julian_date_to_gregorian(jd))) return "Not Implemented " + from_calendar_system + " -> " + to_calendar_system @ServiceMethod def panchanga(self, city_name, year,month,day): date = datetime.date(int(year), int(month), int(day)) calendar_details={} self.astral.solar_depression = 'civil' city = self.astral[city_name] calendar_details['Day of the week'] = self.WEEKDAYS[date.isoweekday()] calendar_details['City Name'] = city_name calendar_details['City Country'] = city.country print('Information for %s/%s\n' % (city_name, city.country)) timezone = city.timezone print('Timezone: %s' % timezone) calendar_details['Timezone'] = timezone calendar_details['Latitude'] = city.latitude calendar_details['Longitude'] = city.longitude print('Latitude: %.02f; Longitude: %.02f\n' % \ (city.latitude, city.longitude)) sun = city.sun(date=date, local=True) calendar_details['Dawn'] = str(sun['dawn']) calendar_details['Sunrise'] = str(sun['sunrise']) calendar_details['Noon'] = str(sun['noon']) calendar_details['Sunset'] = str(sun['sunset']) calendar_details['Dusk'] = str(sun['dusk']) print('Dawn: %s' % str(sun['dawn'])) print('Sunrise: %s' % str(sun['sunrise'])) print('Noon: %s' % str(sun['noon'])) print('Sunset: %s' % str(sun['sunset'])) print('Dusk: %s' % str(sun['dusk'])) rahukaalam = city.rahukaalam(date=date, local=True) gulikakaalam = city.gulikakaalam(date=date, local=True) yamakandakaalam = city.yamakandakaalam(date=date, local=True) calendar_details['Rahukaalam'] = "from " + str(rahukaalam['start']) + " to " + str(rahukaalam['end']) calendar_details['Gulikakaalam'] = "from " + str(gulikakaalam['start']) + " to " + str(gulikakaalam['end']) calendar_details['Yamakandakaalam'] = "from " + str(yamakandakaalam['start']) + " to " + str(yamakandakaalam['end']) print('Rahukaalam: %s' % "from " + str(rahukaalam['start']) + " to " + str(rahukaalam['end'])) print('Gulikakaalam: %s' % "from " + str(gulikakaalam['start']) + " to " + str(gulikakaalam['end'])) print('Yamakandakaalam: %s' % "from " + str(yamakandakaalam['start']) + " to " + str(yamakandakaalam['end'])) calendar_details['Kollavarsham(Malayalam Calendar)'] = "Not implemented now" calendar_details['Tamil Calendar'] = "Not implemented now" calendar_details['Bengali Calendar'] = "Not implemented now" sakacalendar = SakaCalendar() jd=sakacalendar.gregorian_to_julian_date(int(year), int(month),int(day) ) calendar_details['Saka Calendar'] = sakacalendar.gregorian_to_saka_date(sakacalendar.julian_date_to_gregorian(jd)) calendar_details['Oriya Calendar'] = "Not implemented now" calendar_details['Nakshathra'] = "Not implemented now" calendar_details['Thidhi'] = "Not implemented now" return dumps(calendar_details) def get_module_name(self): return "Indic Calendar Systems" def get_info(self): return "Conversion and look up on Indic Calendars" def getInstance(): return Calendar()
agpl-3.0
6,164,151,750,504,642,000
51.051724
126
0.624959
false
Gustavo6046/ChatterBot
chatterbot/output/microsoft.py
3
3289
from __future__ import unicode_literals import json from .output_adapter import OutputAdapter class Microsoft(OutputAdapter): """ An output adapter that allows a ChatterBot instance to send responses to a Micorsoft bot using *Direct Line client protocol*. """ def __init__(self, **kwargs): super(Microsoft, self).__init__(**kwargs) self.directline_host = kwargs.get( 'directline_host', 'https://directline.botframework.com' ) self.direct_line_token_or_secret = kwargs.get( 'direct_line_token_or_secret' ) self.conversation_id = kwargs.get('conversation_id') authorization_header = 'BotConnector {}'.format( self.direct_line_token_or_secret ) self.headers = { 'Authorization': authorization_header, 'Content-Type': 'application/json' } def _validate_status_code(self, response): status_code = response.status_code if status_code not in [200, 204]: raise self.HTTPStatusException('{} status code recieved'.format(status_code)) def get_most_recent_message(self): """ Return the most recently sent message. """ import requests endpoint = '{host}/api/conversations/{id}/messages'.format( host=self.directline_host, id=self.conversation_id ) response = requests.get( endpoint, headers=self.headers, verify=False ) self.logger.info('{} retrieving most recent messages {}'.format( response.status_code, endpoint )) self._validate_status_code(response) data = response.json() if data['messages']: last_msg = int(data['watermark']) return data['messages'][last_msg - 1] return None def send_message(self, conversation_id, message): """ Send a message to a HipChat room. https://www.hipchat.com/docs/apiv2/method/send_message """ import requests message_url = "{host}/api/conversations/{conversationId}/messages".format( host=self.directline_host, conversationId=conversation_id ) response = requests.post( message_url, headers=self.headers, data=json.dumps({ 'message': message }) ) self.logger.info('{} sending message {}'.format( response.status_code, message_url )) self._validate_status_code(response) # Microsoft return 204 on operation succeeded and no content was returned. return self.get_most_recent_message() def process_response(self, statement, session_id=None): data = self.send_message(self.conversation_id, statement.text) self.logger.info('processing user response {}'.format(data)) return statement class HTTPStatusException(Exception): """ Exception raised when unexpected non-success HTTP status codes are returned in a response. """ def __init__(self, value): self.value = value def __str__(self): return repr(self.value)
bsd-3-clause
8,121,900,599,387,251,000
29.174312
89
0.584372
false
Yuudachimoe/HikariChun-RedBot
lib/youtube_dl/extractor/noovo.py
20
3178
# coding: utf-8 from __future__ import unicode_literals from .brightcove import BrightcoveNewIE from .common import InfoExtractor from ..compat import compat_str from ..utils import ( int_or_none, smuggle_url, try_get, ) class NoovoIE(InfoExtractor): _VALID_URL = r'https?://(?:[^/]+\.)?noovo\.ca/videos/(?P<id>[^/]+/[^/?#&]+)' _TESTS = [{ # clip 'url': 'http://noovo.ca/videos/rpm-plus/chrysler-imperial', 'info_dict': { 'id': '5386045029001', 'ext': 'mp4', 'title': 'Chrysler Imperial', 'description': 'md5:de3c898d1eb810f3e6243e08c8b4a056', 'timestamp': 1491399228, 'upload_date': '20170405', 'uploader_id': '618566855001', 'creator': 'vtele', 'view_count': int, 'series': 'RPM+', }, 'params': { 'skip_download': True, }, }, { # episode 'url': 'http://noovo.ca/videos/l-amour-est-dans-le-pre/episode-13-8', 'info_dict': { 'id': '5395865725001', 'title': 'Épisode 13 : Les retrouvailles', 'description': 'md5:336d5ebc5436534e61d16e63ddfca327', 'ext': 'mp4', 'timestamp': 1492019320, 'upload_date': '20170412', 'uploader_id': '618566855001', 'creator': 'vtele', 'view_count': int, 'series': "L'amour est dans le pré", 'season_number': 5, 'episode': 'Épisode 13', 'episode_number': 13, }, 'params': { 'skip_download': True, }, }] BRIGHTCOVE_URL_TEMPLATE = 'http://players.brightcove.net/618566855001/default_default/index.html?videoId=%s' def _real_extract(self, url): video_id = self._match_id(url) data = self._download_json( 'http://api.noovo.ca/api/v1/pages/single-episode/%s' % video_id, video_id)['data'] content = try_get(data, lambda x: x['contents'][0]) brightcove_id = data.get('brightcoveId') or content['brightcoveId'] series = try_get( data, ( lambda x: x['show']['title'], lambda x: x['season']['show']['title']), compat_str) episode = None og = data.get('og') if isinstance(og, dict) and og.get('type') == 'video.episode': episode = og.get('title') video = content or data return { '_type': 'url_transparent', 'ie_key': BrightcoveNewIE.ie_key(), 'url': smuggle_url( self.BRIGHTCOVE_URL_TEMPLATE % brightcove_id, {'geo_countries': ['CA']}), 'id': brightcove_id, 'title': video.get('title'), 'creator': video.get('source'), 'view_count': int_or_none(video.get('viewsCount')), 'series': series, 'season_number': int_or_none(try_get( data, lambda x: x['season']['seasonNumber'])), 'episode': episode, 'episode_number': int_or_none(data.get('episodeNumber')), }
gpl-3.0
5,730,699,699,077,663,000
31.731959
112
0.504882
false
MattTuri/M-Admin
MAdmin/utils/__init__.py
1
1707
from functools import wraps import os from os.path import dirname from threading import Thread from fabric.api import * from flask import flash from pbkdf2 import crypt from vagrant import Vagrant from MAdmin import db from MAdmin.sql.ORM import Device def hash_password(password): return crypt(password) def verify_password(password_hash, guessed_password): if password_hash == crypt(guessed_password, password_hash): # Password correct return True else: # Password incorrect return False def flash_errors(form): for field, errors in form.errors.items(): for error in errors: flash(u"%s" % error) def async(f): @wraps(f) def wrapper(*args, **kwargs): thr = Thread(target=f, args=args, kwargs=kwargs) thr.start() return wrapper @async def make_box(hostname, device_os): os.chdir(dirname(dirname(dirname(__file__))) + '/boxes') if not os.path.exists(hostname): os.mkdir(hostname) os.chdir(hostname) file_location = os.getcwd() box = Vagrant(quiet_stderr=False, quiet_stdout=False, root=file_location) try: box.box_add('chef/centos-7.0', 'https://atlas.hashicorp.com/chef/boxes/centos-7.0') box.box_add('ubuntu/trusty64', 'https://atlas.hashicorp.com/ubuntu/boxes/trusty64') except: print 'Box probably already exists' box.init(box_name=device_os) box.up() env.hosts = [box.user_hostname_port()] env.key_filename = box.keyfile() env.disable_known_hosts = True device = Device.query.filter(Device.hostname == hostname).first() device.box_online = True device.pending_boot = False db.session.commit()
mit
-7,899,169,037,185,777,000
23.73913
91
0.667252
false
keedio/hue
desktop/core/ext-py/South-1.0.2/south/models.py
53
1504
from django.db import models from south.db import DEFAULT_DB_ALIAS # If we detect Django 1.7 or higher, then exit # Placed here so it's guaranteed to be imported on Django start import django if django.VERSION[0] > 1 or (django.VERSION[0] == 1 and django.VERSION[1] > 6): raise RuntimeError("South does not support Django 1.7 or higher. Please use native Django migrations.") class MigrationHistory(models.Model): app_name = models.CharField(max_length=255) migration = models.CharField(max_length=255) applied = models.DateTimeField(blank=True) @classmethod def for_migration(cls, migration, database): try: # Switch on multi-db-ness if database != DEFAULT_DB_ALIAS: # Django 1.2 objects = cls.objects.using(database) else: # Django <= 1.1 objects = cls.objects return objects.get( app_name=migration.app_label(), migration=migration.name(), ) except cls.DoesNotExist: return cls( app_name=migration.app_label(), migration=migration.name(), ) def get_migrations(self): from south.migration.base import Migrations return Migrations(self.app_name) def get_migration(self): return self.get_migrations().migration(self.migration) def __str__(self): return "<%s: %s>" % (self.app_name, self.migration)
apache-2.0
4,636,501,161,922,135,000
33.976744
107
0.605718
false
OpenBfS/dokpool-plone
Plone/src/elan.esd/elan/esd/content/elandoccollection.py
1
10722
# -*- coding: utf-8 -*- # # File: elandoccollection.py # # Copyright (c) 2016 by Bundesamt für Strahlenschutz # Generator: ConPD2 # http://www.condat.de # from __future__ import print_function __author__ = '' __docformat__ = 'plaintext' """Definition of the ELANDocCollection content type. See elandoccollection.py for more explanation on the statements below. """ from AccessControl import ClassSecurityInfo from docpool.elan.config import ELAN_APP from docpool.event.utils import getScenariosForCurrentUser from elan.esd import DocpoolMessageFactory as _ from elan.esd.utils import getCategoriesForCurrentUser from plone.app.contenttypes.content import Collection from plone.app.contenttypes.content import ICollection from plone.autoform import directives from plone.dexterity.content import Item from plone.supermodel import model from plone.protect.interfaces import IDisableCSRFProtection from Products.CMFCore.permissions import View from Products.CMFCore.utils import getToolByName from z3c.relationfield.event import updateRelations from z3c.relationfield.relation import RelationValue from z3c.relationfield.schema import RelationChoice from z3c.relationfield.schema import RelationList from zope.component import adapter from zope.component import getUtility from zope.interface import alsoProvides from zope.interface import implementer from zope.intid.interfaces import IIntIds from zope.lifecycleevent.interfaces import IObjectAddedEvent from zope.lifecycleevent.interfaces import IObjectModifiedEvent class IELANDocCollection(model.Schema, ICollection): """ """ docTypes = RelationList( title=_( u'label_elandoccollection_doctypes', default=u'Document Types'), description=_(u'description_elandoccollection_doctypes', default=u''), required=False, value_type=RelationChoice( title=_("Document Types"), source="docpool.base.vocabularies.DocType" ), ) directives.widget(docTypes='z3c.form.browser.select.CollectionSelectFieldWidget') # directives.widget(docTypes=AutocompleteMultiFieldWidget) @implementer(IELANDocCollection) class ELANDocCollection(Item, Collection): """ """ security = ClassSecurityInfo() def testSearch(self): """ """ kw = { 'portal_type': {'query': ['DPDocument']}, 'sort_on': 'mdate', 'dp_type': {'query': ['eventinformation', 'nppinformation']}, 'scenarios': {'query': ['scenario2', 'scenario1']}, 'sort_order': 'reverse', 'path': {'query': '/Plone/Members'}, } res = self.portal_catalog(**kw) # print len(res) for r in res: print(r.Title) def getUserSelectedScenarios(self): """ """ uss = getScenariosForCurrentUser(self) # print usc return uss def getUserSelectedCategories(self): """ """ usc = getCategoriesForCurrentUser(self) # print usc return usc def results(self, batch=True, b_start=0, b_size=10, sort_on=None, brains=False): """Get results override, implicit = True""" if sort_on is None: sort_on = self.sort_on return self.getQuery( implicit=True, batch=batch, b_start=b_start, b_size=b_size, sort_on=sort_on, brains=brains, ) def correctDocTypes(self): """ Replace references to global doc types with references to local doc types. """ request = self.REQUEST alsoProvides(request, IDisableCSRFProtection) dts = self.docTypes res = [] intids = getUtility(IIntIds) if dts: for dt in dts: t = dt.to_object new = None if t: tid = t.getId() try: new = self.config.dtypes[tid] except BaseException: pass if new: to_id = intids.getId(new) res.append(RelationValue(to_id)) self.docTypes = res updateRelations(self, None) self.setDocTypesUpdateCollection() self.reindexObject() def setDocTypesUpdateCollection(self, values=None): """ Update the criteria for the underlying collection. """ if values: self.docTypes = values # We always search for ELAN content params = [ { 'i': 'portal_type', 'o': 'plone.app.querystring.operation.selection.is', 'v': ['DPDocument', 'SituationReport', 'SRModule'], } ] # We usually also have document types configured # This returns the corresponding Type Object(s) types = self.docTypes if types: params.append( { 'i': 'dp_type', 'o': 'plone.app.querystring.operation.selection.is', 'v': [t.to_object.getId() for t in types if t.to_object], } ) # getId() vorher self.query = params self.sort_on = 'changed' self.sort_reversed = True def isOverview(self): """ Is this an overview collection? """ return self.getId().find('overview') > -1 def dp_type(self): """ We use this index to mark those collections which actually serve as categories. """ # print self if self.docTypes: # print "active" return "active" else: # print "inactive" return "inactive" security.declareProtected(View, 'synContentValues') def synContentValues(self): """Getter for syndycation support """ syn_tool = getToolByName(self, 'portal_syndication') limit = int(syn_tool.getMaxItems(self)) return self.getQuery(batch=False, brains=True, limit=limit)[:limit] def getQuery(self, **kwargs): """Get the query dict from the request or from the object""" from zope.site.hooks import getSite from plone.app.querystring.querybuilder import QueryBuilder # print "modified get" request = self.REQUEST alsoProvides(request, IDisableCSRFProtection) raw = kwargs.get('raw', None) implicit_filter = kwargs.get('implicit', False) value = self.query # .raw if not value: self.setDocTypesUpdateCollection() # Not yet initialized value = self.query # print value if raw == True: # We actually wanted the raw value, should have called getRaw return value querybuilder = QueryBuilder(self, getSite().REQUEST) if implicit_filter: # Not in the archive: value = list(value[:]) # Otherwise we change the stored query! if not self.isArchive(): # First implicit filter: the user has select scenario(s) as a # filter uss = self.getUserSelectedScenarios() if uss: # This is THE modification: append the implicit criterion # for the scenario(s) value.append( { 'i': 'scenarios', 'o': 'plone.app.querystring.operation.selection.is', 'v': uss, } ) else: # If nothing selected, don't show results! value.append( { 'i': 'scenarios', 'o': 'plone.app.querystring.operation.selection.is', 'v': ["dontfindanything"], } ) # print value # Second implicit filter: the user has selected categories as a filter # Used for the chronological overview if self.isOverview(): usc = self.getUserSelectedCategories() if usc: value.append( { 'i': 'category', 'o': 'plone.app.querystring.operation.selection.is', 'v': usc, } ) # Third implicit filter: only results with ELAN support are wanted. value.append( { 'i': 'apps_supported', 'o': 'plone.app.querystring.operation.selection.is', 'v': [ELAN_APP], } ) # Now we restrict the search to the paths to Members and Groups. # This ensures that in case of archives we only get results from the correct subset. # m = self.content # mpath = getRelativePath(m) mpath = "content" # Just one path allowed in the path criterion. Must be the part # after the portal root, e.g. '/Members' value.append( { 'i': 'path', 'o': 'plone.app.querystring.operation.string.path', 'v': "/%s" % mpath, } ) sort_on = kwargs.get('sort_on', self.sort_on) sort_order = 'reverse' if self.sort_reversed else 'ascending' limit = kwargs.get('limit', self.limit) # print value res = querybuilder( query=value, batch=kwargs.get('batch', False), b_start=kwargs.get('b_start', 0), b_size=kwargs.get('b_size', 30), sort_on=sort_on, sort_order=sort_order, limit=limit, brains=kwargs.get('brains', False), ) # print len(res) return res @adapter(IELANDocCollection, IObjectModifiedEvent) def update_docTypes(obj, event=None): """ """ if obj: # print "update_docTypes", obj.docTypes obj.setDocTypesUpdateCollection() obj.reindexObject() @adapter(IELANDocCollection, IObjectAddedEvent) def enableSyndication(obj, event=None): syn_tool = getToolByName(obj, 'portal_syndication', None) if syn_tool is not None: if syn_tool.isSiteSyndicationAllowed() and not syn_tool.isSyndicationAllowed( obj ): syn_tool.enableSyndication(obj)
gpl-3.0
1,418,396,289,838,343,000
32.503125
96
0.552467
false
opennode/nodeconductor-openstack
src/waldur_openstack/openstack_tenant/apps.py
1
7476
from django.apps import AppConfig from django.db.models import signals from django_fsm import signals as fsm_signals class OpenStackTenantConfig(AppConfig): """ OpenStack is a toolkit for building private and public clouds. This application adds support for managing OpenStack tenant resources - instances, volumes and snapshots. """ name = 'waldur_openstack.openstack_tenant' label = 'openstack_tenant' verbose_name = 'OpenStackTenant' service_name = 'OpenStackTenant' def ready(self): from waldur_core.quotas.fields import QuotaField, TotalQuotaField from waldur_core.structure.models import ServiceSettings, Project, Customer from waldur_core.structure import SupportedServices from waldur_openstack.openstack.models import Tenant from .backend import OpenStackTenantBackend from . import handlers, models SupportedServices.register_backend(OpenStackTenantBackend) # Initialize service settings quotas based on tenant. for quota in Tenant.get_quotas_fields(): ServiceSettings.add_quota_field( name=quota.name, quota_field=QuotaField( is_backend=True, default_limit=quota.default_limit, creation_condition=lambda service_settings: service_settings.type == OpenStackTenantConfig.service_name ) ) Project.add_quota_field( name='os_cpu_count', quota_field=TotalQuotaField( target_models=[models.Instance], path_to_scope='service_project_link.project', target_field='cores', ) ) Project.add_quota_field( name='os_ram_size', quota_field=TotalQuotaField( target_models=[models.Instance], path_to_scope='service_project_link.project', target_field='ram', ) ) Project.add_quota_field( name='os_storage_size', quota_field=TotalQuotaField( target_models=[models.Volume, models.Snapshot], path_to_scope='service_project_link.project', target_field='size', ) ) Customer.add_quota_field( name='os_cpu_count', quota_field=TotalQuotaField( target_models=[models.Instance], path_to_scope='service_project_link.project.customer', target_field='cores', ) ) Customer.add_quota_field( name='os_ram_size', quota_field=TotalQuotaField( target_models=[models.Instance], path_to_scope='service_project_link.project.customer', target_field='ram', ) ) Customer.add_quota_field( name='os_storage_size', quota_field=TotalQuotaField( target_models=[models.Volume, models.Snapshot], path_to_scope='service_project_link.project.customer', target_field='size', ) ) for Resource in (models.Instance, models.Volume, models.Snapshot): name = Resource.__name__.lower() signals.post_save.connect( handlers.log_action, sender=Resource, dispatch_uid='openstack_tenant.handlers.log_%s_action' % name, ) for handler in handlers.resource_handlers: model = handler.resource_model name = model.__name__.lower() fsm_signals.post_transition.connect( handler.create_handler, sender=model, dispatch_uid='openstack_tenant.handlers.create_%s' % name, ) fsm_signals.post_transition.connect( handler.update_handler, sender=model, dispatch_uid='openstack_tenant.handlers.update_%s' % name, ) signals.post_delete.connect( handler.delete_handler, sender=model, dispatch_uid='openstack_tenant.handlers.delete_%s' % name, ) signals.post_save.connect( handlers.log_backup_schedule_creation, sender=models.BackupSchedule, dispatch_uid='openstack_tenant.handlers.log_backup_schedule_creation', ) signals.post_save.connect( handlers.log_backup_schedule_action, sender=models.BackupSchedule, dispatch_uid='openstack_tenant.handlers.log_backup_schedule_action', ) signals.pre_delete.connect( handlers.log_backup_schedule_deletion, sender=models.BackupSchedule, dispatch_uid='openstack_tenant.handlers.log_backup_schedule_deletion', ) signals.post_save.connect( handlers.log_snapshot_schedule_creation, sender=models.SnapshotSchedule, dispatch_uid='openstack_tenant.handlers.log_snapshot_schedule_creation', ) signals.post_save.connect( handlers.log_snapshot_schedule_action, sender=models.SnapshotSchedule, dispatch_uid='openstack_tenant.handlers.log_snapshot_schedule_action', ) signals.pre_delete.connect( handlers.log_snapshot_schedule_deletion, sender=models.SnapshotSchedule, dispatch_uid='openstack_tenant.handlers.log_snapshot_schedule_deletion', ) signals.post_save.connect( handlers.update_service_settings_credentials, sender=Tenant, dispatch_uid='openstack_tenant.handlers.update_service_settings_credentials', ) signals.post_save.connect( handlers.update_service_settings, sender=Tenant, dispatch_uid='openstack_tenant.handlers.update_service_settings', ) signals.m2m_changed.connect( handlers.sync_certificates_between_openstack_service_with_openstacktenant_service, sender=ServiceSettings.certifications.through, dispatch_uid='openstack_tenant.handlers.' 'sync_certificates_between_openstack_service_with_openstacktenant_service', ) signals.post_save.connect( handlers.copy_certifications_from_openstack_service_to_openstacktenant_service, sender=ServiceSettings, dispatch_uid='openstack_tenant.handlers.' 'copy_certifications_from_openstack_service_to_openstacktenant_service', ) signals.post_save.connect( handlers.copy_flavor_exclude_regex_to_openstacktenant_service_settings, sender=ServiceSettings, dispatch_uid='openstack_tenant.handlers.' 'copy_flavor_exclude_regex_to_openstacktenant_service_settings', ) signals.post_save.connect( handlers.create_service_from_tenant, sender=Tenant, dispatch_uid='openstack_tenant.handlers.create_service_from_tenant', ) signals.post_save.connect( handlers.sync_price_list_item_for_flavor, sender=models.Flavor, dispatch_uid='openstack_tenant.handlers.sync_price_list_item_for_flavor', )
mit
-6,473,897,027,792,262,000
36.009901
100
0.593232
false
zhreshold/mxnet
python/mxnet/numpy_extension/utils.py
2
8362
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """Util functions for the numpy module.""" import ctypes from .. util import is_np_array, is_np_shape from .. base import _LIB, check_call, string_types, c_str_array, DLPackHandle from .. base import c_handle_array, c_str, mx_uint, NDArrayHandle, py_str from ..numpy import ndarray __all__ = ['save', 'load', 'to_dlpack_for_read', 'to_dlpack_for_write', 'from_dlpack'] PyCapsuleDestructor = ctypes.CFUNCTYPE(None, ctypes.c_void_p) _c_str_dltensor = c_str('dltensor') _c_str_used_dltensor = c_str('used_dltensor') def _dlpack_deleter(pycapsule): pycapsule = ctypes.c_void_p(pycapsule) if ctypes.pythonapi.PyCapsule_IsValid(pycapsule, _c_str_dltensor): ptr = ctypes.c_void_p( ctypes.pythonapi.PyCapsule_GetPointer(pycapsule, _c_str_dltensor)) check_call(_LIB.MXNDArrayCallDLPackDeleter(ptr)) _c_dlpack_deleter = PyCapsuleDestructor(_dlpack_deleter) def save(file, arr): """Saves a list of `ndarray`s or a dict of `str`->`ndarray` to file. Examples of filenames: - ``/path/to/file`` - ``s3://my-bucket/path/to/file`` (if compiled with AWS S3 supports) - ``hdfs://path/to/file`` (if compiled with HDFS supports) Parameters ---------- file : str Filename to which the data is saved. arr : `ndarray` or list of `ndarray`s or dict of `str` to `ndarray` The data to be saved. Notes ----- This function can only be called within numpy semantics, i.e., `npx.is_np_shape()` and `npx.is_np_array()` must both return true. """ if not (is_np_shape() and is_np_array()): raise ValueError('Cannot save `mxnet.numpy.ndarray` in legacy mode. Please activate' ' numpy semantics by calling `npx.set_np()` in the global scope' ' before calling this function.') if isinstance(arr, ndarray): arr = [arr] if isinstance(arr, dict): str_keys = arr.keys() nd_vals = arr.values() if any(not isinstance(k, string_types) for k in str_keys) or \ any(not isinstance(v, ndarray) for v in nd_vals): raise TypeError('Only accepts dict str->ndarray or list of ndarrays') keys = c_str_array(str_keys) handles = c_handle_array(nd_vals) elif isinstance(arr, list): if any(not isinstance(v, ndarray) for v in arr): raise TypeError('Only accepts dict str->ndarray or list of ndarrays') keys = None handles = c_handle_array(arr) else: raise ValueError("data needs to either be a ndarray, dict of (str, ndarray) pairs " "or a list of ndarrays.") check_call(_LIB.MXNDArraySave(c_str(file), mx_uint(len(handles)), handles, keys)) def load(file): """Loads an array from file. See more details in ``save``. Parameters ---------- file : str The filename. Returns ------- result : list of ndarrays or dict of str -> ndarray Data stored in the file. Notes ----- This function can only be called within numpy semantics, i.e., `npx.is_np_shape()` and `npx.is_np_array()` must both return true. """ if not (is_np_shape() and is_np_array()): raise ValueError('Cannot load `mxnet.numpy.ndarray` in legacy mode. Please activate' ' numpy semantics by calling `npx.set_np()` in the global scope' ' before calling this function.') if not isinstance(file, string_types): raise TypeError('file required to be a string') out_size = mx_uint() out_name_size = mx_uint() handles = ctypes.POINTER(NDArrayHandle)() names = ctypes.POINTER(ctypes.c_char_p)() check_call(_LIB.MXNDArrayLoad(c_str(file), ctypes.byref(out_size), ctypes.byref(handles), ctypes.byref(out_name_size), ctypes.byref(names))) if out_name_size.value == 0: return [ndarray(NDArrayHandle(handles[i])) for i in range(out_size.value)] else: assert out_name_size.value == out_size.value return dict( (py_str(names[i]), ndarray(NDArrayHandle(handles[i]))) for i in range(out_size.value)) def from_dlpack(dlpack): """Returns a np.ndarray backed by a dlpack tensor. Parameters ---------- dlpack: PyCapsule (the pointer of DLManagedTensor) input data Returns ------- np.ndarray an ndarray backed by a dlpack tensor Examples -------- >>> x = mx.np.ones((2,3)) >>> y = mx.npx.to_dlpack_for_read(x) >>> type(y) <class 'PyCapsule'> >>> z = mx.npx.from_dlpack(y) >>> type(z) <class 'mxnet.numpy.ndarray'> >>> z array([[1., 1., 1.], [1., 1., 1.]]) >>> w = mx.npx.to_dlpack_for_write(x) >>> type(w) <class 'PyCapsule'> >>> u = mx.npx.from_dlpack(w) >>> u += 1 >>> x array([[2., 2., 2.], [2., 2., 2.]]) """ handle = NDArrayHandle() dlpack = ctypes.py_object(dlpack) assert ctypes.pythonapi.PyCapsule_IsValid(dlpack, _c_str_dltensor), ValueError( 'Invalid DLPack Tensor. DLTensor capsules can be consumed only once.') dlpack_handle = ctypes.c_void_p(ctypes.pythonapi.PyCapsule_GetPointer(dlpack, _c_str_dltensor)) check_call(_LIB.MXNDArrayFromDLPackEx(dlpack_handle, False, ctypes.byref(handle))) # Rename PyCapsule (DLPack) ctypes.pythonapi.PyCapsule_SetName(dlpack, _c_str_used_dltensor) # delete the deleter of the old dlpack ctypes.pythonapi.PyCapsule_SetDestructor(dlpack, None) return ndarray(handle=handle) def to_dlpack_for_read(data): """Returns a reference view of np.ndarray that represents as DLManagedTensor until all previous write operations on the current array are finished. Parameters ---------- data: np.ndarray input data. Returns ------- PyCapsule (the pointer of DLManagedTensor) a reference view of ndarray that represents as DLManagedTensor. Examples -------- >>> x = mx.np.ones((2,3)) >>> y = mx.npx.to_dlpack_for_read(x) >>> type(y) <class 'PyCapsule'> >>> z = mx.npx.from_dlpack(y) >>> z array([[1., 1., 1.], [1., 1., 1.]]) """ data.wait_to_read() dlpack = DLPackHandle() check_call(_LIB.MXNDArrayToDLPack(data.handle, ctypes.byref(dlpack))) return ctypes.pythonapi.PyCapsule_New(dlpack, _c_str_dltensor, _c_dlpack_deleter) def to_dlpack_for_write(data): """Returns a reference view of ndarray that represents as DLManagedTensor until all previous read/write operations on the current array are finished. Parameters ---------- data: np.ndarray input data. Returns ------- PyCapsule (the pointer of DLManagedTensor) a reference view of np.ndarray that represents as DLManagedTensor. Examples -------- >>> x = mx.np.ones((2,3)) >>> w = mx.npx.to_dlpack_for_write(x) >>> type(w) <class 'PyCapsule'> >>> u = mx.npx.from_dlpack(w) >>> u += 1 >>> x array([[2., 2., 2.], [2., 2., 2.]]) """ check_call(_LIB.MXNDArrayWaitToWrite(data.handle)) dlpack = DLPackHandle() check_call(_LIB.MXNDArrayToDLPack(data.handle, ctypes.byref(dlpack))) return ctypes.pythonapi.PyCapsule_New(dlpack, _c_str_dltensor, _c_dlpack_deleter)
apache-2.0
-4,836,169,322,193,987,000
33.553719
99
0.609184
false
maebert/jrnl
jrnl/util.py
1
4405
#!/usr/bin/env python import sys import os import getpass as gp import yaml if "win32" in sys.platform: import colorama colorama.init() import re import tempfile import subprocess import unicodedata import shlex import logging log = logging.getLogger(__name__) WARNING_COLOR = "\033[33m" ERROR_COLOR = "\033[31m" RESET_COLOR = "\033[0m" # Based on Segtok by Florian Leitner # https://github.com/fnl/segtok SENTENCE_SPLITTER = re.compile(r""" ( # A sentence ends at one of two sequences: [.!?\u203C\u203D\u2047\u2048\u2049\u3002\uFE52\uFE57\uFF01\uFF0E\uFF1F\uFF61] # Either, a sequence starting with a sentence terminal, [\'\u2019\"\u201D]? # an optional right quote, [\]\)]* # optional closing brackets and \s+ # a sequence of required spaces. | # Otherwise, \n # a sentence also terminates newlines. )""", re.VERBOSE) class UserAbort(Exception): pass getpass = gp.getpass def get_password(validator, keychain=None, max_attempts=3): pwd_from_keychain = keychain and get_keychain(keychain) password = pwd_from_keychain or getpass() result = validator(password) # Password is bad: if result is None and pwd_from_keychain: set_keychain(keychain, None) attempt = 1 while result is None and attempt < max_attempts: print("Wrong password, try again.", file=sys.stderr) password = gp.getpass() result = validator(password) attempt += 1 if result is not None: return result else: print("Extremely wrong password.", file=sys.stderr) sys.exit(1) def get_keychain(journal_name): import keyring try: return keyring.get_password('jrnl', journal_name) except RuntimeError: return "" def set_keychain(journal_name, password): import keyring if password is None: try: keyring.delete_password('jrnl', journal_name) except RuntimeError: pass else: keyring.set_password('jrnl', journal_name, password) def yesno(prompt, default=True): prompt = f"{prompt.strip()} {'[Y/n]' if default else '[y/N]'} " response = input(prompt) return {"y": True, "n": False}.get(response.lower(), default) def load_config(config_path): """Tries to load a config file from YAML. """ with open(config_path) as f: return yaml.load(f, Loader=yaml.FullLoader) def scope_config(config, journal_name): if journal_name not in config['journals']: return config config = config.copy() journal_conf = config['journals'].get(journal_name) if type(journal_conf) is dict: # We can override the default config on a by-journal basis log.debug('Updating configuration with specific journal overrides %s', journal_conf) config.update(journal_conf) else: # But also just give them a string to point to the journal file config['journal'] = journal_conf config.pop('journals') return config def get_text_from_editor(config, template=""): filehandle, tmpfile = tempfile.mkstemp(prefix="jrnl", text=True, suffix=".txt") with open(tmpfile, 'w', encoding="utf-8") as f: if template: f.write(template) try: subprocess.call(shlex.split(config['editor'], posix="win" not in sys.platform) + [tmpfile]) except AttributeError: subprocess.call(config['editor'] + [tmpfile]) with open(tmpfile, "r", encoding="utf-8") as f: raw = f.read() os.close(filehandle) os.remove(tmpfile) if not raw: print('[Nothing saved to file]', file=sys.stderr) return raw def colorize(string): """Returns the string wrapped in cyan ANSI escape""" return f"\033[36m{string}\033[39m" def slugify(string): """Slugifies a string. Based on public domain code from https://github.com/zacharyvoase/slugify """ normalized_string = str(unicodedata.normalize('NFKD', string)) no_punctuation = re.sub(r'[^\w\s-]', '', normalized_string).strip().lower() slug = re.sub(r'[-\s]+', '-', no_punctuation) return slug def split_title(text): """Splits the first sentence off from a text.""" punkt = SENTENCE_SPLITTER.search(text) if not punkt: return text, "" return text[:punkt.end()].strip(), text[punkt.end():].strip()
mit
4,895,603,301,916,000,000
28.965986
152
0.638138
false
hungtt57/matchmaker
lib/python2.7/site-packages/ndg/httpsclient/utils.py
3
15748
"""Utilities using NDG HTTPS Client, including a main module that can be used to fetch from a URL. """ __author__ = "R B Wilkinson" __date__ = "09/12/11" __copyright__ = "(C) 2011 Science and Technology Facilities Council" __license__ = "BSD - see LICENSE file in top-level directory" __contact__ = "[email protected]" __revision__ = '$Id$' import logging from optparse import OptionParser import os import sys if sys.version_info[0] > 2: import http.cookiejar as cookiejar_ import http.client as http_client_ from urllib.request import Request as Request_ from urllib.request import HTTPHandler as HTTPHandler_ from urllib.request import HTTPCookieProcessor as HTTPCookieProcessor_ from urllib.request import HTTPBasicAuthHandler as HTTPBasicAuthHandler_ from urllib.request import HTTPPasswordMgrWithDefaultRealm as \ HTTPPasswordMgrWithDefaultRealm_ from urllib.request import ProxyHandler as ProxyHandler_ from urllib.error import HTTPError as HTTPError_ import urllib.parse as urlparse_ else: import cookielib as cookiejar_ import httplib as http_client_ from urllib2 import Request as Request_ from urllib2 import HTTPHandler as HTTPHandler_ from urllib2 import HTTPCookieProcessor as HTTPCookieProcessor_ from urllib2 import HTTPBasicAuthHandler as HTTPBasicAuthHandler_ from urllib2 import HTTPPasswordMgrWithDefaultRealm as \ HTTPPasswordMgrWithDefaultRealm_ from urllib2 import ProxyHandler as ProxyHandler_ from urllib2 import HTTPError as HTTPError_ import urlparse as urlparse_ from ndg.httpsclient.urllib2_build_opener import build_opener from ndg.httpsclient.https import HTTPSContextHandler from ndg.httpsclient import ssl_context_util log = logging.getLogger(__name__) class AccumulatingHTTPCookieProcessor(HTTPCookieProcessor_): """Cookie processor that adds new cookies (instead of replacing the existing ones as HTTPCookieProcessor does) """ def http_request(self, request): """Processes cookies for a HTTP request. @param request: request to process @type request: urllib2.Request @return: request @rtype: urllib2.Request """ COOKIE_HEADER_NAME = "Cookie" tmp_request = Request_(request.get_full_url(), request.data, {}, request.origin_req_host, request.unverifiable) self.cookiejar.add_cookie_header(tmp_request) # Combine existing and new cookies. new_cookies = tmp_request.get_header(COOKIE_HEADER_NAME) if new_cookies: if request.has_header(COOKIE_HEADER_NAME): # Merge new cookies with existing ones. old_cookies = request.get_header(COOKIE_HEADER_NAME) merged_cookies = '; '.join([old_cookies, new_cookies]) request.add_unredirected_header(COOKIE_HEADER_NAME, merged_cookies) else: # No existing cookies so just set new ones. request.add_unredirected_header(COOKIE_HEADER_NAME, new_cookies) return request # Process cookies for HTTPS in the same way. https_request = http_request class URLFetchError(Exception): """Error fetching content from URL""" def fetch_from_url(url, config, data=None, handlers=None): """Returns data retrieved from a URL. @param url: URL to attempt to open @type url: basestring @param config: SSL context configuration @type config: Configuration @return data retrieved from URL or None """ return_code, return_message, response = open_url(url, config, data=data, handlers=handlers) if return_code and return_code == http_client_.OK: return_data = response.read() response.close() return return_data else: raise URLFetchError(return_message) def fetch_from_url_to_file(url, config, output_file, data=None, handlers=None): """Writes data retrieved from a URL to a file. @param url: URL to attempt to open @type url: basestring @param config: SSL context configuration @type config: Configuration @param output_file: output file @type output_file: basestring @return: tuple ( returned HTTP status code or 0 if an error occurred returned message boolean indicating whether access was successful) """ return_code, return_message, response = open_url(url, config, data=data, handlers=handlers) if return_code == http_client_.OK: return_data = response.read() response.close() outfile = open(output_file, "w") outfile.write(return_data) outfile.close() return return_code, return_message, return_code == http_client_.OK def fetch_stream_from_url(url, config, data=None, handlers=None): """Returns data retrieved from a URL. @param url: URL to attempt to open @type url: basestring @param config: SSL context configuration @type config: Configuration @param data: HTTP POST data @type data: str @param handlers: list of custom urllib2 handlers to add to the request @type handlers: iterable @return: data retrieved from URL or None @rtype: file derived type """ return_code, return_message, response = open_url(url, config, data=data, handlers=handlers) if return_code and return_code == http_client_.OK: return response else: raise URLFetchError(return_message) def open_url(url, config, data=None, handlers=None): """Attempts to open a connection to a specified URL. @param url: URL to attempt to open @param config: SSL context configuration @type config: Configuration @param data: HTTP POST data @type data: str @param handlers: list of custom urllib2 handlers to add to the request @type handlers: iterable @return: tuple ( returned HTTP status code or 0 if an error occurred returned message or error description response object) """ debuglevel = 1 if config.debug else 0 # Set up handlers for URL opener. if config.cookie: cj = config.cookie else: cj = cookiejar_.CookieJar() # Use a cookie processor that accumulates cookies when redirects occur so # that an application can redirect for authentication and retain both any # cookies for the application and the security system (c.f., # urllib2.HTTPCookieProcessor which replaces cookies). cookie_handler = AccumulatingHTTPCookieProcessor(cj) if not handlers: handlers = [] handlers.append(cookie_handler) if config.debug: http_handler = HTTPHandler_(debuglevel=debuglevel) https_handler = HTTPSContextHandler(config.ssl_context, debuglevel=debuglevel) handlers.extend([http_handler, https_handler]) if config.http_basicauth: # currently only supports http basic auth auth_handler = HTTPBasicAuthHandler_(HTTPPasswordMgrWithDefaultRealm_()) auth_handler.add_password(realm=None, uri=url, user=config.http_basicauth[0], passwd=config.http_basicauth[1]) handlers.append(auth_handler) # Explicitly remove proxy handling if the host is one listed in the value of # the no_proxy environment variable because urllib2 does use proxy settings # set via http_proxy and https_proxy, but does not take the no_proxy value # into account. if not _should_use_proxy(url, config.no_proxy): handlers.append(ProxyHandler_({})) log.debug("Not using proxy") elif config.proxies: handlers.append(ProxyHandler_(config.proxies)) log.debug("Configuring proxies: %s" % config.proxies) opener = build_opener(*handlers, ssl_context=config.ssl_context) headers = config.headers if headers is None: headers = {} request = Request_(url, data, headers) # Open the URL and check the response. return_code = 0 return_message = '' response = None # FIXME response = opener.open(request) try: response = opener.open(request) return_message = response.msg return_code = response.code if log.isEnabledFor(logging.DEBUG): for index, cookie in enumerate(cj): log.debug("%s : %s", index, cookie) except HTTPError_ as exc: return_code = exc.code return_message = "Error: %s" % exc.msg if log.isEnabledFor(logging.DEBUG): log.debug("%s %s", exc.code, exc.msg) except Exception as exc: return_message = "Error: %s" % exc.__str__() if log.isEnabledFor(logging.DEBUG): import traceback log.debug(traceback.format_exc()) return (return_code, return_message, response) def _should_use_proxy(url, no_proxy=None): """Determines whether a proxy should be used to open a connection to the specified URL, based on the value of the no_proxy environment variable. @param url: URL @type url: basestring or urllib2.Request """ if no_proxy is None: no_proxy_effective = os.environ.get('no_proxy', '') else: no_proxy_effective = no_proxy urlObj = urlparse_.urlparse(_url_as_string(url)) for np in [h.strip() for h in no_proxy_effective.split(',')]: if urlObj.hostname == np: return False return True def _url_as_string(url): """Returns the URL string from a URL value that is either a string or urllib2.Request.. @param url: URL @type url: basestring or urllib2.Request @return: URL string @rtype: basestring """ if isinstance(url, Request_): return url.get_full_url() elif isinstance(url, str): return url else: raise TypeError("Expected type %r or %r" % (str, Request_)) class Configuration(object): """Connection configuration. """ def __init__(self, ssl_context, debug=False, proxies=None, no_proxy=None, cookie=None, http_basicauth=None, headers=None): """ @param ssl_context: SSL context to use with this configuration @type ssl_context: OpenSSL.SSL.Context @param debug: if True, output debugging information @type debug: bool @param proxies: proxies to use for @type proxies: dict with basestring keys and values @param no_proxy: hosts for which a proxy should not be used @type no_proxy: basestring @param cookie: cookies to set for request @type cookie: cookielib.CookieJar (python 3 - http.cookiejar) @param http_basicauth: http authentication, or None @type http_basicauth: tuple of (username,password) @param headers: http headers @type headers: dict """ self.ssl_context = ssl_context self.debug = debug self.proxies = proxies self.no_proxy = no_proxy self.cookie = cookie self.http_basicauth = http_basicauth self.headers = headers def main(): '''Utility to fetch data using HTTP or HTTPS GET from a specified URL. ''' parser = OptionParser(usage="%prog [options] url") parser.add_option("-c", "--certificate", dest="cert_file", metavar="FILE", default=os.path.expanduser("~/credentials.pem"), help="Certificate file - defaults to $HOME/credentials.pem") parser.add_option("-k", "--private-key", dest="key_file", metavar="FILE", default=None, help="Private key file - defaults to the certificate file") parser.add_option("-t", "--ca-certificate-dir", dest="ca_dir", metavar="PATH", default=None, help="Trusted CA certificate file directory") parser.add_option("-d", "--debug", action="store_true", dest="debug", default=False, help="Print debug information.") parser.add_option("-p", "--post-data-file", dest="data_file", metavar="FILE", default=None, help="POST data file") parser.add_option("-f", "--fetch", dest="output_file", metavar="FILE", default=None, help="Output file") parser.add_option("-n", "--no-verify-peer", action="store_true", dest="no_verify_peer", default=False, help="Skip verification of peer certificate.") parser.add_option("-a", "--basicauth", dest="basicauth", metavar="USER:PASSWD", default=None, help="HTTP authentication credentials") parser.add_option("--header", action="append", dest="headers", metavar="HEADER: VALUE", help="Add HTTP header to request") (options, args) = parser.parse_args() if len(args) != 1: parser.error("Incorrect number of arguments") url = args[0] if options.debug: logging.getLogger().setLevel(logging.DEBUG) if options.key_file and os.path.exists(options.key_file): key_file = options.key_file else: key_file = None if options.cert_file and os.path.exists(options.cert_file): cert_file = options.cert_file else: cert_file = None if options.ca_dir and os.path.exists(options.ca_dir): ca_dir = options.ca_dir else: ca_dir = None verify_peer = not options.no_verify_peer if options.data_file and os.path.exists(options.data_file): data_file = open(options.data_file) data = data_file.read() data_file.close() else: data = None if options.basicauth: http_basicauth = options.basicauth.split(':', 1) else: http_basicauth = None headers = {} if options.headers: for h in options.headers: key, val = h.split(':', 1) headers[key.strip()] = val.lstrip() # If a private key file is not specified, the key is assumed to be stored in # the certificate file. ssl_context = ssl_context_util.make_ssl_context(key_file, cert_file, None, ca_dir, verify_peer, url) config = Configuration(ssl_context, options.debug, http_basicauth=http_basicauth, headers=headers) if options.output_file: return_code, return_message = fetch_from_url_to_file( url, config, options.output_file, data)[:2] raise SystemExit(return_code, return_message) else: data = fetch_from_url(url, config) print(data) if __name__=='__main__': logging.basicConfig() main()
mit
196,997,015,403,678,720
37.038647
82
0.599568
false
openprocurement/openprocurement.auctions.dgf
openprocurement/auctions/dgf/tests/award.py
1
16779
# -*- coding: utf-8 -*- import unittest from datetime import timedelta from openprocurement.auctions.core.utils import get_now from openprocurement.auctions.core.tests.award import ( AuctionLotAwardResourceTestMixin, Auction2LotAwardResourceTestMixin, AuctionAwardDocumentResourceTestMixin, AuctionLotAwardComplaintResourceTestMixin, Auction2LotAwardComplaintResourceTestMixin, AuctionAwardComplaintDocumentResourceTestMixin, Auction2LotAwardComplaintDocumentResourceTestMixin, Auction2LotAwardDocumentResourceTestMixin ) from openprocurement.auctions.core.tests.base import snitch from openprocurement.auctions.core.tests.blanks.award_blanks import ( get_auction_award_complaint, get_auction_award_complaints ) from openprocurement.auctions.core.plugins.awarding.v3.tests.award import ( AuctionAwardProcessTestMixin, CreateAuctionAwardTestMixin ) from openprocurement.auctions.dgf.tests.base import ( BaseAuctionWebTest, test_bids, test_lots, test_financial_auction_data, test_financial_bids, test_financial_organization, ) class CreateAuctionAwardTest(BaseAuctionWebTest, CreateAuctionAwardTestMixin): # initial_data = auction_data initial_status = 'active.auction' initial_bids = test_bids class AuctionAwardProcessTest(BaseAuctionWebTest, AuctionAwardProcessTestMixin): # initial_data = auction_data initial_status = 'active.auction' initial_bids = test_bids docservice = True def setUp(self): super(AuctionAwardProcessTest, self).setUp() authorization = self.app.authorization self.app.authorization = ('Basic', ('auction', '')) now = get_now() auction_result = { 'bids': [ { "id": b['id'], "date": (now - timedelta(seconds=i)).isoformat(), "value": b['value'] } for i, b in enumerate(self.initial_bids) ] } response = self.app.post_json('/auctions/{}/auction'.format(self.auction_id), {'data': auction_result}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') auction = response.json['data'] self.assertEqual('active.qualification', auction["status"]) self.first_award = auction['awards'][0] self.second_award = auction['awards'][1] self.first_award_id = self.first_award['id'] self.second_award_id = self.second_award['id'] self.app.authorization = authorization def upload_auction_protocol(self, award): award_id = award['id'] bid_token = self.initial_bids_tokens[award['bid_id']] response = self.app.post('/auctions/{}/awards/{}/documents?acc_token={}'.format( self.auction_id, award_id, bid_token), upload_files=[('file', 'auction_protocol.pdf', 'content')]) self.assertEqual(response.status, '201 Created') self.assertEqual(response.content_type, 'application/json') doc_id = response.json["data"]['id'] self.assertIn(doc_id, response.headers['Location']) self.assertEqual('auction_protocol.pdf', response.json["data"]["title"]) key = response.json["data"]["url"].split('?')[-1] response = self.app.patch_json( '/auctions/{}/awards/{}/documents/{}?acc_token={}'.format(self.auction_id, award_id, doc_id, bid_token), {"data": { "description": "auction protocol", "documentType": 'auctionProtocol' }}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(doc_id, response.json["data"]["id"]) self.assertIn("documentType", response.json["data"]) self.assertEqual(response.json["data"]["documentType"], 'auctionProtocol') response = self.app.post('/auctions/{}/awards/{}/documents?acc_token={}'.format( self.auction_id, award_id, self.auction_token), upload_files=[('file', 'auction_protocol.pdf', 'content')]) self.assertEqual(response.status, '201 Created') self.assertEqual(response.content_type, 'application/json') doc_id = response.json["data"]['id'] self.assertIn(doc_id, response.headers['Location']) self.assertEqual('auction_protocol.pdf', response.json["data"]["title"]) key = response.json["data"]["url"].split('?')[-1] response = self.app.patch_json( '/auctions/{}/awards/{}/documents/{}?acc_token={}'.format(self.auction_id, award_id, doc_id, self.auction_token), {"data": { "description": "auction protocol", "documentType": 'auctionProtocol' }}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual(doc_id, response.json["data"]["id"]) self.assertIn("documentType", response.json["data"]) self.assertEqual(response.json["data"]["documentType"], 'auctionProtocol') response = self.app.get('/auctions/{}/awards/{}/documents'.format(self.auction_id, award_id, doc_id)) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') self.assertEqual('auctionProtocol', response.json["data"][0]["documentType"]) self.assertEqual('auction_protocol.pdf', response.json["data"][0]["title"]) self.assertEqual('bid_owner', response.json["data"][0]["author"]) self.assertEqual('auctionProtocol', response.json["data"][1]["documentType"]) self.assertEqual('auction_owner', response.json["data"][1]["author"]) @unittest.skip("option not available") class AuctionLotAwardResourceTest(BaseAuctionWebTest, AuctionLotAwardResourceTestMixin): initial_status = 'active.qualification' initial_lots = test_lots initial_bids = test_bids @unittest.skip("option not available") class Auction2LotAwardResourceTest(BaseAuctionWebTest, Auction2LotAwardResourceTestMixin): initial_status = 'active.qualification' initial_lots = 2 * test_lots initial_bids = test_bids # test_create_auction_award_2_lots = snitch(create_auction_award_2_lots) # test_patch_auction_award_2_lots = snitch(patch_auction_award_2_lots) @unittest.skip("option not available") class AuctionLotAwardComplaintResourceTest(BaseAuctionWebTest, AuctionLotAwardComplaintResourceTestMixin): # initial_data = auction_data initial_status = 'active.qualification' initial_lots = test_lots initial_bids = test_bids def setUp(self): super(AuctionLotAwardComplaintResourceTest, self).setUp() # Create award bid = self.initial_bids[0] response = self.app.post_json('/auctions/{}/awards'.format( self.auction_id), { 'data': {'suppliers': [self.initial_organization], 'status': 'pending', 'bid_id': bid['id'], 'lotID': bid['lotValues'][0]['relatedLot']}}) award = response.json['data'] self.award_id = award['id'] @unittest.skip("option not available") class Auction2LotAwardComplaintResourceTest(BaseAuctionWebTest, Auction2LotAwardComplaintResourceTestMixin): initial_status = 'active.qualification' initial_lots = 2 * test_lots initial_bids = test_bids test_get_auction_award_complaint = snitch(get_auction_award_complaint) test_get_auction_award_complaints = snitch(get_auction_award_complaints) @unittest.skip("option not available") class AuctionAwardComplaintDocumentResourceTest(BaseAuctionWebTest, AuctionAwardComplaintDocumentResourceTestMixin): initial_status = 'active.qualification' initial_bids = test_bids def setUp(self): super(AuctionAwardComplaintDocumentResourceTest, self).setUp() # Create award response = self.app.post_json('/auctions/{}/awards'.format( self.auction_id), {'data': {'suppliers': [self.initial_organization], 'status': 'pending', 'bid_id': self.initial_bids[0]['id']}}) award = response.json['data'] self.award_id = award['id'] # Create complaint for award response = self.app.post_json('/auctions/{}/awards/{}/complaints'.format( self.auction_id, self.award_id), { 'data': {'title': 'complaint title', 'description': 'complaint description', 'author': self.initial_organization}}) complaint = response.json['data'] self.complaint_id = complaint['id'] self.complaint_owner_token = response.json['access']['token'] @unittest.skip("option not available") class Auction2LotAwardComplaintDocumentResourceTest(BaseAuctionWebTest, Auction2LotAwardComplaintDocumentResourceTestMixin): initial_status = 'active.qualification' initial_bids = test_bids initial_lots = 2 * test_lots def setUp(self): super(Auction2LotAwardComplaintDocumentResourceTest, self).setUp() # Create award bid = self.initial_bids[0] response = self.app.post_json('/auctions/{}/awards'.format( self.auction_id), { 'data': {'suppliers': [self.initial_organization], 'status': 'pending', 'bid_id': bid['id'], 'lotID': bid['lotValues'][0]['relatedLot']}}) award = response.json['data'] self.award_id = award['id'] # Create complaint for award response = self.app.post_json('/auctions/{}/awards/{}/complaints'.format( self.auction_id, self.award_id), { 'data': {'title': 'complaint title', 'description': 'complaint description', 'author': self.initial_organization}}) complaint = response.json['data'] self.complaint_id = complaint['id'] self.complaint_owner_token = response.json['access']['token'] class AuctionAwardDocumentResourceTest(BaseAuctionWebTest, AuctionAwardDocumentResourceTestMixin): initial_status = 'active.auction' initial_bids = test_bids def setUp(self): super(AuctionAwardDocumentResourceTest, self).setUp() authorization = self.app.authorization self.app.authorization = ('Basic', ('auction', '')) now = get_now() auction_result = { 'bids': [ { "id": b['id'], "date": (now - timedelta(seconds=i)).isoformat(), "value": b['value'] } for i, b in enumerate(self.initial_bids) ] } response = self.app.post_json('/auctions/{}/auction'.format(self.auction_id), {'data': auction_result}) self.assertEqual(response.status, '200 OK') self.assertEqual(response.content_type, 'application/json') auction = response.json['data'] self.assertEqual('active.qualification', auction["status"]) self.first_award = auction['awards'][0] self.second_award = auction['awards'][1] self.first_award_id = self.first_award['id'] self.second_award_id = self.second_award['id'] self.app.authorization = authorization # test_not_found_document = snitch(not_found_document) # test_create_auction_award_document = snitch(create_auction_award_document) # test_put_auction_award_document = snitch(put_auction_award_document) # test_patch_auction_award_document = snitch(patch_auction_award_document) @unittest.skip("option not available") class Auction2LotAwardDocumentResourceTest(BaseAuctionWebTest, Auction2LotAwardDocumentResourceTestMixin): initial_status = 'active.qualification' initial_bids = test_bids initial_lots = 2 * test_lots def setUp(self): super(Auction2LotAwardDocumentResourceTest, self).setUp() # Create award bid = self.initial_bids[0] response = self.app.post_json('/auctions/{}/awards'.format( self.auction_id), { 'data': {'suppliers': [self.initial_organization], 'status': 'pending', 'bid_id': bid['id'], 'lotID': bid['lotValues'][0]['relatedLot']}}) award = response.json['data'] self.award_id = award['id'] class CreateFinancialAuctionAwardTest(CreateAuctionAwardTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization class FinancialAuctionAwardProcessTest(AuctionAwardProcessTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuctionLotAwardResourceTest(AuctionLotAwardResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuction2LotAwardResourceTest(Auction2LotAwardResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuctionLotAwardComplaintResourceTest(AuctionLotAwardComplaintResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data @unittest.skip("option not available") class FinancialAuction2LotAwardComplaintResourceTest(Auction2LotAwardComplaintResourceTest): initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuctionAwardComplaintDocumentResourceTest(AuctionAwardComplaintDocumentResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuction2LotAwardComplaintDocumentResourceTest(Auction2LotAwardComplaintDocumentResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization class FinancialAuctionAwardDocumentResourceTest(AuctionAwardDocumentResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization @unittest.skip("option not available") class FinancialAuction2LotAwardDocumentResourceTest(Auction2LotAwardDocumentResourceTest): initial_bids = test_financial_bids initial_data = test_financial_auction_data initial_organization = test_financial_organization def suite(): tests = unittest.TestSuite() tests.addTest(unittest.makeSuite(CreateAuctionAwardTest)) tests.addTest(unittest.makeSuite(AuctionAwardProcessTest)) tests.addTest(unittest.makeSuite(AuctionLotAwardResourceTest)) tests.addTest(unittest.makeSuite(Auction2LotAwardResourceTest)) tests.addTest(unittest.makeSuite(AuctionLotAwardComplaintResourceTest)) tests.addTest(unittest.makeSuite(Auction2LotAwardComplaintResourceTest)) tests.addTest(unittest.makeSuite(AuctionAwardComplaintDocumentResourceTest)) tests.addTest(unittest.makeSuite(Auction2LotAwardComplaintDocumentResourceTest)) tests.addTest(unittest.makeSuite(AuctionAwardDocumentResourceTest)) tests.addTest(unittest.makeSuite(Auction2LotAwardDocumentResourceTest)) tests.addTest(unittest.makeSuite(CreateFinancialAuctionAwardTest)) tests.addTest(unittest.makeSuite(FinancialAuctionAwardProcessTest)) tests.addTest(unittest.makeSuite(FinancialAuctionLotAwardResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuction2LotAwardResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuctionLotAwardComplaintResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuction2LotAwardComplaintResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuctionAwardComplaintDocumentResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuction2LotAwardComplaintDocumentResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuctionAwardDocumentResourceTest)) tests.addTest(unittest.makeSuite(FinancialAuction2LotAwardDocumentResourceTest)) return tests if __name__ == '__main__': unittest.main(defaultTest='suite')
apache-2.0
-7,997,447,289,590,466,000
43.391534
119
0.680017
false
ashishdeshpande/robotframework
src/robot/model/filter.py
22
3465
# Copyright 2008-2015 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from robot.utils import setter from .tags import TagPatterns from .namepatterns import SuiteNamePatterns, TestNamePatterns from .visitor import SuiteVisitor class EmptySuiteRemover(SuiteVisitor): def end_suite(self, suite): suite.suites = [s for s in suite.suites if s.test_count] def visit_test(self, test): pass def visit_keyword(self, kw): pass class Filter(EmptySuiteRemover): def __init__(self, include_suites=None, include_tests=None, include_tags=None, exclude_tags=None): self.include_suites = include_suites self.include_tests = include_tests self.include_tags = include_tags self.exclude_tags = exclude_tags @setter def include_suites(self, suites): return SuiteNamePatterns(suites) \ if not isinstance(suites, SuiteNamePatterns) else suites @setter def include_tests(self, tests): return TestNamePatterns(tests) \ if not isinstance(tests, TestNamePatterns) else tests @setter def include_tags(self, tags): return TagPatterns(tags) if not isinstance(tags, TagPatterns) else tags @setter def exclude_tags(self, tags): return TagPatterns(tags) if not isinstance(tags, TagPatterns) else tags def start_suite(self, suite): if not self: return False if hasattr(suite, 'starttime'): suite.starttime = suite.endtime = None if self.include_suites: return self._filter_by_suite_name(suite) if self.include_tests: suite.tests = self._filter(suite, self._included_by_test_name) if self.include_tags: suite.tests = self._filter(suite, self._included_by_tags) if self.exclude_tags: suite.tests = self._filter(suite, self._not_excluded_by_tags) return bool(suite.suites) def _filter_by_suite_name(self, suite): if self.include_suites.match(suite.name, suite.longname): suite.visit(Filter(include_suites=[], include_tests=self.include_tests, include_tags=self.include_tags, exclude_tags=self.exclude_tags)) return False suite.tests = [] return True def _filter(self, suite, filter): return [t for t in suite.tests if filter(t)] def _included_by_test_name(self, test): return self.include_tests.match(test.name, test.longname) def _included_by_tags(self, test): return self.include_tags.match(test.tags) def _not_excluded_by_tags(self, test): return not self.exclude_tags.match(test.tags) def __nonzero__(self): return bool(self.include_suites or self.include_tests or self.include_tags or self.exclude_tags)
apache-2.0
3,106,772,659,293,571,600
33.65
79
0.650216
false
TeamExodus/external_chromium_org
tools/perf/record_android_profile.py
27
1260
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import os import sys import tempfile sys.path.append(os.path.join(os.path.dirname(__file__), os.pardir, 'telemetry')) from telemetry.core import browser_finder from telemetry.core import browser_options def _RunPrebuilt(options): browser_to_create = browser_finder.FindBrowser(options) with browser_to_create.Create() as browser: browser.Start() output_file = os.path.join(tempfile.mkdtemp(), options.profiler) raw_input('Press enter to start profiling...') print '>> Starting profiler', options.profiler browser.platform.profiling_controller.Start( options.profiler, output_file) print 'Press enter or CTRL+C to stop' try: raw_input() except KeyboardInterrupt: pass finally: browser.platform.profiling_controller.Stop() print '<< Stopped profiler ', options.profiler if __name__ == '__main__': browser_finder_options = browser_options.BrowserFinderOptions() parser = browser_finder_options.CreateParser('') profiler_options, _ = parser.parse_args() sys.exit(_RunPrebuilt(profiler_options))
bsd-3-clause
-8,781,608,121,010,270,000
31.307692
80
0.721429
false
ihuston/pyflation
pyflation/cmpotentials.py
1
36913
# -*- coding: utf-8 -*- """cmpotentials.py - Cosmological potentials for cosmomodels.py Provides functions which can be used with cosmomodels.py. Default parameter values are included but can also be specified as a dictionary. """ #Author: Ian Huston #For license and copyright information see LICENSE.txt which was distributed with this file. from __future__ import division import numpy as np def msqphisq(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 where m is the mass of the inflaton field. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 U = np.asscalar(0.5*(mass2)*(y[0]**2)) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0]) #2nd deriv d2Udphi2 = np.atleast_2d(mass2) #3rd deriv d3Udphi3 = np.atleast_3d(0) return U, dUdphi, d2Udphi2, d3Udphi3 def lambdaphi4(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/4 lambda phi^4 for a specified lambda. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "lambda" which specifies lambda above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- lambda can be specified in the dictionary params or otherwise it defaults to the value as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "lambda" in params: l = params["lambda"] else: #Use WMAP value of lambda l = 1.5506e-13 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) #potential U = 1/4 l \phi^4 U = np.asscalar(0.25*l*(y[0]**4)) #deriv of potential wrt \phi dUdphi = np.atleast_1d(l*(y[0]**3)) #2nd deriv d2Udphi2 = np.atleast_2d(3*l*(y[0]**2)) #3rd deriv d3Udphi3 = np.atleast_3d(6*l*(y[0])) return U, dUdphi, d2Udphi2, d3Udphi3 def linde(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for Linde potential V = -m^2/2 \phi^2 +\lambda/4 \phi^4 + m^4/4lambda Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameters "mass" and "lambda" which specifies the variables. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- lambda can be specified in the dictionary params or otherwise it defaults to the value as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. mass can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use Salopek et al value of mass (in Mpl) m = 5e-8 #Use inflaton mass mass2 = m**2 #Check if mass is specified in params if params is not None and "lambda" in params: l = params["lambda"] else: #Use WMAP value of lambda #l = 1.5506e-13 l = 1.55009e-13 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) U = np.asscalar(-0.5*(mass2)*(y[0]**2) + 0.25*l*(y[0]**4) + (m**4)/(4*l)) #deriv of potential wrt \phi dUdphi = np.atleast_1d(-(mass2)*y[0] + l*(y[0]**3)) #2nd deriv d2Udphi2 = np.atleast_2d(-mass2 + 3*l*(y[0]**2)) #3rd deriv d3Udphi3 = np.atleast_3d(6*l*(y[0])) return U, dUdphi, d2Udphi2, d3Udphi3 def hybrid2and4(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for hybrid potential V = -m^2/2 \phi^2 +\lambda/4 \phi^4 Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameters "mass" and "lambda" which specifies the variables. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- lambda can be specified in the dictionary params or otherwise it defaults to the value as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. mass can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use Salopek et al value of mass (in Mpl) m = 5e-8 #Use inflaton mass mass2 = m**2 #Check if mass is specified in params if params is not None and "lambda" in params: l = params["lambda"] else: #Use WMAP value of lambda l = 1.55123e-13 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) U = np.asscalar(0.5*(mass2)*(y[0]**2) + 0.25*l*(y[0]**4)) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0] + l*(y[0]**3)) #2nd deriv d2Udphi2 = np.atleast_2d(mass2 + 3*l*(y[0]**2)) #3rd deriv d3Udphi3 = np.atleast_3d(6*l*(y[0])) return U, dUdphi, d2Udphi2, d3Udphi3 def phi2over3(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V= sigma phi^(2/3) for a specified sigma. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "sigma" which specifies lambda above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- sigma can be specified in the dictionary params or otherwise it defaults to the value as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "sigma" in params: s = params["sigma"] else: #Use WMAP value of lambda s = 3.81686e-10 #Unit Mpl^{10/3} if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) #potential U = 1/4 s \phi^4 U = np.asscalar(s*(y[0]**(2.0/3))) #deriv of potential wrt \phi dUdphi = np.atleast_1d((2.0/3)*s*(y[0]**(-1.0/3))) #2nd deriv d2Udphi2 = np.atleast_2d(-(2.0/9)*s*(y[0]**(-4.0/3))) #3rd deriv d3Udphi3 = np.atleast_3d((8.0/27)*s*(y[0]**(-7.0/3))) return U, dUdphi, d2Udphi2, d3Udphi3 def msqphisq_withV0(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 + V0 where m is the mass of the inflaton field. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 1.7403553e-06 if params is not None and "V0" in params: V0 = params["V0"] else: V0 = 5e-10 # Units Mpl^4 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 U = np.asscalar(0.5*(mass2)*(y[0]**2) + V0) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0]) #2nd deriv d2Udphi2 = np.atleast_2d(mass2) #3rd deriv d3Udphi3 = np.atleast_3d(0) return U, dUdphi, d2Udphi2, d3Udphi3 def step_potential(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 ( 1 + c*tanh((phi-phi_s) / d) where m is the mass of the inflaton field and c, d and phi_s are provided. Form is taken from Chen etal. arxiv:0801.3295. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 if params is not None: c = params.get("c", 0.0018) d = params.get("d", 0.022) #Units of Mpl phi_s = params.get("phi_s", 14.84) #Units of Mpl else: c = 0.0018 d = 0.022 phi_s = 14.84 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 phisq = y[0]**2 phiterm = (y[0]-phi_s)/d s = 1/np.cosh(phiterm) t = np.tanh(phiterm) U = np.asscalar(0.5*(mass2)*(y[0]**2) * (1 + c * (t - 1))) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0] * (1 + c*(t-1)) + c * mass2 * phisq * s**2 / (2*d)) #2nd deriv d2Udphi2 = np.atleast_2d(0.5*mass2*(4*c*y[0]*s**2/d - 2*c*phisq*s**2*t/(d**2) + 2*(1+c*(t-1)))) #3rd deriv d3Udphi3 = np.atleast_3d(0.5*mass2*(6*c*s**2/d - 12*c*y[0]*s**2*t/(d**2) + c*phisq*(-2*s**4/(d**3) + 4*s**2*t**2/(d**3)))) return U, dUdphi, d2Udphi2, d3Udphi3 def bump_potential(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 ( 1 + c*sech((phi-phi_b) / d) where m is the mass of the inflaton field and c, d and phi_b are provided. Form is taken from Chen etal. arxiv:0801.3295. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 if params is not None: c = params.get("c", 0.0005) d = params.get("d", 0.01) #Units of Mpl phi_b = params.get("phi_b", 14.84) #Units of Mpl else: c = 0.0005 d = 0.01 phi_b = 14.84 #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) phisq = y[0]**2 phiterm = (y[0]-phi_b)/d s = 1/np.cosh(phiterm) t = np.tanh(phiterm) U = np.asscalar(0.5*(mass2)*(y[0]**2) * (1 + c * s)) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0] * (1 + c*s) - c * mass2 * phisq * s*t / (2*d)) #2nd deriv d2Udphi2 = np.atleast_2d(0.5*mass2*(-4*c*y[0]*s*t/d + c*phisq*(-s**3/(d**2) + s*(t**2)/(d**2)) + 2*(1+c*s))) #3rd deriv d3Udphi3 = np.atleast_3d(0.5*mass2*(-6*c*s*t/d + 6*c*y[0]*(-s**3/(d**2) + s*(t**2)/(d**2)) + c*phisq*(5*s**3*t/(d**3) - s*t**3/(d**3)))) return U, dUdphi, d2Udphi2, d3Udphi3 def resonance(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 ( 1 + c*sin(phi / d) ) where m is the mass of the inflaton field and c, d and phi_b are provided. Form is taken from Chen etal. arxiv:0801.3295. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above, and the parameters "c" and "d" which tune the oscillation. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 if params is not None: c = params.get("c", 5e-7) d = params.get("d", 0.0007) #Units of Mpl else: c = 5e-7 d = 0.0007 #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) phi = y[0] phisq = phi**2 phiterm = phi/d sphi = np.sin(phiterm) cphi = np.cos(phiterm) U = np.asscalar(0.5*(mass2)*(phisq) * (1 + c * sphi)) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*phi * (1 + c*sphi) + c * mass2 * phisq * cphi / (2*d)) #2nd deriv d2Udphi2 = np.atleast_2d(mass2*((1+c*sphi) + 2*c/d * cphi * phi)) #3rd deriv d3Udphi3 = np.atleast_3d(mass2*(3*c/d*cphi -3*c/d**2*sphi * phi -0.5*c/d**3 *cphi * phisq)) return U, dUdphi, d2Udphi2, d3Udphi3 def bump_nothirdderiv(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=1/2 m^2 phi^2 ( 1 + c*sech((phi-phi_b) / d) where m is the mass of the inflaton field and c, d and phi_b are provided. Form is taken from Chen etal. arxiv:0801.3295. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 if params is not None: c = params.get("c", 0.0005) d = params.get("d", 0.01) #Units of Mpl phi_b = params.get("phi_b", 14.84) #Units of Mpl else: c = 0.0005 d = 0.01 phi_b = 14.84 #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 if len(y.shape)>1: y = y[:,0] # The shape of the potentials is important to be consistent with the # multifield case. The following shapes should be used for a single field # model: # # U : scalar (use np.asscalar) # dUdphi : 1d vector (use np.atleast_1d) # d2Udphi2 : 2d array (use np.atleast_2d) # d3Udphi3 : 3d array (use np.atleast_3d) phisq = y[0]**2 phiterm = (y[0]-phi_b)/d s = 1/np.cosh(phiterm) t = np.tanh(phiterm) U = np.asscalar(0.5*(mass2)*(y[0]**2) * (1 + c * s)) #deriv of potential wrt \phi dUdphi = np.atleast_1d((mass2)*y[0] * (1 + c*s) - c * mass2 * phisq * s*t / (2*d)) #2nd deriv d2Udphi2 = np.atleast_2d(0.5*mass2*(-4*c*y[0]*s*t/d + c*phisq*(-s**3/(d**2) + s*(t**2)/(d**2)) + 2*(1+c*s))) #3rd deriv d3Udphi3 = np.atleast_3d(0.0) return U, dUdphi, d2Udphi2, d3Udphi3 def hybridquadratic(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V = 1/2 m1^2 phi^2 + 1/2 m2^2 chi^2 where m1 and m2 are the masses of the fields. Needs nfields=2. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameters "m1" and "m2" specified above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: m1 = params.get("m1", 1.395464769e-6) m2 = params.get("m2", 9.768253382e-6) else: m1 = 1.395464769e-6 m2 = 9.768253382e-6 if len(y.shape)>1: y = y[:,0] #Use inflaton mass mass2 = np.array([m1, m2])**2 #potential U = 1/2 m^2 \phi^2 U = np.asscalar(0.5*(m1**2*y[0]**2 + m2**2*y[2]**2)) #deriv of potential wrt \phi dUdphi = mass2*np.array([y[0],y[2]]) #2nd deriv d2Udphi2 = mass2*np.eye(2) #3rd deriv d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3 def ridge_twofield(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V=V0 - g phi - 1/2 m^2 chi^2 where g is a parameter and m is the mass of the chi field. Needs nfields=2. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameters "V0", "g", "m". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: g = params.get("g", 1e-5) m = params.get("m", 12e-5) V0 = params.get("V0", 1) else: g = 1e-5 m = 12e-5 V0 = 1 if len(y.shape)>1: y = y[:,0] #potential U = 1/2 m^2 \phi^2 U = np.asscalar(V0 - g*y[0] - 0.5*m**2*y[2]**2) #deriv of potential wrt \phi dUdphi = np.array([-g, -m**2 * y[2]]) #2nd deriv d2Udphi2 = np.array([[0,0], [0,-m**2]]) #3rd deriv d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3 def nflation(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V = \sum_\alpha 1/2 m^2 \phi_\alpha^2 where m is the mass of each of the fields. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameter "mass" which specifies m above. The number of fields is specified through "nfields". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. Notes ----- m can be specified in the dictionary params or otherwise it defaults to the mass as normalized with the WMAP spectrum Pr = 2.457e-9 at the WMAP pivot scale of 0.002 Mpc^-1. """ #Check if mass is specified in params if params is not None and "mass" in params: m = params["mass"] else: #Use WMAP value of mass (in Mpl) m = 6.3267e-6 nfields = params["nfields"] if len(y.shape)>1: y = y[:,0] phis_ix = slice(0,nfields*2,2) #Use inflaton mass mass2 = m**2 #potential U = 1/2 m^2 \phi^2 U = np.sum(0.5*(mass2)*(y[phis_ix]**2)) #deriv of potential wrt \phi dUdphi = (mass2)*y[phis_ix] #2nd deriv d2Udphi2 = mass2*np.eye(nfields, dtype=np.complex128) #3rd deriv d3Udphi3 = None return U, dUdphi, d2Udphi2, d3Udphi3 def quartictwofield(y, params=None): """Return (V, dV/dphi, d2V/dphi2, d3V/dphi3) for V= 1/2(m1^2 \phi^2 + 1/2 l1 \phi^4 + m2^2 \chi^2 + 1/2 l2 \chi^4) where m1, m2, l1, l2 are parameters. Needs nfields=2. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values in this case should hold the parameters "m1", "m2", "l1", "l2", as specified above. Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: m1 = params.get("m1", 5e-6) m2 = params.get("m2", 5e-8) l1 = params.get("l1", 5e-10) l2 = params.get("l2", 5e-14) else: m1 = 5e-6 m2 = 5e-8 if len(y.shape)>1: y = y[:,0] #potential U = 1/2 m^2 \phi^2 U = np.asscalar(0.5*(m1**2*y[0]**2 + 0.5*l1*y[0]**4 + m2**2*y[2]**2 + 0.5*l2*y[2]**4)) #deriv of potential wrt \phi dUdphi = np.array([m1**2*y[0] + l1*y[0]**3, m2**2*y[2] + l2*y[2]**3]) #2nd deriv d2Udphi2 = np.eye(2)*np.array([m1**2 + 3*l1*y[0]**2, m2**2 + 3*l2*y[2]**2]) #3rd deriv d3Udphi3 = None return U, dUdphi, d2Udphi2, d3Udphi3 def hybridquartic(y, params=None): """Return the potential and its first three derivatives for the hybrid quartic model. The potential is given by .. math:: V = \Lambda^4 [ (1-\chi^2/v^2)^2 + \phi^2/\mu^2 + 2\phi^2\chi^2/(\phi_c^2 v^2) ] where the parameter are :math:`\Lambda, v, \mu and \phi_c`. Needs nfields=2. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values labelled "lambda" , "v", "mu", "phi_c". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: l = params.get("lambda", 2.3644e-6) v = params.get("v", 0.1) mu = params.get("mu", 1e3) phi_c = params.get("phi_c", 0.01) else: l = 2.3644e-6 v = 0.1 mu = 1e3 phi_c = 0.01 if len(y.shape)>1: y = y[:,0] phi = y[0] chi = y[2] l4 = l**4 phicv2 = (phi_c*v)**2 #potential U = 1/2 m^2 \phi^2 U = np.asscalar(l4 *((1-chi**2/v**2)**2 + phi**2/mu**2 + 2*(phi*chi)**2/phicv2)) #deriv of potential wrt \phi dUdphi = l4*np.array([2*phi/mu**2 + 4*phi*chi**2/phicv2, -4*chi/v**2 * (1-chi**2/v**2) + 4*phi**2*chi/phicv2]) #2nd deriv d2Udphi2 = l4*np.array([[2/mu**2 + 4*chi**2/phicv2, # V phi phi 8*phi*chi/phicv2], # V phi chi [8*phi*chi/phicv2, # V chi phi -4/v**2 * (1-3*chi**2/v**2) + 4*phi**2/phicv2]]) # V chi chi #3rd deriv Not set as not used in first order calculation d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3 def inflection(y, params=None): r"""Return the potential and its first three derivatives for an inflection point model. The potential is given by .. math:: V = V_0 + 0.5 m^2 \phi^2 + g \chi + 1/6 \lambda \chi^3 + \lambda/(8 r) \chi^4 where :math:`V_0 = 0.75gr + \lambda/24 r^3 + g/(4r^3)` and the parameters are :math:`\lambda, m, g and r`. Needs nfields=2. Parameters ---------- y : array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params : dict Dictionary of parameter values labelled "lambda" , "m", "g", "r". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3 : tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: l = params.get("lambda", 3e3) g = params.get("g", 3e-2) r = params.get("r", 0.14) m = params.get("m", 1.0) else: l = 3e3 g = 3e-2 r = 0.14 m = 1.0 if len(y.shape)>1: y = y[:,0] V_0 = 0.75*g*r + l/24.0 * r**3 phi = y[0] chi = y[2] #potential U = 1/2 m^2 \phi^2 U = np.asscalar(V_0 + 0.5*m**2*phi**2 + g*chi + 1/6.0 * l * chi**3 + (g/(4*r**3) + l/(8*r)) * chi**4) #deriv of potential wrt \phi dUdphi = np.array([m**2*phi, g + 0.5 * l * chi**2 + (g/(2*r**3) + l/(2*r)) * chi**3]) #2nd deriv d2Udphi2 = np.array([[m**2, # V phi phi 0.0], # V phi chi [0.0, # V chi phi l*chi + 3/2*(g/r**3 + l/r) * chi**2]]) # V chi chi #3rd deriv Not set as not used in first order calculation d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3 def hilltopaxion(y, params=None): r"""Return the potential and its first three derivatives for a hilltop axion model. The potential is given by .. math:: V = 0.5 m^2 \varphi^2 + \Lambda^4 (1 - \cos(2\pi\chi/f)) where the parameters are \Lambda, m, and f . Needs nfields=2. Parameters ---------- y: array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params: dict Dictionary of parameter values labelled "Lambda" , "m", "f". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3: tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: l = params.get("Lambda", np.sqrt(6e-6/(4*np.pi))) f = params.get("f", 1.0) m = params.get("m", 6e-6) else: l = np.sqrt(6e-6/(4*np.pi)) f = 1.0 m = 6e-6 if len(y.shape)>1: y = y[:,0] phi = y[0] chi = y[2] twopif = 2*np.pi/f #potential U = 1/2 m^2 \phi^2 U = np.asscalar(0.5*m**2*phi**2 + l**4*(1 - np.cos(twopif*chi))) #deriv of potential wrt \phi dUdphi = np.array([m**2*phi, l**4*(twopif)*np.sin(twopif*chi)]) #2nd deriv d2Udphi2 = np.array([[m**2, # V phi phi 0.0], # V phi chi [0.0, # V chi phi l**4*(twopif)**2*np.cos(twopif*chi)]]) # V chi chi #3rd deriv Not set as not used in first order calculation d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3 def productexponential(y, params=None): r"""Return the potential and its first three derivatives for a product exponential potential. The potential is given by .. math:: V = V_0 \phi^2 \exp(-\lambda \chi^2) where the parameters are :math:`V_0, \lambda`. Needs nfields=2. Parameters ---------- y: array Array of variables with background phi as y[0] If you want to specify a vector of phi values, make sure that the first index still runs over the different variables, using newaxis if necessary. params: dict Dictionary of parameter values labelled "lambda" , "V_0". Returns ------- U, dUdphi, d2Udphi2, d3Udphi3: tuple of arrays Tuple of the potential and its first three derivatives. """ #Check if mass is specified in params if params: l = params.get("lambda", 0.05) V_0 = params.get("V_0", 5.3705e-13) else: l = 0.05 V_0 = 5.3705e-13 if len(y.shape)>1: y = y[:,0] phi = y[0] chi = y[2] explchi2 = np.exp(-l*chi**2) #potential U U = np.asscalar(V_0*phi**2 * explchi2) #deriv of potential wrt \phi dUdphi = np.array([2*V_0*phi*explchi2, -2*l*chi*V_0*phi**2*explchi2]) #2nd deriv d2Udphi2 = np.array([[2*V_0*explchi2, # V phi phi -4*l*chi*V_0*phi*explchi2], # V phi chi [-4*l*chi*V_0*phi*explchi2, # V chi phi -2*l*V_0*phi**2*explchi2*(1-2*l*chi)]]) # V chi chi #3rd deriv Not set as not used in first order calculation d3Udphi3 = np.zeros((2,2,2)) return U, dUdphi, d2Udphi2, d3Udphi3
bsd-3-clause
8,137,346,741,227,419,000
31.266608
112
0.565492
false
shannonlucas/aerodata
aerodata/weather/metar/commands/wind.py
1
3949
# Copyright 2015 Shannon Lucas # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from ordtext import OrderedParser, ParseCommandError from ordtext.grammar import GrammarElement from ordtext.commands import AbstractCommand, PatternMatch, SimpleMatch from aerodata.units import velocity from aerodata.weather.metar.models import WindModel class Wind(AbstractCommand): """Parses wind group data from a METAR. .. sidebar:: Sources: - NOAA/FAA AC 00-45F, Change 2, Section 3.1.3.5 - WMO FM 15-XIV METAR/FM 16-XIV SPECI, Regulation 15.5 """ _WIND = PatternMatch((r"^(?P<direction>\d{3}|VRB)" r"(?P<speed>\d{2,3})(?:G(?P<gust>\d{2,3}))*" r"(?P<units>KT|KMH|MPS)$"), by_name=True) _VARIABILITY = PatternMatch(r"^(?P<from>\d{3})V(?P<to>\d{3})$", by_name=True) _GRAMMAR = ( GrammarElement(_WIND, name="wind", min_count=1, max_count=1, description="Wind direction, speed, and gusts"), GrammarElement(_VARIABILITY, name="variability", min_count=0, max_count=1, description="Wind variability.") ) _PARSER = OrderedParser(_GRAMMAR) def __call__(self, tokens): """Extracts the wind information from the METAR. :param Sequence[str] tokens: the sequence of tokens being parsed. :return: a tuple containing the wind information (first element) and a sequence of the remaining tokens (second element). :rtype: (WindModel, Sequence) """ m, remainder = Wind._PARSER(tokens) wind = m["wind"] variable = wind["direction"] == "VRB" variability = m["variability"] wind_units = velocity.KNOTS if wind["units"] == "KT" \ else velocity.KILOMETERS_PER_HOUR if wind["units"] == "KMH" \ else velocity.METERS_PER_SECOND direction = None if variable else int(wind["direction"]) speed = int(wind["speed"]) gust = int(wind["gust"]) if wind["gust"] else None var_from = int(variability["from"]) if variability else None var_to = int(variability["to"]) if variability else None parsed = WindModel(direction=direction, speed=speed, gust=gust, units=wind_units, is_variable=variable, variable_from=var_from, variable_to=var_to) return parsed, remainder class WindShear(AbstractCommand): """Parses wind shear data from a METAR. .. sidebar:: Sources: - WMO FM 15-XIV METAR/FM 16-XIV SPECI, Regulation 15.13.3 """ _WS = SimpleMatch("WS") _RUNWAY = PatternMatch(r"^(R|RWY)(?P<runway>\d\d[LCR]?)$", by_name=True) def __call__(self, tokens): """Extracts the wind shear information from the METAR. :param Sequence[str] tokens: the sequence of tokens being parsed. :return: a tuple containing the ID of the runway experiencing wind shear (first element) and a sequence of the remaining tokens (second element). :rtype: (str, Sequence) """ if tokens[0] != "WS": raise ParseCommandError if (tokens[1] == "ALL") and (tokens[2] == "RWY"): return "ALL", tokens[3:] else: m, remainder = WindShear._RUNWAY(tokens[1:]) return m["runway"], remainder
apache-2.0
-1,861,455,526,159,308,800
37.339806
79
0.609521
false
silverlogic/blockhunt-back
blockhunt/hunts/serializers.py
1
3502
import random from django.db.models import F from rest_framework import serializers import coinbase.wallet.error import dj_coinbase from expander import ExpanderSerializerMixin from blockhunt.stores.models import Store from blockhunt.stores.serializers import StoreSerializer from .models import Hunter, Checkin names = [ ('Bruce', 'Bitlee'), ] class HunterSerializer(serializers.ModelSerializer): password = serializers.CharField(write_only=True) class Meta: model = Hunter fields = ('id', 'email', 'password', 'first_name', 'last_name', 'balance') read_only_fields = ('balance',) def create(self, validated_data): if not validated_data.get('first_name') and not validated_data.get('last_name'): random_name = random.choice(names) validated_data['first_name'] = random_name[0] validated_data['last_name'] = random_name[1] user = super().create(validated_data) user.set_password(validated_data['password']) user.save() return user class HunterFacebookSerializer(serializers.Serializer): access_token = serializers.CharField() class CheckinSerializer(ExpanderSerializerMixin, serializers.ModelSerializer): qrcode = serializers.CharField(write_only=True) class Meta: model = Checkin fields = ('id', 'store', 'reward', 'qrcode') expandable_fields = { 'store': (StoreSerializer, (), {'read_only': True}) } read_only_fields = ('store', 'reward',) def validate_qrcode(self, qrcode): store_id = int(qrcode) self.store = store = Store.objects.get(pk=store_id) if store.balance < store.bounty: raise serializers.ValidationError('Unfortunately the store does not have enough bitcoins to pay the bounty.') return qrcode def create(self, validated_data): store = self.store hunter = self.context['request'].user if not hunter.coinbase_account_id: coinbase_account = dj_coinbase.client.create_account(name='Hunter #' + str(hunter.pk)) hunter.coinbase_account_id = coinbase_account.id hunter.save() coinbase_address = dj_coinbase.client.create_address(hunter.coinbase_account_id) try: dj_coinbase.client.send_money( store.coinbase_account_id, to=coinbase_address.address, amount=str(store.bounty), currency='BTC', fee='0.0001' ) except coinbase.wallet.error.APIError as ex: raise serializers.ValidationError(ex.message) checkin = Checkin.objects.create(store=store, reward=store.bounty, hunter=hunter) hunter.balance = F('balance') + store.bounty hunter.save() store.balance = F('balance') - store.bounty store.save() return checkin class SendBitcoinSerializer(serializers.Serializer): address = serializers.CharField() amount = serializers.DecimalField(max_digits=12, decimal_places=8) def validate_amount(self, amount): hunter = self.context['request'].user if amount > hunter.balance: raise serializers.ValidationError('You don\'t own that many bitcoins.') if amount <= 0: raise serializers.ValidationError('You cannot send that many bitcoins.') return amount
mit
3,758,222,307,163,068,400
33
121
0.630782
false
sdague/home-assistant
homeassistant/components/google_translate/tts.py
3
4669
"""Support for the Google speech service.""" import asyncio import logging import re import aiohttp from aiohttp.hdrs import REFERER, USER_AGENT import async_timeout from gtts_token import gtts_token import voluptuous as vol from homeassistant.components.tts import CONF_LANG, PLATFORM_SCHEMA, Provider from homeassistant.const import HTTP_OK from homeassistant.helpers.aiohttp_client import async_get_clientsession _LOGGER = logging.getLogger(__name__) GOOGLE_SPEECH_URL = "https://translate.google.com/translate_tts" MESSAGE_SIZE = 148 SUPPORT_LANGUAGES = [ "af", "sq", "ar", "hy", "bn", "ca", "zh", "zh-cn", "zh-tw", "zh-yue", "hr", "cs", "da", "nl", "en", "en-au", "en-uk", "en-us", "eo", "fi", "fr", "de", "el", "hi", "hu", "is", "id", "it", "ja", "ko", "la", "lv", "mk", "no", "pl", "pt", "pt-br", "ro", "ru", "sr", "sk", "es", "es-es", "es-mx", "es-us", "sw", "sv", "ta", "th", "tr", "vi", "cy", "uk", "bg-BG", ] DEFAULT_LANG = "en" PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( {vol.Optional(CONF_LANG, default=DEFAULT_LANG): vol.In(SUPPORT_LANGUAGES)} ) async def async_get_engine(hass, config, discovery_info=None): """Set up Google speech component.""" return GoogleProvider(hass, config[CONF_LANG]) class GoogleProvider(Provider): """The Google speech API provider.""" def __init__(self, hass, lang): """Init Google TTS service.""" self.hass = hass self._lang = lang self.headers = { REFERER: "http://translate.google.com/", USER_AGENT: ( "Mozilla/5.0 (Windows NT 10.0; WOW64) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/47.0.2526.106 Safari/537.36" ), } self.name = "Google" @property def default_language(self): """Return the default language.""" return self._lang @property def supported_languages(self): """Return list of supported languages.""" return SUPPORT_LANGUAGES async def async_get_tts_audio(self, message, language, options=None): """Load TTS from google.""" token = gtts_token.Token() websession = async_get_clientsession(self.hass) message_parts = self._split_message_to_parts(message) data = b"" for idx, part in enumerate(message_parts): try: part_token = await self.hass.async_add_executor_job( token.calculate_token, part ) except ValueError as err: # If token seed fetching fails. _LOGGER.warning(err) return None, None url_param = { "ie": "UTF-8", "tl": language, "q": part, "tk": part_token, "total": len(message_parts), "idx": idx, "client": "tw-ob", "textlen": len(part), } try: with async_timeout.timeout(10): request = await websession.get( GOOGLE_SPEECH_URL, params=url_param, headers=self.headers ) if request.status != HTTP_OK: _LOGGER.error( "Error %d on load URL %s", request.status, request.url ) return None, None data += await request.read() except (asyncio.TimeoutError, aiohttp.ClientError): _LOGGER.error("Timeout for google speech") return None, None return "mp3", data @staticmethod def _split_message_to_parts(message): """Split message into single parts.""" if len(message) <= MESSAGE_SIZE: return [message] punc = "!()[]?.,;:" punc_list = [re.escape(c) for c in punc] pattern = "|".join(punc_list) parts = re.split(pattern, message) def split_by_space(fullstring): """Split a string by space.""" if len(fullstring) > MESSAGE_SIZE: idx = fullstring.rfind(" ", 0, MESSAGE_SIZE) return [fullstring[:idx]] + split_by_space(fullstring[idx:]) return [fullstring] msg_parts = [] for part in parts: msg_parts += split_by_space(part) return [msg for msg in msg_parts if len(msg) > 0]
apache-2.0
7,522,089,321,566,281,000
23.967914
82
0.51103
false
delphinus1024/opencv30hdr
make_list.py
1
1140
#!/usr/bin/env python import subprocess import os.path import sys lines = [] def call_exiv2(fullpath,fn): global lines cmd = "exiv2 " + "-Pkv " + fullpath p = subprocess.Popen(cmd,shell=True,stdin=subprocess.PIPE,stdout=subprocess.PIPE) for i in p.stdout.read().split('\n'): lst = i.split() if len(lst) > 0: if lst[0] == "Exif.Photo.ExposureTime": line = [] ss = lst[1].split('/') denom = float(ss[0]) num = float(ss[1]) line.append(fn) line.append(num / denom) lines.append(line) if __name__ == "__main__": argvs = sys.argv argc = len(argvs) if (argc != 2): print "Usage python make_list [image folder]" quit() srcfolder = argvs[1] if (not os.path.exists(srcfolder)) : print srcfolder, " does not exists." quit() filelst = os.listdir(srcfolder) #print "file list=", filelst for fn in filelst: name = os.path.splitext(fn) base = name[0] ext = name[1] if (ext != ".tif"): continue srcfn = os.path.join(srcfolder,fn) call_exiv2(srcfn,fn) lines = sorted(lines,reverse=True,key=lambda x: x[1]) for line in lines: print line[0]," ",line[1]
mit
4,486,225,379,823,488,000
18.655172
82
0.615789
false
hothHowler/lda
lda/utils.py
4
5181
from __future__ import absolute_import, unicode_literals # noqa import logging import numbers import sys import numpy as np PY2 = sys.version_info[0] == 2 if PY2: import itertools zip = itertools.izip logger = logging.getLogger('lda') def check_random_state(seed): if seed is None: # i.e., use existing RandomState return np.random.mtrand._rand if isinstance(seed, (numbers.Integral, np.integer)): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError("{} cannot be used as a random seed.".format(seed)) def matrix_to_lists(doc_word): """Convert a (sparse) matrix of counts into arrays of word and doc indices Parameters ---------- doc_word : array or sparse matrix (D, V) document-term matrix of counts Returns ------- (WS, DS) : tuple of two arrays WS[k] contains the kth word in the corpus DS[k] contains the document index for the kth word """ if np.count_nonzero(doc_word.sum(axis=1)) != doc_word.shape[0]: logger.warning("all zero row in document-term matrix found") if np.count_nonzero(doc_word.sum(axis=0)) != doc_word.shape[1]: logger.warning("all zero column in document-term matrix found") sparse = True try: # if doc_word is a scipy sparse matrix doc_word = doc_word.copy().tolil() except AttributeError: sparse = False if sparse and not np.issubdtype(doc_word.dtype, int): raise ValueError("expected sparse matrix with integer values, found float values") ii, jj = np.nonzero(doc_word) if sparse: ss = tuple(doc_word[i, j] for i, j in zip(ii, jj)) else: ss = doc_word[ii, jj] n_tokens = int(doc_word.sum()) DS = np.repeat(ii, ss).astype(np.intc) WS = np.empty(n_tokens, dtype=np.intc) startidx = 0 for i, cnt in enumerate(ss): cnt = int(cnt) WS[startidx:startidx + cnt] = jj[i] startidx += cnt return WS, DS def lists_to_matrix(WS, DS): """Convert array of word (or topic) and document indices to doc-term array Parameters ----------- (WS, DS) : tuple of two arrays WS[k] contains the kth word in the corpus DS[k] contains the document index for the kth word Returns ------- doc_word : array (D, V) document-term array of counts """ D = max(DS) + 1 V = max(WS) + 1 doc_word = np.empty((D, V), dtype=np.intc) for d in range(D): for v in range(V): doc_word[d, v] = np.count_nonzero(WS[DS == d] == v) return doc_word def dtm2ldac(dtm, offset=0): """Convert a document-term matrix into an LDA-C formatted file Parameters ---------- dtm : array of shape N,V Returns ------- doclines : iterable of LDA-C lines suitable for writing to file Notes ----- If a format similar to SVMLight is desired, `offset` of 1 may be used. """ try: dtm = dtm.tocsr() except AttributeError: pass assert np.issubdtype(dtm.dtype, int) n_rows = dtm.shape[0] for i, row in enumerate(dtm): try: row = row.toarray().squeeze() except AttributeError: pass unique_terms = np.count_nonzero(row) if unique_terms == 0: raise ValueError("dtm row {} has all zero entries.".format(i)) term_cnt_pairs = [(i + offset, cnt) for i, cnt in enumerate(row) if cnt > 0] docline = str(unique_terms) + ' ' docline += ' '.join(["{}:{}".format(i, cnt) for i, cnt in term_cnt_pairs]) if (i + 1) % 1000 == 0: logger.info("dtm2ldac: on row {} of {}".format(i + 1, n_rows)) yield docline def ldac2dtm(stream, offset=0): """Convert an LDA-C formatted file to a document-term array Parameters ---------- stream: file object File yielding unicode strings in LDA-C format. Returns ------- dtm : array of shape N,V Notes ----- If a format similar to SVMLight is the source, an `offset` of 1 may be used. """ doclines = stream # We need to figure out the dimensions of the dtm. N = 0 V = -1 data = [] for l in doclines: l = l.strip() # skip empty lines if not l: continue unique_terms = int(l.split(' ')[0]) term_cnt_pairs = [s.split(':') for s in l.split(' ')[1:]] for v, _ in term_cnt_pairs: # check that format is indeed LDA-C with the appropriate offset if int(v) == 0 and offset == 1: raise ValueError("Indexes in LDA-C are offset 1") term_cnt_pairs = tuple((int(v) - offset, int(cnt)) for v, cnt in term_cnt_pairs) np.testing.assert_equal(unique_terms, len(term_cnt_pairs)) V = max(V, *[v for v, cnt in term_cnt_pairs]) data.append(term_cnt_pairs) N += 1 V = V + 1 dtm = np.zeros((N, V), dtype=np.intc) for i, doc in enumerate(data): for v, cnt in doc: np.testing.assert_equal(dtm[i, v], 0) dtm[i, v] = cnt return dtm
mpl-2.0
2,622,867,175,849,145,300
27.783333
90
0.579618
false
darktears/crosswalk
tools/reflection_generator/java_method.py
2
36000
# Copyright (c) 2014 Intel Corporation. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re from collections import OrderedDict from string import Template def ConvertClassExpressionToClassType(class_name): """ Turn "Map<String, String>" to Map.class. """ generic_re = re.compile('[a-zA-z0-9]+(\<[a-zA-Z0-9]+,\s[a-zA-z0-9]+\>)') if re.match(generic_re, class_name): return '%s.class' % class_name.split('<')[0] """ Turn "final HashMap<String>" to HashMap.class. """ return '%s.class' % class_name.split()[-1].split('<')[0] def ConvertPrimitiveTypeToObject(class_name): primitive_map = { 'byte': 'Byte', 'short': 'Short', 'int': 'Integer', 'long': 'Long', 'float': 'Float', 'double': 'Double', 'char': 'Character', 'boolean': 'Boolean', } return primitive_map.get(class_name, class_name) def GetPrimitiveTypeDefaultValue(class_name): primitive_map = { 'byte': '0', 'short': '0', 'int': '0', 'long': '0L', 'float': '0.0f', 'double': '0.0d', 'char': "'\u0000'", 'boolean': 'false', } return primitive_map.get(class_name, 'null') class ParamType(object): """Internal representation of the type of a parameter of a method.""" def __init__(self, expression, class_loader): self._expression = expression self._modifier = '' self._generic_type = '' self._generic_type_parameters = [] self._contains_internal_class = False self.ParseType(class_loader) self._contains_internal_class = self._contains_internal_class or\ class_loader.IsInternalClass(self._generic_type) def ParseType(self, class_loader): param_type_re = re.compile('(?P<modifier>(\w+ )*)' '(?P<generic>(\w+))(?P<type_params>(<.*>)?)') for match in re.finditer(param_type_re, self._expression): self._modifier = match.group('modifier') self._generic_type = match.group('generic') type_params = match.group('type_params') if len(type_params) > 1: type_params = type_params[1:-1] self._generic_type_parameters = [ParamType(param.strip(), class_loader) for param in type_params.split(',')] for type_param in self._generic_type_parameters: if self.generic_type == 'ValueCallback': print 'value callback with %s' % type_param.generic_type if type_param.contains_internal_class: self._contains_internal_class = True break @property def expression(self): return self._expression @property def modifier(self): return self._modifier @property def generic_type(self): return self._generic_type @property def generic_type_parameters(self): return self._generic_type_parameters @property def contains_internal_class(self): return self._contains_internal_class class ParamStringType(object): INTERNAL_DECLARE = 1 BRIDGE_DECLARE = 2 BRIDGE_DECLARE_FOR_WRAPPER = 3 BRIDGE_PASS_TO_SUPER = 4 BRIDGE_PASS_TO_WRAPPER = 5 INTERNAL_PASS_TO_BRIDGE = 6 BRIDGE_OVERRIDE_CONDITION = 7 WRAPPER_DECLARE = 8 WRAPPER_DECLARE_FOR_BRIDGE = 9 WRAPPER_PASS_TO_BRIDGE = 10 class MethodStringType(object): BRIDGE_CONSTRUCTOR = 1 BRIDGE_STATIC = 2 BRIDGE_SUPER = 3 BRIDGE_OVERRIDE = 4 BRIDGE_WRAPPER = 5 WRAPPER_CONSTRUCTOR = 6 WRAPPER_STATIC = 7 WRAPPER_BRIDGE = 8 WRAPPER_INTERFACE = 9 class Method(object): """Internal representaion of a method.""" ANNOTATION_PRE_WRAPLINE = 'preWrapperLines' ANNOTATION_POST_WRAPLINE = 'postWrapperLines' ANNOTATION_POST_BRIDGELINE = 'postBridgeLines' def __init__(self, class_name, class_loader, is_constructor, is_static, is_abstract, method_name, method_return, params, annotation, doc=''): self._class_name = class_name self._class_loader = class_loader self._is_constructor = is_constructor self._is_static = is_static self._is_abstract = is_abstract self._is_delegate = False self._disable_reflect_method = False self._method_name = method_name self._method_return = method_return self._params = OrderedDict() # Use OrderedDict to avoid parameter misorder. self._typed_params = OrderedDict() self._method_annotations = {} self._method_doc = doc self._class_java_data = '' self._method_declare_name = '' self._internal_params_declare = '' self._bridge_params_declare = '' self._bridge_params_declare_for_wrapper = '' self._bridge_params_pass_to_super = '' self._bridge_params_pass_to_wrapper = '' self._internal_params_pass_to_bridge = '' self._bridge_override_condition = '' self._wrapper_params_declare = '' self._wrapper_params_declare_for_bridge = '' self._wrapper_params_pass_to_bridge = '' self._is_reservable = False self.ParseMethodParams(params) self.ParseMethodAnnotation(annotation) def IsInternalClass(self, clazz): return self._class_loader.IsInternalClass(clazz) def GetJavaData(self, clazz): return self._class_loader.GetJavaData(clazz) def GenerateDoc(self, doc): return self._class_loader.GenerateDoc(doc) @property def is_constructor(self): return self._is_constructor @property def is_static(self): return self._is_static @property def is_abstract(self): return self._is_abstract @property def is_reservable(self): return self._is_reservable @property def is_delegate(self): return self._is_delegate @property def disable_reflect_method(self): return self._disable_reflect_method @property def method_name(self): return self._method_name @property def method_return(self): return self._method_return @property def params(self): return self._params @property def typed_params(self): return self._typed_params @property def method_annotations(self): return self._method_annotations @property def method_doc(self): return self._method_doc def ParseMethodParams(self, params): # TODO(shouqun): Currently, generic parameters are not supported. # The support of generic types should be added if such cases happen. if not params or params == '': return subparams = re.findall("<.*?>", params) # To handle Map type for index in range(len(subparams)): params = params.replace(subparams[index], subparams[index].replace(", ", "-")) for param in params.split(','): param = param.strip() param_list = param.split() param_type = ' '.join(param_list[:-1]) # To handle modifiers if re.search("<.*?>", param_type): param_type = param_type.replace("-", ", ") param_name = param_list[-1] self._params[param_name] = param_type self._typed_params[param_name] = ParamType(param_type, self._class_loader) def ParseMethodAnnotation(self, annotation): if annotation.find('reservable = true') >= 0: self._is_reservable = True delegate_re = re.compile('delegate\s*=\s*' '(?P<delegate>(true|false))') for match in re.finditer(delegate_re, annotation): delegate = match.group('delegate') if delegate == 'true': self._is_delegate = True elif delegate == 'false': self._is_delegate = False disable_reflect_method_re = re.compile('disableReflectMethod\s*=\s*' '(?P<disableReflectMethod>(true|false))') for match in re.finditer(disable_reflect_method_re, annotation): disable_reflect_method = match.group('disableReflectMethod') if disable_reflect_method == 'true': self._disable_reflect_method = True else: self._disable_reflect_method = False pre_wrapline_re = re.compile('preWrapperLines\s*=\s*\{\s*(' '?P<pre_wrapline>(".*")(,\s*".*")*)\s*\}') for match in re.finditer(pre_wrapline_re, annotation): pre_wrapline = self.FormatWrapperLine(match.group('pre_wrapline')) self._method_annotations[self.ANNOTATION_PRE_WRAPLINE] = pre_wrapline post_wrapline_re = re.compile('postWrapperLines\s*=\s*\{\s*(' '?P<post_wrapline>(".*")(,\s*".*")*)\s*\}') for match in re.finditer(post_wrapline_re, annotation): post_wrapline = self.FormatWrapperLine(match.group('post_wrapline')) self._method_annotations[self.ANNOTATION_POST_WRAPLINE] = post_wrapline post_bridgeline_re = re.compile('postBridgeLines\s*=\s*\{\s*(' '?P<post_bridgeline>(".*")(,\s*".*")*)\s*\}') for match in re.finditer(post_bridgeline_re, annotation): post_bridgeline = self.FormatWrapperLine(match.group('post_bridgeline')) self._method_annotations[self.ANNOTATION_POST_BRIDGELINE] = post_bridgeline def FormatWrapperLine(self, annotation_value): """ annotaion_value is a java string array which each element is an individual line. Probably like: ' "line1",\n "line2"' This method is turnning it to ' line1\n line2' """ lines = [] exec('lines = [%s]' % annotation_value.replace('\n', '')) template = Template('\n'.join(lines)) values = {} for arg in range(1, len(self.params.keys())+1): values['param%d' % arg] = self.params.keys()[arg-1] return template.substitute(values) def PrepareStrings(self): self._class_java_data = self.GetJavaData(self._class_name) self._method_declare_name = self.GenerateMethodDeclareName() self._internal_params_declare = ', '.join( self.GetFormattedParamArray(ParamStringType.INTERNAL_DECLARE)) self._bridge_params_declare = ', '.join( self.GetFormattedParamArray(ParamStringType.BRIDGE_DECLARE)) self._bridge_params_declare_for_wrapper = ', '.join( self.GetFormattedParamArray( ParamStringType.BRIDGE_DECLARE_FOR_WRAPPER, insert_empty=True)) self._bridge_params_pass_to_super = ', '.join( self.GetFormattedParamArray(ParamStringType.BRIDGE_PASS_TO_SUPER)) self._bridge_params_pass_to_wrapper = ', '.join( self.GetFormattedParamArray(ParamStringType.BRIDGE_PASS_TO_WRAPPER)) self._internal_params_pass_to_bridge = ', '.join( self.GetFormattedParamArray(ParamStringType.INTERNAL_PASS_TO_BRIDGE)) self._bridge_override_condition = ' && '.join( self.GetFormattedParamArray(ParamStringType.BRIDGE_OVERRIDE_CONDITION)) self._wrapper_params_declare = ', '.join( self.GetFormattedParamArray(ParamStringType.WRAPPER_DECLARE)) self._wrapper_params_declare_for_bridge = ', '.join( self.GetFormattedParamArray( ParamStringType.WRAPPER_DECLARE_FOR_BRIDGE, insert_empty=True)) self._wrapper_params_pass_to_bridge = ', '.join( self.GetFormattedParamArray(ParamStringType.WRAPPER_PASS_TO_BRIDGE)) def GetFormattedParamArray(self, param_string_type, append_empty=False, insert_empty=False): """ Return the array of params with specified format. append or insert an empty string on demand for cases that need extra splitter when using the array. """ formatted_params = [] for param_name in self._params: param_type = self._params[param_name] formatted_param = self.FormatSingleParam( param_type, param_name, param_string_type) if formatted_param: formatted_params.append(formatted_param) if append_empty: formatted_params.append('') if insert_empty: formatted_params.insert(0, '') return formatted_params def FormatSingleParam(self, param_type, param_name, param_string_type): is_internal_class = self.IsInternalClass(param_type) if is_internal_class: java_data = self.GetJavaData(param_type) typed_param = self._typed_params[param_name] if param_string_type == ParamStringType.INTERNAL_DECLARE: # the way internal declares its params, will be used in bridge's override # call. # XWalkViewInternal view => XWalkViewInternal view return '%s %s' % (param_type, param_name) elif param_string_type == ParamStringType.BRIDGE_DECLARE: # the way bridge declares its params, will be used in bridge's wrapper # call and super call. # XWalkViewInternal view => XWalkViewBridge view if is_internal_class: return '%s %s'% (java_data.GetBridgeName(), param_name) else: return '%s %s' % (param_type, param_name) elif param_string_type == ParamStringType.BRIDGE_DECLARE_FOR_WRAPPER: # the way bridge declares its params for wrapper, will turn the param # type to class<?> value for reflection to use. # XWalkViewInternal view => coreBridge.getWrapperClass("XWalkView") # DirectionInternal direnction => # coreBridge.getWrapperClass("XWalkView$Direction") # String name => String.class if is_internal_class: return 'coreBridge.getWrapperClass("%s")' % java_data.GetWrapperName() else: # TODO(wang16): Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. if param_type in self._class_java_data.enums: return ('coreBridge.getWrapperClass("%s")' % self._class_java_data.GetWrapperName(param_type)) else: return ConvertClassExpressionToClassType(param_type) elif param_string_type == ParamStringType.BRIDGE_PASS_TO_SUPER: # the way bridge passes the param to super # XWalkViewInternal view => view if is_internal_class: return java_data.UseAsInstanceInBridgeSuperCall(param_name) else: return param_name elif param_string_type == ParamStringType.BRIDGE_PASS_TO_WRAPPER: # the way bridge passes the param to wrapper # XWalkViewInternal view => view.getWrapper() # DirectionInternal direction => ConvertDirectionInternal(direction) if is_internal_class: return java_data.UseAsInstanceInBridgeCall(param_name) elif (typed_param.generic_type == 'ValueCallback' and typed_param.contains_internal_class): assert len(typed_param.generic_type_parameters) == 1 internal_generic_type_param = typed_param.generic_type_parameters[0] internal_generic_type_class = self.GetJavaData( internal_generic_type_param.generic_type) return ('new ValueCallback<Object>() {\n' + ' @Override\n' + ' public void onReceiveValue(Object value) {\n' + ' %sFinal.onReceiveValue((%s) ' % ( param_name, internal_generic_type_class.bridge_name) + 'coreBridge.getBridgeObject(value));\n' + ' }\n' + ' }') else: # TODO(wang16): Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. if param_type in self._class_java_data.enums: return 'Convert%s(%s)' % (param_type, param_name) else: return param_name elif param_string_type == ParamStringType.INTERNAL_PASS_TO_BRIDGE: # the way bridge accepts param from internal # XWalkViewInternal view => (XWalkViewBridge) view if is_internal_class: return java_data.UseAsInstanceInBridgeOverrideCall(param_name) else: return param_name elif param_string_type == ParamStringType.BRIDGE_OVERRIDE_CONDITION: # the way bridge uses as the condition for whether call super or # call wrapper in override call # XWalkViewInternal view => (view instanceof XWalkViewBridge) if (is_internal_class and not java_data.HasInstanceCreateInternallyAnnotation()): return'(%s instanceof %s)' % (param_name, java_data.GetBridgeName()) else: return None elif param_string_type == ParamStringType.WRAPPER_DECLARE: # the way wrapper declare the param # XWalkViewInternal view => XWalkView view # DirectionInternal direction => Direction direction if is_internal_class: return '%s %s' % (java_data.UseAsTypeInWrapperCall(), param_name) elif param_type in self._class_java_data.enums: # TODO(wang16): Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. return '%s %s' % (param_type.replace('Internal', ''), param_name) else: return '%s %s' % (param_type, param_name) elif param_string_type == ParamStringType.WRAPPER_DECLARE_FOR_BRIDGE: # the way wrapper declares its params for bridge, will turn the param # type to class<?> value for reflection to use. # XWalkViewInternal view => # coreWrapper.getBridgeClass("XWalkViewBridge") # DirectionInternal direction => enumDirectionClass # String name => String.class # TODO(wang16): Currently there is no internal classes for static method. # Need to support it in future. if is_internal_class: return 'coreWrapper.getBridgeClass("%s")' % java_data.GetBridgeName() else: # TODO(wang16): Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. enums = self._class_java_data.enums if param_type in enums: return ('coreWrapper.getBridgeClass("%s")' % self._class_java_data.GetBridgeName(param_type)) else: return ConvertClassExpressionToClassType(param_type) elif param_string_type == ParamStringType.WRAPPER_PASS_TO_BRIDGE: # the way wrapper passes param to bridge # XWalkViewInternal view => view.getBridge() # DirectionInternal direction => ConvertDirection(direction) if is_internal_class: return java_data.UseAsInstanceInWrapperCall(param_name) elif param_type in self._class_java_data.enums: # TODO(wang16): Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. return 'Convert%s(%s)' % (param_type.replace('Internal', ''), param_name) else: return param_name else: pass def GenerateMethodDeclareName(self): name = self.method_name for param_name in self.params: # Remove modifier and generic type. name += ConvertClassExpressionToClassType( self.params[param_name]).replace('.class', '') name = name.replace('[]', 'Array'); if self._is_constructor: return '%sConstructor' % name else: return '%sMethod' % name def GenerateBridgeConstructor(self): if (self._bridge_params_declare != ''): template = Template("""\ public ${NAME}(${PARAMS}, Object wrapper) { super(${PARAMS_PASSING}); this.wrapper = wrapper; reflectionInit(); ${POST_BRIDGE_LINES} } """) post_bridge_string = self._method_annotations.get( self.ANNOTATION_POST_BRIDGELINE, '') value = {'NAME': self._class_java_data.bridge_name, 'PARAMS': self._bridge_params_declare, 'PARAMS_PASSING': self._bridge_params_pass_to_super, 'POST_BRIDGE_LINES': post_bridge_string} return template.substitute(value) else: template = Template("""\ public ${NAME}(Object wrapper) { super(); this.wrapper = wrapper; reflectionInit(); } """) value = {'NAME': self._class_java_data.bridge_name, 'PARAMS': self._bridge_params_declare, 'PARAMS_PASSING': self._bridge_params_pass_to_super} return template.substitute(value) def GenerateBridgeStaticMethod(self): template = Template("""\ public static ${RETURN_TYPE} ${NAME}($PARAMS) { ${RETURN}${CLASS_NAME}.${NAME}(${PARAMS_PASSING}); } """) value = {'RETURN_TYPE': self.method_return, 'NAME': self.method_name, 'PARAMS': self._bridge_params_declare, 'RETURN': '' if self._method_return == 'void' else 'return ', 'CLASS_NAME': self._class_name, 'PARAMS_PASSING': self._bridge_params_pass_to_super} return template.substitute(value) def GenerateBridgeOverrideMethod(self): if not self._bridge_override_condition: return ' @Override' template = Template("""\ @Override public ${RETURN_TYPE} ${NAME}(${PARAMS}) { if (${IF_CONDITION}) { ${RETURN}${NAME}(${BRIDGE_PARAMS_PASSING}); } else { ${RETURN}super.${NAME}(${PARAMS_PASSING}); } } """) value = {'NAME': self.method_name, 'RETURN_TYPE': self.method_return, 'PARAMS': self._internal_params_declare, 'RETURN': '' if self._method_return == 'void' else 'return ', 'IF_CONDITION': self._bridge_override_condition, 'PARAMS_PASSING': self._bridge_params_pass_to_super, 'BRIDGE_PARAMS_PASSING': self._internal_params_pass_to_bridge} return template.substitute(value) def GenerateBridgeWrapperMethod(self): return_is_internal = self.IsInternalClass(self._method_return) if return_is_internal: return_type_java_data = self.GetJavaData(self._method_return) if return_is_internal: template = Template("""\ public ${RETURN_TYPE} ${NAME}(${PARAMS}) { if (${METHOD_DECLARE_NAME}.isNull()) { ${RETURN_SUPER}${NAME}Super(${PARAMS_PASSING_SUPER}); } else { ${GENERIC_TYPE_DECLARE}${RETURN}coreBridge.getBridgeObject(\ ${METHOD_DECLARE_NAME}.invoke(${PARAMS_PASSING})); } } """) elif self._is_abstract: template = Template("""\ public ${RETURN_TYPE} ${NAME}(${PARAMS}) { ${GENERIC_TYPE_DECLARE}${RETURN}${METHOD_DECLARE_NAME}.invoke(\ ${PARAMS_PASSING}); } """) else : template = Template("""\ public ${RETURN_TYPE} ${NAME}(${PARAMS}) { if (${METHOD_DECLARE_NAME}.isNull()) { ${RETURN_SUPER}${NAME}Super(${PARAMS_PASSING_SUPER}); } else { ${GENERIC_TYPE_DECLARE}${RETURN}${METHOD_DECLARE_NAME}.invoke(\ ${PARAMS_PASSING}); } } """) if self._method_return == 'void': return_statement = '' return_statement_super = '' elif return_is_internal: return_statement = 'return (%s)' % return_type_java_data.bridge_name return_statement_super = 'return ' else: return_statement = ('return (%s)' % ConvertPrimitiveTypeToObject(self.method_return)) return_statement_super = 'return ' # Handling generic types, current only ValueCallback will be handled. generic_type_declare = '' for param_name in self._typed_params: typed_param = self._typed_params[param_name] if typed_param.generic_type != 'ValueCallback': continue if typed_param.contains_internal_class: generic_type_declare += 'final %s %sFinal = %s;\n ' % ( typed_param.expression, param_name, param_name) value = {'RETURN_TYPE': self.method_return, 'NAME': self.method_name, 'METHOD_DECLARE_NAME': self._method_declare_name, 'PARAMS': self._bridge_params_declare, 'RETURN': return_statement, 'RETURN_SUPER': return_statement_super, 'GENERIC_TYPE_DECLARE': generic_type_declare, 'PARAMS_PASSING_SUPER': self._bridge_params_pass_to_super, 'PARAMS_PASSING': self._bridge_params_pass_to_wrapper} return template.substitute(value) def GenerateBridgeSuperMethod(self): no_return_value = self._method_return == 'void' return_is_internal = self.IsInternalClass(self._method_return) if return_is_internal: return_type_java_data = self.GetJavaData(self._method_return) if self._is_abstract: return '' if self._class_java_data.HasCreateInternallyAnnotation(): if no_return_value: template = Template("""\ public void ${NAME}Super(${PARAMS}) { if (internal == null) { super.${NAME}(${PARAM_PASSING}); } else { internal.${NAME}(${PARAM_PASSING}); } } """) else: template = Template("""\ public ${RETURN_TYPE} ${NAME}Super(${PARAMS}) { ${INTERNAL_RETURN_TYPE} ret; if (internal == null) { ret = super.${NAME}(${PARAM_PASSING}); } else { ret = internal.${NAME}(${PARAM_PASSING}); } ${IF_NULL_RETURN_NULL} return ${RETURN_VALUE}; } """) else: if no_return_value: template = Template("""\ public void ${NAME}Super(${PARAMS}) { super.${NAME}(${PARAM_PASSING}); } """) else: template = Template("""\ public ${RETURN_TYPE} ${NAME}Super(${PARAMS}) { ${INTERNAL_RETURN_TYPE} ret; ret = super.${NAME}(${PARAM_PASSING}); ${IF_NULL_RETURN_NULL} return ${RETURN_VALUE}; } """) if return_is_internal: return_value = return_type_java_data.UseAsReturnInBridgeSuperCall('ret') method_return = return_type_java_data.bridge_name else: return_value = 'ret' method_return = self._method_return if ConvertPrimitiveTypeToObject(method_return) != method_return: # it's returning prmitive type, so it can't be null. if_null_return_null = '' else: if_null_return_null = 'if (ret == null) return null;' value = { 'RETURN_TYPE': method_return, 'INTERNAL_RETURN_TYPE': self.method_return, 'NAME': self.method_name, 'PARAM_PASSING': self._bridge_params_pass_to_super, 'PARAMS': self._bridge_params_declare, 'IF_NULL_RETURN_NULL': if_null_return_null, 'RETURN_VALUE': return_value } return template.substitute(value) def GenerateWrapperConstructor(self): # TODO(wang16): Currently, only support pre/post wrapper lines for # Constructors. template = Template("""\ ${DOC} public ${CLASS_NAME}(${PARAMS}) { ${PRE_WRAP_LINES} reflectionInit(); } """) pre_wrap_string = self._method_annotations.get( self.ANNOTATION_PRE_WRAPLINE, '') post_wrap_string = self._method_annotations.get( self.ANNOTATION_POST_WRAPLINE, '') if (pre_wrap_string != ''): pre_wrap_string += "\n\n" pre_wrap_string += " constructorTypes = new ArrayList<Object>();\n" for param_type in self._wrapper_params_declare_for_bridge.split(', '): if (param_type != ''): param_type = param_type.replace('coreWrapper.getBridgeClass(', '') param_type = param_type.replace(')', '') pre_wrap_string += (" constructorTypes.add(%s);\n" % param_type) pre_wrap_string += "\n" pre_wrap_string += " constructorParams = new ArrayList<Object>();\n" for param_name in self._wrapper_params_pass_to_bridge.split(', '): if (param_name != ''): param_name = param_name.replace('.getBridge()', '') pre_wrap_string += " constructorParams.add(%s);\n" % param_name if (post_wrap_string != ''): pre_wrap_string += (""" postWrapperMethod = new ReflectMethod(this, \"post%s\");\n""" % self._method_declare_name) value = {'DOC': self.GenerateDoc(self.method_doc), 'CLASS_NAME': self._class_java_data.wrapper_name, 'PARAMS': self._wrapper_params_declare, 'PRE_WRAP_LINES': pre_wrap_string} ret = template.substitute(value) if (post_wrap_string != ''): template = Template("""\ public void post${POST_WRAP_METHOD}() { ${POST_WRAP_LINES} } """) value = {'POST_WRAP_METHOD': self._method_declare_name, 'POST_WRAP_LINES': post_wrap_string} ret += template.substitute(value) return ret def GenerateWrapperStaticMethod(self): if self.is_reservable: template = Template("""\ ${DOC} public static ${RETURN_TYPE} ${NAME}(${PARAMS}) { reflectionInit(); try { ${RETURN}${METHOD_DECLARE_NAME}.invoke(${PARAMS_PASSING}); } catch (UnsupportedOperationException e) { if (coreWrapper == null) { ${METHOD_DECLARE_NAME}.setArguments(${PARAMS_PASSING}); XWalkCoreWrapper.reserveReflectMethod(${METHOD_DECLARE_NAME}); } else { XWalkCoreWrapper.handleRuntimeError(e); } } ${RETURN_NULL} } """) else: template = Template("""\ ${DOC} public static ${RETURN_TYPE} ${NAME}(${PARAMS}) { reflectionInit(); try { ${RETURN}${METHOD_DECLARE_NAME}.invoke(${PARAMS_PASSING}); } catch (UnsupportedOperationException e) { if (coreWrapper == null) { Assert.fail("Cannot call this method before xwalk is ready"); } else { XWalkCoreWrapper.handleRuntimeError(e); } } ${RETURN_NULL} } """) return_type = self.method_return if self._method_return == 'void': return_state = '' return_null = '' else: return_state = 'return (%s) ' % ConvertPrimitiveTypeToObject(return_type) return_null = 'return %s;' % GetPrimitiveTypeDefaultValue(return_type) value = {'RETURN_TYPE': self.method_return, 'RETURN': return_state, 'RETURN_NULL': return_null, 'DOC': self.GenerateDoc(self.method_doc), 'NAME': self.method_name, 'PARAMS': self._wrapper_params_declare, 'METHOD_DECLARE_NAME': self._method_declare_name, 'PARAMS_PASSING': self._wrapper_params_pass_to_bridge} return template.substitute(value) def GenerateWrapperBridgeMethod(self): return_is_internal = self.IsInternalClass(self._method_return) if return_is_internal: return_type_java_data = self.GetJavaData(self._method_return) if self.is_abstract: template = Template( '${DOC}\n' + ' public abstract ${RETURN_TYPE} ${NAME}(${PARAMS});\n\n') elif return_is_internal: template = Template("""\ ${DOC} public ${RETURN_TYPE} ${NAME}(${PARAMS}) { try { return (${RETURN_TYPE}) coreWrapper.getWrapperObject(\ ${METHOD_DECLARE_NAME}.invoke(${PARAMS_PASSING})); } catch (UnsupportedOperationException e) { if (coreWrapper == null) { Assert.fail("Cannot call this method before xwalk is ready"); } else { XWalkCoreWrapper.handleRuntimeError(e); } } ${RETURN_NULL} } """) elif self.is_reservable: template = Template("""\ ${DOC} public ${RETURN_TYPE} ${NAME}(${PARAMS}) { try { ${RETURN}${METHOD_DECLARE_NAME}.invoke(${PARAMS_PASSING}); } catch (UnsupportedOperationException e) { if (coreWrapper == null) { ${METHOD_DECLARE_NAME}.setArguments(${PARAMS_RESERVING}); XWalkCoreWrapper.reserveReflectMethod(${METHOD_DECLARE_NAME}); } else { XWalkCoreWrapper.handleRuntimeError(e); } } ${RETURN_NULL} } """) elif self._is_delegate: template = Template("""\ private ${RETURN_TYPE} ${NAME}(${PARAMS}){ ${PRE_WRAP_LINES} } """) elif self._disable_reflect_method: template = Template("""\ ${DOC} public ${RETURN_TYPE} ${NAME}(${PARAMS}) { ${PRE_WRAP_LINES} } """) else: prefix_str = """\ ${DOC} public ${RETURN_TYPE} ${NAME}(${PARAMS}) { try {\n""" suffix_str = """\n } catch (UnsupportedOperationException e) { if (coreWrapper == null) { Assert.fail("Cannot call this method before xwalk is ready"); } else { XWalkCoreWrapper.handleRuntimeError(e); } } ${RETURN_NULL} } """ return_str = """ ${RETURN}${METHOD_DECLARE_NAME}.invoke(\ ${PARAMS_PASSING});""" if self._method_return in self._class_java_data.enums: # Here only detects enum declared in the same class as # the method itself. Using enum across class is not supported. self._method_return = self._method_return.replace('Internal', '') return_str = """ ${RETURN} %s.valueOf(\ ${METHOD_DECLARE_NAME}.invoke(\ ${PARAMS_PASSING}).toString());""" % self._method_return template = Template(prefix_str + return_str + suffix_str) if return_is_internal: return_type = return_type_java_data.wrapper_name else: return_type = self.method_return if self._method_return == 'void': return_state = '' return_null = '' else: return_state = 'return (%s)' % ConvertPrimitiveTypeToObject(return_type) return_null = 'return %s;' % GetPrimitiveTypeDefaultValue(return_type) params_reserving = [] for param in self._wrapper_params_pass_to_bridge.split(', '): if (param.find("getBridge()") > 0): param = param.replace('.getBridge()', '') params_reserving.append( 'new ReflectMethod(%s, "getBridge")' % param) else: params_reserving.append(param) pre_wrap_string = self._method_annotations.get( self.ANNOTATION_PRE_WRAPLINE, '') value = {'RETURN_TYPE': return_type, 'RETURN': return_state, 'RETURN_NULL': return_null, 'DOC': self.GenerateDoc(self.method_doc), 'NAME': self.method_name, 'PARAMS': re.sub(r'ValueCallback<([A-Za-z]+)Internal>', r'ValueCallback<\1>',self._wrapper_params_declare), 'METHOD_DECLARE_NAME': self._method_declare_name, 'PARAMS_RESERVING': ', '.join(params_reserving), 'PARAMS_PASSING': self._wrapper_params_pass_to_bridge, 'PRE_WRAP_LINES': pre_wrap_string} return template.substitute(value) def GenerateWrapperInterface(self): return_is_internal = self.IsInternalClass(self._method_return) if return_is_internal: return_type_java_data = self.GetJavaData(self._method_return) template = Template( '${DOC}\n' + ' public ${RETURN_TYPE} ${NAME}(${PARAMS});\n\n') if return_is_internal: return_type = return_type_java_data.wrapper_name else: return_type = self.method_return value = {'RETURN_TYPE': return_type, 'DOC': self.GenerateDoc(self.method_doc), 'NAME': self.method_name, 'PARAMS': self._wrapper_params_declare} return template.substitute(value) def GenerateMethodsStringForBridge(self): if self._is_constructor: return self.GenerateBridgeConstructor() elif self._is_static: return self.GenerateBridgeStaticMethod() else: return '%s\n%s\n%s\n%s\n' % ( self.GenerateBridgeOverrideMethod(), self.GenerateBridgeWrapperMethod(), self.GenerateBridgeSuperMethod(), ' private ReflectMethod %s = new ReflectMethod(null, "%s");\n' % (self._method_declare_name, self._method_name)) def GenerateMethodsStringForWrapper(self): if self._is_constructor: return self.GenerateWrapperConstructor() elif self._is_static: return '%s\n%s\n' % ( self.GenerateWrapperStaticMethod(), """\ private static ReflectMethod %s = new ReflectMethod(null, "%s");\n""" % (self._method_declare_name, self._method_name)) elif self._is_abstract or self._is_delegate or self._disable_reflect_method: return self.GenerateWrapperBridgeMethod() else: return '%s\n%s\n' % ( self.GenerateWrapperBridgeMethod(), ' private ReflectMethod %s = new ReflectMethod(null, "%s");\n' % (self._method_declare_name, self._method_name)) def GenerateMethodsStringForInterface(self): return self.GenerateWrapperInterface()
bsd-3-clause
2,949,512,605,676,438,000
35.734694
84
0.620889
false
Funtimezzhou/TradeBuildTools
SAT eBook/chapter15/strategy.py
2
1077
#!/usr/bin/python # -*- coding: utf-8 -*- # strategy.py from __future__ import print_function from abc import ABCMeta, abstractmethod import datetime try: import Queue as queue except ImportError: import queue import numpy as np import pandas as pd from event import SignalEvent class Strategy(object): # Strategy is an abstract base class providing an interface for # all subsequent (inherited) strategy handling objects. # The goal of a (derived) Strategy object is to generate Signal # objects for particular symbols based on the inputs of Bars # (OHLCV) generated by a DataHandler object. # This is designed to work both with historic and live data as # the Strategy object is agnostic to where the data came from, # since it obtains the bar tuples from a queue object. __metaclass__ = ABCMeta @abstractmethod def calculate_signals(self): # Provides the mechanisms to calculate the list of signals. raise NotImplementedError("Should implement calculate_signals()")
gpl-3.0
5,644,252,694,532,509,000
24.642857
73
0.704735
false
BrandonY/python-docs-samples
appengine/standard/mail/handle_bounced_email.py
9
1136
# Copyright 2016 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging from google.appengine.ext.webapp.mail_handlers import BounceNotificationHandler import webapp2 # [START bounce_handler] class LogBounceHandler(BounceNotificationHandler): def receive(self, bounce_message): logging.info('Received bounce post ... [%s]', self.request) logging.info('Bounce original: %s', bounce_message.original) logging.info('Bounce notification: %s', bounce_message.notification) # [END bounce_handler] app = webapp2.WSGIApplication([LogBounceHandler.mapping()], debug=True)
apache-2.0
-6,149,980,936,640,265,000
36.866667
79
0.756162
false
lmazuel/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/v2018_04_01/models/image_disk_reference_py3.py
3
1378
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ImageDiskReference(Model): """The source image used for creating the disk. All required parameters must be populated in order to send to Azure. :param id: Required. A relative uri containing either a Platform Imgage Repository or user image reference. :type id: str :param lun: If the disk is created from an image's data disk, this is an index that indicates which of the data disks in the image to use. For OS disks, this field is null. :type lun: int """ _validation = { 'id': {'required': True}, } _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'lun': {'key': 'lun', 'type': 'int'}, } def __init__(self, *, id: str, lun: int=None, **kwargs) -> None: super(ImageDiskReference, self).__init__(**kwargs) self.id = id self.lun = lun
mit
7,268,603,149,453,334,000
32.609756
77
0.576923
false
nutztherookie/wagtail
wagtail/wagtailsearch/index.py
4
9027
from __future__ import absolute_import, unicode_literals import inspect import logging from django.apps import apps from django.core import checks from django.db import models from django.db.models.fields import FieldDoesNotExist from django.db.models.fields.related import ForeignObjectRel, OneToOneRel, RelatedField from wagtail.wagtailsearch.backends import get_search_backends_with_name logger = logging.getLogger('wagtail.search.index') class Indexed(object): @classmethod def indexed_get_parent(cls, require_model=True): for base in cls.__bases__: if issubclass(base, Indexed) and (issubclass(base, models.Model) or require_model is False): return base @classmethod def indexed_get_content_type(cls): # Work out content type content_type = (cls._meta.app_label + '_' + cls.__name__).lower() # Get parent content type parent = cls.indexed_get_parent() if parent: parent_content_type = parent.indexed_get_content_type() return parent_content_type + '_' + content_type else: return content_type @classmethod def indexed_get_toplevel_content_type(cls): # Get parent content type parent = cls.indexed_get_parent() if parent: return parent.indexed_get_content_type() else: # At toplevel, return this content type return (cls._meta.app_label + '_' + cls.__name__).lower() @classmethod def get_search_fields(cls): search_fields = {} for field in cls.search_fields: search_fields[(type(field), field.field_name)] = field return list(search_fields.values()) @classmethod def get_searchable_search_fields(cls): return [ field for field in cls.get_search_fields() if isinstance(field, SearchField) ] @classmethod def get_filterable_search_fields(cls): return [ field for field in cls.get_search_fields() if isinstance(field, FilterField) ] @classmethod def get_indexed_objects(cls): queryset = cls.objects.all() # Add prefetch/select related for RelatedFields for field in cls.get_search_fields(): if isinstance(field, RelatedFields): queryset = field.select_on_queryset(queryset) return queryset def get_indexed_instance(self): """ If the indexed model uses multi table inheritance, override this method to return the instance in its most specific class so it reindexes properly. """ return self @classmethod def _has_field(cls, name): try: cls._meta.get_field(name) return True except models.fields.FieldDoesNotExist: return hasattr(cls, name) @classmethod def check(cls, **kwargs): errors = super(Indexed, cls).check(**kwargs) errors.extend(cls._check_search_fields(**kwargs)) return errors @classmethod def _check_search_fields(cls, **kwargs): errors = [] for field in cls.get_search_fields(): message = "{model}.search_fields contains field '{name}' but it doesn't exist" if not cls._has_field(field.field_name): errors.append( checks.Warning( message.format(model=cls.__name__, name=field.field_name), obj=cls, ) ) return errors search_fields = [] def get_indexed_models(): return [ model for model in apps.get_models() if issubclass(model, Indexed) and not model._meta.abstract ] def class_is_indexed(cls): return issubclass(cls, Indexed) and issubclass(cls, models.Model) and not cls._meta.abstract def get_indexed_instance(instance, check_exists=True): indexed_instance = instance.get_indexed_instance() if indexed_instance is None: return # Make sure that the instance is in its class's indexed objects if check_exists and not type(indexed_instance).get_indexed_objects().filter(pk=indexed_instance.pk).exists(): return return indexed_instance def insert_or_update_object(instance): indexed_instance = get_indexed_instance(instance) if indexed_instance: for backend_name, backend in get_search_backends_with_name(with_auto_update=True): try: backend.add(indexed_instance) except Exception: # Catch and log all errors logger.exception("Exception raised while adding %r into the '%s' search backend", indexed_instance, backend_name) def remove_object(instance): indexed_instance = get_indexed_instance(instance, check_exists=False) if indexed_instance: for backend_name, backend in get_search_backends_with_name(with_auto_update=True): try: backend.delete(indexed_instance) except Exception: # Catch and log all errors logger.exception("Exception raised while deleting %r from the '%s' search backend", indexed_instance, backend_name) class BaseField(object): def __init__(self, field_name, **kwargs): self.field_name = field_name self.kwargs = kwargs def get_field(self, cls): return cls._meta.get_field(self.field_name) def get_attname(self, cls): try: field = self.get_field(cls) return field.attname except models.fields.FieldDoesNotExist: return self.field_name def get_definition_model(self, cls): try: field = self.get_field(cls) return field.model except models.fields.FieldDoesNotExist: # Find where it was defined by walking the inheritance tree for base_cls in inspect.getmro(cls): if self.field_name in base_cls.__dict__: return base_cls def get_type(self, cls): if 'type' in self.kwargs: return self.kwargs['type'] try: field = self.get_field(cls) return field.get_internal_type() except models.fields.FieldDoesNotExist: return 'CharField' def get_value(self, obj): try: field = self.get_field(obj.__class__) value = field.value_from_object(obj) if hasattr(field, 'get_searchable_content'): value = field.get_searchable_content(value) return value except models.fields.FieldDoesNotExist: value = getattr(obj, self.field_name, None) if hasattr(value, '__call__'): value = value() return value def __repr__(self): return '<%s: %s>' % (self.__class__.__name__, self.field_name) class SearchField(BaseField): def __init__(self, field_name, boost=None, partial_match=False, **kwargs): super(SearchField, self).__init__(field_name, **kwargs) self.boost = boost self.partial_match = partial_match class FilterField(BaseField): pass class RelatedFields(object): def __init__(self, field_name, fields): self.field_name = field_name self.fields = fields def get_field(self, cls): return cls._meta.get_field(self.field_name) def get_definition_model(self, cls): field = self.get_field(cls) return field.model def get_value(self, obj): field = self.get_field(obj.__class__) if isinstance(field, RelatedField): return getattr(obj, self.field_name) def select_on_queryset(self, queryset): """ This method runs either prefetch_related or select_related on the queryset to improve indexing speed of the relation. It decides which method to call based on the number of related objects: - single (eg ForeignKey, OneToOne), it runs select_related - multiple (eg ManyToMany, reverse ForeignKey) it runs prefetch_related """ try: field = self.get_field(queryset.model) except FieldDoesNotExist: return queryset if isinstance(field, RelatedField): if field.many_to_one or field.one_to_one: queryset = queryset.select_related(self.field_name) elif field.one_to_many or field.many_to_many: queryset = queryset.prefetch_related(self.field_name) elif isinstance(field, ForeignObjectRel): # Reverse relation if isinstance(field, OneToOneRel): # select_related for reverse OneToOneField queryset = queryset.select_related(self.field_name) else: # prefetch_related for anything else (reverse ForeignKey/ManyToManyField) queryset = queryset.prefetch_related(self.field_name) return queryset
bsd-3-clause
-870,381,035,167,821,400
31.588448
131
0.611942
false