codeShare commited on
Commit
fe5ea63
·
verified ·
1 Parent(s): 2bf8b46

Delete OLD_bugged_joy_caption_jupyter.ipynb

Browse files
Files changed (1) hide show
  1. OLD_bugged_joy_caption_jupyter.ipynb +0 -149
OLD_bugged_joy_caption_jupyter.ipynb DELETED
@@ -1,149 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "id": "VjYy0F2gZIPR"
8
- },
9
- "outputs": [],
10
- "source": [
11
- "!pip install gradio bitsandbytes transformers==4.43.3\n",
12
- "\n",
13
- "!wget https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha/resolve/main/wpkklhc6/image_adapter.pt -O /content/image_adapter.pt\n",
14
- "!wget https://huggingface.co/spaces/fancyfeast/joy-caption-pre-alpha/raw/main/wpkklhc6/config.yaml -O /content/config.yaml\n",
15
- "\n",
16
- "import gradio as gr\n",
17
- "from huggingface_hub import InferenceClient\n",
18
- "from torch import nn\n",
19
- "from transformers import AutoModel, AutoProcessor, AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, AutoModelForCausalLM\n",
20
- "from pathlib import Path\n",
21
- "import torch\n",
22
- "import torch.amp.autocast_mode\n",
23
- "from PIL import Image\n",
24
- "import os\n",
25
- "\n",
26
- "CLIP_PATH = \"google/siglip-so400m-patch14-384\"\n",
27
- "VLM_PROMPT = \"A descriptive caption for this image:\\n\"\n",
28
- "# MODEL_PATH = \"unsloth/Meta-Llama-3.1-8B\"\n",
29
- "MODEL_PATH = \"unsloth/Meta-Llama-3.1-8B-bnb-4bit\"\n",
30
- "CHECKPOINT_PATH = Path(\"wpkklhc6\")\n",
31
- "\n",
32
- "class ImageAdapter(nn.Module):\n",
33
- "\tdef __init__(self, input_features: int, output_features: int):\n",
34
- "\t\tsuper().__init__()\n",
35
- "\t\tself.linear1 = nn.Linear(input_features, output_features)\n",
36
- "\t\tself.activation = nn.GELU()\n",
37
- "\t\tself.linear2 = nn.Linear(output_features, output_features)\n",
38
- "\n",
39
- "\tdef forward(self, vision_outputs: torch.Tensor):\n",
40
- "\t\tx = self.linear1(vision_outputs)\n",
41
- "\t\tx = self.activation(x)\n",
42
- "\t\tx = self.linear2(x)\n",
43
- "\t\treturn x\n",
44
- "\n",
45
- "# Load CLIP\n",
46
- "print(\"Loading CLIP\")\n",
47
- "clip_processor = AutoProcessor.from_pretrained(CLIP_PATH)\n",
48
- "clip_model = AutoModel.from_pretrained(CLIP_PATH)\n",
49
- "clip_model = clip_model.vision_model\n",
50
- "clip_model.eval()\n",
51
- "clip_model.requires_grad_(False)\n",
52
- "clip_model.to(\"cuda\")\n",
53
- "\n",
54
- "# Tokenizer\n",
55
- "print(\"Loading tokenizer\")\n",
56
- "tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, load_in_4bit=True, use_fast=False)\n",
57
- "assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f\"Tokenizer is of type {type(tokenizer)}\"\n",
58
- "\n",
59
- "# LLM\n",
60
- "print(\"Loading LLM\")\n",
61
- "text_model = AutoModelForCausalLM.from_pretrained(MODEL_PATH, load_in_4bit=True, device_map=\"auto\", torch_dtype=torch.float16)\n",
62
- "text_model.eval()\n",
63
- "\n",
64
- "# Image Adapter\n",
65
- "print(\"Loading image adapter\")\n",
66
- "image_adapter = ImageAdapter(clip_model.config.hidden_size, text_model.config.hidden_size)\n",
67
- "image_adapter.load_state_dict(torch.load(\"/content/image_adapter.pt\", map_location=\"cpu\"))\n",
68
- "image_adapter.eval()\n",
69
- "image_adapter.to(\"cuda\")\n",
70
- "\n",
71
- "@torch.inference_mode()\n",
72
- "def stream_chat(input_image: Image.Image):\n",
73
- "\ttorch.cuda.empty_cache()\n",
74
- "\n",
75
- "\t# Preprocess image\n",
76
- "\timage = clip_processor(images=input_image, return_tensors='pt').pixel_values\n",
77
- "\timage = image.to('cuda')\n",
78
- "\n",
79
- "\t# Tokenize the prompt\n",
80
- "\tprompt = tokenizer.encode(VLM_PROMPT, return_tensors='pt', padding=False, truncation=False, add_special_tokens=False)\n",
81
- "\n",
82
- "\t# Embed image\n",
83
- "\twith torch.amp.autocast_mode.autocast('cuda', enabled=True):\n",
84
- "\t\tvision_outputs = clip_model(pixel_values=image, output_hidden_states=True)\n",
85
- "\t\timage_features = vision_outputs.hidden_states[-2]\n",
86
- "\t\tembedded_images = image_adapter(image_features)\n",
87
- "\t\tembedded_images = embedded_images.to('cuda')\n",
88
- "\n",
89
- "\t# Embed prompt\n",
90
- "\tprompt_embeds = text_model.model.embed_tokens(prompt.to('cuda'))\n",
91
- "\tassert prompt_embeds.shape == (1, prompt.shape[1], text_model.config.hidden_size), f\"Prompt shape is {prompt_embeds.shape}, expected {(1, prompt.shape[1], text_model.config.hidden_size)}\"\n",
92
- "\tembedded_bos = text_model.model.embed_tokens(torch.tensor([[tokenizer.bos_token_id]], device=text_model.device, dtype=torch.int64))\n",
93
- "\n",
94
- "\t# Construct prompts\n",
95
- "\tinputs_embeds = torch.cat([\n",
96
- "\t\tembedded_bos.expand(embedded_images.shape[0], -1, -1),\n",
97
- "\t\tembedded_images.to(dtype=embedded_bos.dtype),\n",
98
- "\t\tprompt_embeds.expand(embedded_images.shape[0], -1, -1),\n",
99
- "\t], dim=1)\n",
100
- "\n",
101
- "\tinput_ids = torch.cat([\n",
102
- "\t\ttorch.tensor([[tokenizer.bos_token_id]], dtype=torch.long),\n",
103
- "\t\ttorch.zeros((1, embedded_images.shape[1]), dtype=torch.long),\n",
104
- "\t\tprompt,\n",
105
- "\t], dim=1).to('cuda')\n",
106
- "\tattention_mask = torch.ones_like(input_ids)\n",
107
- "\n",
108
- "\t#generate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=False, suppress_tokens=None)\n",
109
- "\tgenerate_ids = text_model.generate(input_ids, inputs_embeds=inputs_embeds, attention_mask=attention_mask, max_new_tokens=300, do_sample=True, top_k=10, temperature=0.5, suppress_tokens=None)\n",
110
- "\n",
111
- "\t# Trim off the prompt\n",
112
- "\tgenerate_ids = generate_ids[:, input_ids.shape[1]:]\n",
113
- "\tif generate_ids[0][-1] == tokenizer.eos_token_id:\n",
114
- "\t\tgenerate_ids = generate_ids[:, :-1]\n",
115
- "\n",
116
- "\tcaption = tokenizer.batch_decode(generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0]\n",
117
- "\n",
118
- "\treturn caption.strip()\n",
119
- "\n",
120
- "\n",
121
- "with gr.Blocks(css=\".gradio-container {max-width: 544px !important}\", analytics_enabled=False) as demo:\n",
122
- "\twith gr.Row():\n",
123
- "\t\twith gr.Column():\n",
124
- "\t\t\tinput_image = gr.Image(type=\"pil\", label=\"Input Image\")\n",
125
- "\t\t\trun_button = gr.Button(\"Caption\")\n",
126
- "\t\t\toutput_caption = gr.Textbox(label=\"Caption\")\n",
127
- "\trun_button.click(fn=stream_chat, inputs=[input_image], outputs=[output_caption])\n",
128
- "\n",
129
- "demo.queue().launch(share=True, inline=False, debug=True)"
130
- ]
131
- }
132
- ],
133
- "metadata": {
134
- "accelerator": "GPU",
135
- "colab": {
136
- "gpuType": "T4",
137
- "provenance": []
138
- },
139
- "kernelspec": {
140
- "display_name": "Python 3",
141
- "name": "python3"
142
- },
143
- "language_info": {
144
- "name": "python"
145
- }
146
- },
147
- "nbformat": 4,
148
- "nbformat_minor": 0
149
- }