File size: 7,057 Bytes
a57ef9a
 
 
 
af2db74
a57ef9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af2db74
 
a57ef9a
 
 
 
 
 
 
1883765
 
 
 
 
af2db74
 
 
 
 
 
 
a57ef9a
1883765
 
 
 
a57ef9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from dataclasses import dataclass
from pathlib import Path
from typing import Optional

import os
import numpy as np
import pandas as pd
import timm
import torch
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import HfHubHTTPError
from PIL import Image
from simple_parsing import field, parse_known_args
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F

torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
MODEL_REPO_MAP = {
    "vit": "SmilingWolf/wd-vit-tagger-v3",
    "swinv2": "SmilingWolf/wd-swinv2-tagger-v3",
    "convnext": "SmilingWolf/wd-convnext-tagger-v3",
}


def pil_ensure_rgb(image: Image.Image) -> Image.Image:
    # convert to RGB/RGBA if not already (deals with palette images etc.)
    if image.mode not in ["RGB", "RGBA"]:
        image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
    # convert RGBA to RGB with white background
    if image.mode == "RGBA":
        canvas = Image.new("RGBA", image.size, (255, 255, 255))
        canvas.alpha_composite(image)
        image = canvas.convert("RGB")
    return image


def pil_pad_square(image: Image.Image) -> Image.Image:
    w, h = image.size
    # get the largest dimension so we can pad to a square
    px = max(image.size)
    # pad to square with white background
    canvas = Image.new("RGB", (px, px), (255, 255, 255))
    canvas.paste(image, ((px - w) // 2, (px - h) // 2))
    return canvas


@dataclass
class LabelData:
    names: list[str]
    rating: list[np.int64]
    general: list[np.int64]
    character: list[np.int64]


def load_labels_hf(
    repo_id: str,
    revision: Optional[str] = None,
    token: Optional[str] = None,
) -> LabelData:
    try:
        csv_path = hf_hub_download(
            repo_id=repo_id, filename="selected_tags.csv", revision=revision, token=token
        )
        csv_path = Path(csv_path).resolve()
    except HfHubHTTPError as e:
        raise FileNotFoundError(f"selected_tags.csv failed to download from {repo_id}") from e

    df: pd.DataFrame = pd.read_csv(csv_path, usecols=["name", "category"])
    tag_data = LabelData(
        names=df["name"].tolist(),
        rating=list(np.where(df["category"] == 9)[0]),
        general=list(np.where(df["category"] == 0)[0]),
        character=list(np.where(df["category"] == 4)[0]),
    )

    return tag_data


def get_tags(
    probs: Tensor,
    labels: LabelData,
    gen_threshold: float,
    char_threshold: float,
):
    # Convert indices+probs to labels
    probs = list(zip(labels.names, probs.numpy()))

    # First 4 labels are actually ratings
    rating_labels = dict([probs[i] for i in labels.rating])

    # General labels, pick any where prediction confidence > threshold
    gen_labels = [probs[i] for i in labels.general]
    gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
    gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))

    # Character labels, pick any where prediction confidence > threshold
    char_labels = [probs[i] for i in labels.character]
    char_labels = dict([x for x in char_labels if x[1] > char_threshold])
    char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))

    # Combine general and character labels, sort by confidence
    combined_names = [x for x in gen_labels]
    combined_names.extend([x for x in char_labels])

    # Convert to a string suitable for use as a training caption
    caption = ", ".join(combined_names)
    taglist = caption.replace("_", " ").replace("(", "\(").replace(")", "\)")

    return caption, taglist, rating_labels, char_labels, gen_labels


@dataclass
class ScriptOptions:
    image_dir: Path = field(positional=True)
    text_dir: Path = field(positional=True)
    model: str = field(default="vit")
    gen_threshold: float = field(default=0.35)
    char_threshold: float = field(default=0.75)


def main(opts: ScriptOptions):
    repo_id = MODEL_REPO_MAP.get(opts.model)
    print(f"Loading model '{opts.model}' from '{repo_id}'...")
    model: nn.Module = timm.create_model("hf-hub:" + repo_id).eval()    
    state_dict = timm.models.load_state_dict_from_hf(repo_id)
    model.load_state_dict(state_dict)

    
    image_dir = Path(opts.image_dir).resolve()
    for image_path in os.findall(image_dir):
        for suffix in ['.jpeg','.jpg','.JPEG','.webp','.WEBP','.png','.PNG']:
            if not image_path.find(suffix)>-1: continue 
            if not image_path.is_file(): raise FileNotFoundError(f"Image file not found: {image_path}")
            






    print("Loading tag list...")
    labels: LabelData = load_labels_hf(repo_id=repo_id)

    print("Creating data transform...")
    transform = create_transform(**resolve_data_config(model.pretrained_cfg, model=model))

    print("Loading image and preprocessing...")
    # get image
    img_input: Image.Image = Image.open(image_path)
    # ensure image is RGB
    img_input = pil_ensure_rgb(img_input)
    # pad to square with white background
    img_input = pil_pad_square(img_input)
    # run the model's input transform to convert to tensor and rescale
    inputs: Tensor = transform(img_input).unsqueeze(0)
    # NCHW image RGB to BGR
    inputs = inputs[:, [2, 1, 0]]

    print("Running inference...")
    with torch.inference_mode():
        # move model to GPU, if available
        if torch_device.type != "cpu":
            model = model.to(torch_device)
            inputs = inputs.to(torch_device)
        # run the model
        outputs = model.forward(inputs)
        # apply the final activation function (timm doesn't support doing this internally)
        outputs = F.sigmoid(outputs)
        # move inputs, outputs, and model back to to cpu if we were on GPU
        if torch_device.type != "cpu":
            inputs = inputs.to("cpu")
            outputs = outputs.to("cpu")
            model = model.to("cpu")

    print("Processing results...")
    caption, taglist, ratings, character, general = get_tags(
        probs=outputs.squeeze(0),
        labels=labels,
        gen_threshold=opts.gen_threshold,
        char_threshold=opts.char_threshold,
    )

    print("--------")
    print(f"Caption: {caption}")
    print("--------")
    print(f"Tags: {taglist}")

    print("--------")
    print("Ratings:")
    for k, v in ratings.items():
        print(f"  {k}: {v:.3f}")

    print("--------")
    print(f"Character tags (threshold={opts.char_threshold}):")
    for k, v in character.items():
        print(f"  {k}: {v:.3f}")

    print("--------")
    print(f"General tags (threshold={opts.gen_threshold}):")
    for k, v in general.items():
        print(f"  {k}: {v:.3f}")

    print("Done!")


if __name__ == "__main__":
    opts, _ = parse_known_args(ScriptOptions)
    if opts.model not in MODEL_REPO_MAP:
        print(f"Available models: {list(MODEL_REPO_MAP.keys())}")
        raise ValueError(f"Unknown model name '{opts.model}'")
    main(opts)