diff --git "a/joy_caption_alpha_one_jupyter.ipynb" "b/joy_caption_alpha_one_jupyter.ipynb" --- "a/joy_caption_alpha_one_jupyter.ipynb" +++ "b/joy_caption_alpha_one_jupyter.ipynb" @@ -8,7 +8,7 @@ "colab": { "base_uri": "https://localhost:8080/" }, - "outputId": "b1404ff4-9cae-400f-c442-544b34df580c" + "outputId": "05478b79-1df3-491e-84fd-ad1b51e04372" }, "outputs": [ { @@ -67,7 +67,7 @@ "Download Results:\n", "gid |stat|avg speed |path/URI\n", "======+====+===========+=======================================================\n", - "79b6f5|\u001b[1;32mOK\u001b[0m | 91KiB/s|/content/joy/text_model/adapter_config.json\n", + "c4a6af|\u001b[1;32mOK\u001b[0m | 106KiB/s|/content/joy/text_model/adapter_config.json\n", "\n", "Status Legend:\n", "(OK):download completed.\n", @@ -75,7 +75,7 @@ "Download Results:\n", "gid |stat|avg speed |path/URI\n", "======+====+===========+=======================================================\n", - "5d7b6e|\u001b[1;32mOK\u001b[0m | 120MiB/s|/content/joy/text_model/adapter_model.safetensors\n", + "89a811|\u001b[1;32mOK\u001b[0m | 42MiB/s|/content/joy/text_model/adapter_model.safetensors\n", "\n", "Status Legend:\n", "(OK):download completed.\n", @@ -83,7 +83,7 @@ "Download Results:\n", "gid |stat|avg speed |path/URI\n", "======+====+===========+=======================================================\n", - "d3b5ae|\u001b[1;32mOK\u001b[0m | 189MiB/s|/content/joy/clip_model.pt\n", + "738622|\u001b[1;32mOK\u001b[0m | 189MiB/s|/content/joy/clip_model.pt\n", "\n", "Status Legend:\n", "(OK):download completed.\n", @@ -91,7 +91,7 @@ "Download Results:\n", "gid |stat|avg speed |path/URI\n", "======+====+===========+=======================================================\n", - "ac18f1|\u001b[1;32mOK\u001b[0m | 115KiB/s|/content/joy/config.yaml\n", + "ff5af9|\u001b[1;32mOK\u001b[0m | 161KiB/s|/content/joy/config.yaml\n", "\n", "Status Legend:\n", "(OK):download completed.\n", @@ -99,7 +99,7 @@ "Download Results:\n", "gid |stat|avg speed |path/URI\n", "======+====+===========+=======================================================\n", - "7ee1c8|\u001b[1;32mOK\u001b[0m | 95MiB/s|/content/joy/image_adapter.pt\n", + "f208d5|\u001b[1;32mOK\u001b[0m | 36MiB/s|/content/joy/image_adapter.pt\n", "\n", "Status Legend:\n", "(OK):download completed.\n", @@ -132,7 +132,7 @@ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.25.0->peft) (2.2.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub>=0.25.0->peft) (2024.12.14)\n", "Downloading bitsandbytes-0.45.0-py3-none-manylinux_2_24_x86_64.whl (69.1 MB)\n", - "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m11.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", + "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m69.1/69.1 MB\u001b[0m \u001b[31m10.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25hInstalling collected packages: bitsandbytes\n", "Successfully installed bitsandbytes-0.45.0\n" ] @@ -156,220 +156,220 @@ "id": "EBNKXBwIkJLk", "colab": { "base_uri": "https://localhost:8080/", - "height": 844, + "height": 732, "referenced_widgets": [ - "677c2b6d8f5749be81a95f14f342ca49", - "1e7891872d2e4f98a8d9c16c8caeb8f3", - "5a87e2ab3d2f4b2d89ed2f69d0134886", - "e0c0b7c47c0d4941a96115dd705f54e6", - "618531d42a7d4c948ef26c593a6bc72d", - "27d281cbe10f4dbdac5964b3d6bc7105", - "a2d976f072734aedb34481c991e079a6", - "d815da4760c347aabe4628f431603c5e", - "7b9ee9ba6fea4819b993ada4d603f944", - "90f053e9520b4c939db6359450dc8387", - "67b620900c3e4bb2949b5c3b8bddd745", - "64026504cbb049448b0b2a05fcaca892", - "97a78b94561e40ffb4866a3121add9f7", - "c30428c60be54cb9bb82669133935c77", - "16b040dea75f488f8284175bbf127d06", - "3c53bdf344944a5b873ca13d03131514", - "1fbf34927f9f41a7864446f76590dc32", - "e7941102753c488abe7e618fb2b7bd4a", - "3e3e439b47b04efa9668c6f0caffc92a", - "6be2842f686e4a94b26a3dbcb487d5d1", - "3ea606cb750d4a6ab953a1e496662314", - "705144529f06402ab334cf8276d753c3", - "1dbec7c042b442d09714661bd8e96ef5", - "fe314238b4e14fbabb9b61c6b0fcffd7", - "f21c44f260634a3a979dd268f22a23cf", - "3475bf774dc3470f939259c29cb4a1ab", - "26c533c214cb4840b0dd75160ccfb668", - "9525b258f109481ca5ec4d024795f4c3", - "b7a8bd4839124b4796cc4d06e5af1ec0", - "23de349995e84f4d97caad6e9c946e06", - "a6af95bd46784bd29dffc579342f6939", - "e7408ddb5d7242f19da322ed4411bdd7", - "3d5a7404655348a599fd89947ef63fee", - "3b13c93fba8e497fa0b04a8c904c6b00", - "862aac54f21f43219a712bd014d4a881", - "166f396c91b3415796593026e22d6ca4", - "1c03d0251549463dbc1d1a0338e6d543", - "41688dfe48cb486bbb741803a7bca2fb", - "407d899122664b149225d02a0782042c", - "a7491f6dff884919a8f30a6291b44785", - "8f05cb78d33544178e5f176315ea9b15", - "86dc8f7ee4f54adfbc4c54e0d2304b76", - "53f1265f3b164e5e8c326bc961d26856", - "564b3e02a69049d6bd93f0db7657bf97", - "81d0a99396424adf855de9e5fe7f9bba", - "cf0e19a3911d40d7ad76bc6f9a4b60af", - "f84f644da2c9458880d137b5d85bf57a", - "1f3ef07e5d574d3b892327b22b3b7ebf", - "0464ec1a282a40cc9547a44b246fd291", - "e6df26a4a7044b739c9bc6731c06bba5", - "6741ef6090214064a3bd45b1b9e8462b", - "a2e8f1bbcb6b4709a6536233bc9efd98", - "4c20a901654d478483b9dda4c6192da0", - "d794421e2881449fb0beacba6af6d671", - "87a4dd97dea34e9f8e6b632657bd7938", - "fad92fe0900e4d4aae8792fecc59f46a", - "09518c89b25648bf9709fd7c0a126245", - "15095757de26426588f84a5fcd789d83", - "36c0cffe9ba54f58a681f4718ef019b7", - "daabb79cbc2a458182f3464fb58c828a", - "64c721c66a3b47e38c4748ac637f5dc0", - "7fc93bcaab6a4a2aaa575f1128c08f90", - "0a87b0777dd04cfcaa546d4eee76d596", - "472334c352dc4ed68e3c9b86a51e161b", - "231cb0c30308495e9fa126afc9e5b638", - "c0a8f0b672de45c6bc6d7160ff0c8b3d", - "fc1334361eaa4cbcb6c3efe40e61d5de", - "3282677bc4324e80abe96141a3d21e78", - "1987961704034478990d878e48100d58", - "a4a2ffb6bfea41db98bbe52da6ac8e1b", - "276698a2d57b4669944aebedb44523a8", - "fd00c7f05c4448898e4187d7b30979f2", - "74cd6b85751242ae93656ecfe85f8433", - "37935552ce804e3d85fedef512d2309a", - "06adc7fc306c4534ae56ed7735951a7d", - "309f98c4c1644ef7afe1f27602ad26c0", - "aa8e1d833c214e069ab4a87261541022", - "5d3379bba266422896beb467ec7f051c", - "001794d784c14ba8920c7e2e24681706", - "a4129eff37a64361a5382ef974c3eb18", - "a0609ba7d1274ab28ba397ccb6b1569b", - "1ecb7249834746e6a9b182985a12ab85", - "94ea05705f284c66bed72d841c9121b6", - "0986fbb5ea854c3e976dfa1c178e42fb", - "45180fd18a0d4526996907b3632fede5", - "e252feae6aa747df8b8ae1c9f59f8048", - "83ca64f4c63d43bd8fd6716418cb4e73", - "b59713eabee6429f85bc453805d607c9", - "35e927ac803e4c33ab00d6b4ade75adb", - "9c395c3e5fc441c589fa644350f7a348", - "ad5bf23ea6db4cc088406a63595773e8", - "349b8db1e25d4d2e91858f1820b10649", - "4757ea8db0da40e5b566e95b746cc934", - "22dd9ef416a84ce2a6e687ce2558fb8e", - "e748ed88784e4c7292b1edb3c80d843d", - "3721f2888741475a97638f8e1743a9ea", - "27be0e5eb0934caa8d5d8b1551f4104c", - "2d5c480182074eeeb7e3f407e5f56447", - "e26d2ac679d84fa1bb5c8f5d03e6e097", - "3fa765215f6e46eb9fb195a0dfbc3e48", - "4a3fdba2d8fb4759989b7bd611d1473a", - "487f15611a254aff91f0e5dbd625a99d", - "ddcae7afbcc74ee8b240fe191f33173e", - "260b83096f6b4baa8e22a1ab1b44a95e", - "31f9b8f0d9f44bf9a6365da964ac503a", - "20ca6a4c85a04cd7badaef65c238c9a3", - "97c87ec475834c42aba8605e4203c230", - "dd928d3c5f2a4847bbe7162e7f9fc8e1", - "132c0925b99844379fa392aa4dd9139d", - "0872e6666f834421958a9ff4ff23e512", - "e61ffe6b73014ba8bafc55c8099ccde9", - "d4a0da8440dc4279bb811b4c058e6cc2", - "50b9fbe05b30431ba0d32821fc403dad", - "175c644c9e664daab122ff5dce1493a2", - "756eb9fefc4f4a62ba4fc194bcc87246", - "32fc02a790454ab1b4cc391640de727e", - "f39f43339e554ad18f7de6301a79b009", - "87dcabe5c1fb48b2a899d30c1b879b6f", - "02ddd3b6ab084675998b3fd0df438853", - "9b384125da2944689452e8d1db5ba0b9", - "ec24a0526cb541539c7d5422c80c2e49", - "3265a993a10140008f146c685729172e", - "4f8ea5f375df4c50ad8d34e0e203b617", - "f95502f9af8e4db5b7272960eb78b245", - "34829c21eaa740ffa829060378f9ff06", - "53e4ff141fb641a28bb40e60d6376574", - "dcc5cb576b5e4f14aee556c097936b95", - "f9c0e1f70f794011a9ccfdc9c623b886", - "c8732eac8dfd471b8b10e03e942a3c62", - "8af93fe9d22245e190ee68d744715966", - "8229cecc640a4d66b475b1e40279d9f5", - "a8649d2d24634b69b97236cacb05fd3d", - "ce74f31749bd4f67a2c964faded06879", - "8ae1df2cd67e4bfab3fd8b1ae68aadf2", - "86214cfc132d4e06b1134484a74aff77", - "bec73156c2d545408c701c274fae8c22", - "cbfeef33ee254f8b9deec2fb8d5abd64", - "df3a7d112ab24e4694a60250f597dce8", - "2d1a407d745b4767aca9250683c810f4", - "ef5ba9b297e14c91b302232ce250a688", - "704acef6d8b1456f9c5bfc44a74ded12", - "d640bd66dd234bc7bfcb6eab975e459c", - "328389fe153c48d9898149ba07b7b184", - "cb9873923ef54607b13022a5243dd4e3", - "e35851eeb4e44d198489b974db978927", - "912a6ca93b3141e498e4df2d5f8b7f8f", - "af3fb5d2331843478af2440c8a1b2f32", - "e2f91daf8cfb45bea38bf3e9c83314ec", - "eca2cde90b074aaf87d5a1128fc9cd92", - "bf5a523ae0a84693a4c579c5d22b14e6", - "54c92622fe0e46e39fc261e695d6b007", - "88f50bcf5d844d228714025e68f85225", - "5f3c702a916c4d4b900a62beb69cc31c", - "ebff2db954ac4435aa7bff59fc0debcb", - "7733d285db5441eda70276551f19b29c", - "2d7bb000c92746afa64e00022dc8f634", - "6d3cb047a6ff423389903bec7e5a296f", - "3ed48973cf0e439fa293448ae5f66287", - "1cee5d4fa2954aac803180eeabb1a20c", - "0802d7ddc4cb4bd5933973a2d60aa2e2", - "f98bcd0adaa145ee8172630808ff9dad", - "7e206a07aeab4851a54e697b50599885", - "f072ecb6163c4323bf58f0ceb2a53200", - "b5395dc0fcb9498b8d6b2f7818d94432", - "b145078ebe884967a80839786dff51f1", - "28f7121283834644930bcf5395f493d2", - "9e15b4264e8d4e59975be77cb8eefb87", - "a912f0d2adb44313bbccd2101a943aa0", - "d906bc44b24b4177a010bc8b6588787b", - "2540496dbeff4d79a4bb662fd48dbde6", - "bf8043c6211c46ec9d0b6a93b756d4c4", - "ebb9240b5db940e2b6adb942e6057030", - "89de3bd140704294910fb93165e2f42d", - "81c8b49b06654a7393e9d31822d7f83e", - "7af4070530d140b7aff2983024b9496f", - "b2c5be13056f41daab0ed521b17fde0f", - "e313ff0cb7a34ca7b5d0643f534c01eb", - "b2d26bec2d4d4d0bac3337156cce9b6b", - "08e8f53b13ca4ba297ce5436e1eb8d45", - "eb3445d2c3204e0ca976d27af7fa4d9b", - "a2545a6fd3a3466597932cbb22981f01", - "946fbe35a6f7439893e3818f4341a564", - "fa97b3f88e3341aca88ab962f972ce34", - "59241196d3594f5d8912f5c40e262c32", - "fc5298af344d43bd9d06d528a34b6b53", - "e48a3e88b04a470cb506f609747e682c", - "d610f5268b124feb8c81da57603615a4", - "e5ced005b2e447a7b84b372bbf7338e6", - "6d69900718ec42038626ea01cd75b284", - "71f0b2274792494aa41bac631a2567fc", - "29f1abdd340e450b87e71c51a090728e", - "f9cb7a22952c46e7839a5c9ef85ed837", - "4155e2eeb1944f8f86b4c1f71917723b", - "af3837eb52774ea5ba6486f0a66417bc", - "590b0c6918d541dc8c3e99edfd9656bb", - "c8f83d354c994f40a9185206adcc8ed7", - "07ff6b0dcd6b454eb749620fc0b49561", - "45e0bc30e12748acb24d2c02f66c486b", - "260fbb7606e84499bab3486d636eb723", - "0951bd9ae0c048719d4440be8933fc2c", - "e5e65085de7848209457373e8fa552bf", - "aadef9fcf72546c2ad668ed3c41f6164", - "d00bac6add6e45799db75bd2c0dfd1b8", - "b682cc7a47fc4b639c1b5ccec076dc7f", - "2377cd27c01c4737a2511ad01ea45fe5", - "b63fe081fc5f41c99be2eeabb443201e", - "5dfb1e9dd1c54ebf8a8e6431d73c9cdb", - "609a646ef3e646a1a53fc2c4bb95b566", - "1f909fc410ec416db88dbc7de35950f1" + "8255ebf6b151499f993a725882fce5df", + "83807b91d0784bd98dcc20e9c377e5f9", + "647add4bf4534277a0dac3793b73c042", + "e320167d3270472596b30629e1b1ff0e", + "0af61f4285d84544a150e64d0cf25366", + "34f0ea02dd0f4f938405624eeb96041b", + "b7b2b08acb104f2eb479abcaf931a420", + "e62dcb0f6ee64cbd833dba4b6cc2c838", + "de50b74569494f0ebcb908c946760389", + "8d6f65d610db41e79c355d90248ff9e8", + "f115234364404f7db692dfcf85cc9958", + "b095707d4d094583b716fbcfc4d36113", + "191f91cb56384d128ef90024de2dd75f", + "def978d4302d4936b55b6dc176a5c34a", + "c519fee13714432fbca969408454fc2a", + "5abf23f8382349cfb4f9c7e5d324b9c4", + "8e5e78775f094ee282b071c7a4cb492e", + "f1364afa4eff4fda88916ea0472e9979", + "feb539d4a85241d69e1444206ec04ce6", + "e03d9e03df7e4efcaae67d3e23c6c40a", + "cf4a3c7ad17246ca9a2d52876062e7e1", + "1d80f6de29d84183ab58063e36671e61", + "8cd4f21c01914bca9528e82106cae7bf", + "c68896193db049a5b9c50b0a37c8a028", + "31f9f3bcda174eeb9750df5ca30b39d7", + "57388cc1664544cb8485f9a68f596f0a", + "f2ce2d7a0dd744f1a4676179edd9647a", + "bf4906e1ba6146019f62f7a1bc005983", + "e55fcbff61ad435fbb894aba30a0e572", + "a7b7b14f5781447ca3501de2e7bb2b7d", + "d4baa5a9a5524a4b9d8bba1a77157f27", + "06a87c3d534141d48fea95b3cd722455", + "a2df401886124597858dc81088cf87e4", + "37464a0386874c2389ce13a88f108259", + "16ec9d335da6459c9c8668c5d2a9bcf3", + "be2ed2735f504bb0bc308cbc4d05df12", + "74bfda226284428bb6a990ca6263a784", + "4216f02c062f4086b66ff5ad098b237a", + "6aa0fdc198bf47d6a3433a6132cc5eb9", + "d5977d20ff044a94a4b185fdfdc4ec24", + "a0ac66c636954e0182ddad749fdd594f", + "3e370599e2ff4168afeb87036d69b0df", + "0d8dec7ba8594a57be87db8d4ffb0fdf", + "b371c960b53a478091e293a78d6f27bc", + "d67eda371d934db08478691960401a94", + "ed1835f40bab4e3ca80dc781e1ccb575", + "5ce3d9e0da6244b2ab1f125215f26799", + "eed02e566a5747afad36d96ac950eb5f", + "d77d7348be934362aa46908a1e54be5f", + "02d63d1fe55d47a39fa16d09576c92b2", + "f218d061a0124b3d9969de8def6edaa5", + "3a97a72b93a24a6f917d04eaba88227a", + "dd4d939581124d32a4a34cb3706584e5", + "054d8a164876488c87e3146064f3f46c", + "e32db1f8547f45099cf1e49f6c7bc75a", + "ed2ed6c22f6c49718d50ff82f84a7114", + "9c4cde116e4443088de9aff696ae35c0", + "c54b3c28c4f84a18ab7adc291c391626", + "b7eecd9958464ac593d67a49062aa3cb", + "c751d093b81c48458839557e3f8213cc", + "9b4c9d33dd574442b15052c323cc8cc4", + "e4d0b3ad01444f218ad21acfc425c850", + "cceaf5726e7c45088b1ba2fb26514f67", + "a69a7982052948609b0a94e0dc906c74", + "66e95bdb5c904f18b647030018590b39", + "092f96337f524f91a492878e73b34403", + "b704137e631c43df8472ed54cee4ee05", + "11956a098fbb46c88a427b9cb4ab7ba3", + "7c7d57bc58d94691aad01042c58e9b44", + "9a920f616fbf45eca1faff7c1f5ec44a", + "fabdc604549f427ab02ffac01d157a42", + "b467440980f04944ab0ab8ba04e2f450", + "8b3c4bc89edd47f68653ccc38c595bc1", + "91f7047bb4684defa933056b67668335", + "44f0ee492efb44f28fea1cef1e7749f9", + "9ada51fab87f4f4d82b8a9836354feb6", + "2efe4a5bcb2d4c7d95d9ba6147590eb0", + "8bf0290c546f4a5088e2a7ac523f0f94", + "a9b862b26f3b4dd39ec5340b8eacc96e", + "1c3e863bef574aac947d3576434684e2", + "b30d04749039450c86441eb8c9e77e38", + "7816eeae7d4e4f8eaea333f408607368", + "6799f50e7b3748568b55ec5faf79a060", + "7cbc1aca8e5842b29af7e2e5919b51d3", + "9575e96bfeb04d76841807d13d6e3905", + "942f53d2a9574203a93f88142a7fed1f", + "8c637c325b2e440ca2a3c2abfcfc0f87", + "889f8f7464b3476eb45ea04875dbca3d", + "95638b66f2664b118aa6583a86fe4e9b", + "981240ce09a64573b609b50d83a8d22c", + "87b7b3f3a1454cd3959eab9f99a24184", + "6c658ff1dd524cc7919b52ac7a06c4cb", + "5ba0e62fa367433681cacc76011c777b", + "4c0318245a37497eb103091f33ff1611", + "9a25be7e3b14486fb2f4cb3035d53177", + "82d5f2ac63964fa4a828c4e5ddf3ac41", + "c5f90a373e3e46ddbb97925594772c86", + "36c6c8fe9e844583bbff5afbc05e6f5b", + "64aa5ec0b6a84afe8484cb22c6ec0f61", + "3560d5a1f61c4d04a3a4cbe5b23e89b3", + "700877c0571d434da1e5f30372260620", + "c6a9aab3436d4c02bd3b673e4f94a871", + "b0399ab2c01e4a74a920a7e7ea230738", + "157ce70735304412bbb704ac25787f4e", + "f9291807dd2e47bcb5b2f4ba28788faa", + "2de375e266694229a2a345a75b747ef0", + "2ff8fbdc35fa43a89beb46ca8a23ac5d", + "dbf80e719a994668b6b8cf8635b64346", + "e78ef84c6f22477cb728415c0ef44fbb", + "0c118d513a824a37ad8b77f0f7b66041", + "5013300b2f304dcebfa61c4fd232ce2d", + "d2bcaada181e4ff9b728c10d9510b203", + "0c076a010b0e429ca650f523e9e47fff", + "94ebbd4416ec45efb5056f324903f6e0", + "6b11712e030b48c0abbdabbf2c2d7fc1", + "210117a4248c48f7af1ae7c4373b574d", + "379beb702870498f8980e1364d165751", + "fcc87bc4ef704951b6cbe8d74a19e959", + "e2df3dc8f06c4a17b0c922f55714362f", + "2b6ccc8c46624727ae8298a4b0a81394", + "dc3b1afc5dfb44bf8bf37accc74519c9", + "ce799369d07243b48b79714e2f181dd6", + "5ee6bdfcea674417a09761318fdef447", + "9847548617e94549a75e02f301bde234", + "12b08314558047eaa03b8a95253e3f16", + "2d3f29e2c0f149f396090f8b64383742", + "4153b957fc174ab2bc4012c0b0f202b8", + "bd722fe463cc4a5bb5e1500316d375a6", + "2905084c2b4d4f8bbdc2d0077d7b5530", + "105c67d60f8d4dcabeb54787975df016", + "f0f68c9c28714354897f9eb7c08871ec", + "d662245d17d946d8939009c3706ac98a", + "d4d7b1c7e7fc4cf2b9ec4697e1ae6eff", + "3965fed39b674eadbc7e985c3d6c29dd", + "0746dc2deca04fe4bb629154b9b4053e", + "84a4ebb81c43427b8a6cd5ea66cf7a17", + "85e1bc1bab37469a87755bf87eb103c1", + "02f7b18bdebe4558b371c82328ee49d7", + "86f7ef93ecf8493c83bbdadec34e0c3f", + "0e0b074b808b4c4486b3103463127ccb", + "c851eac36f0146ca9c3dd60fc447550b", + "6a17cd95fc5a4fe0aa108372f1c062b9", + "b74a356f65a34907bc16b78a997a73db", + "991e64333a3949fba85a8b1a29e52723", + "988869986765448484877e5b78af7136", + "d3be945444d74270ab105c8cb559b258", + "4b09e5e9c46b4e368bd6387125bdd251", + "e9b6ef491291440382c349b780dd0026", + "dea4d80a44a14941a67ccfc64fe29c72", + "39781a6391c8450782667a27ee613bec", + "285742113ccb4091bb401cef71011f49", + "bbc5e835427f4f879576527541c71247", + "a4adbba42ef940519aa47387d0e3c7da", + "61ffe191c8954f10a4715a87116c8715", + "82228cd3582a44eebe49ab2e8b6e19ae", + "7914557d250c4998872a92df0c3274c1", + "c1df0a65098845e5b509c47f780c53e1", + "c6384e50c54545cba9a141d28230b9ee", + "450c0926e66847ac90f1edd4a78a3315", + "75b5e7ad1a0149c18007d71b0efcf3b9", + "2caae56a75c141ddb12513d3f8f1612c", + "24dbe3c0bffd4c80b5ad6434046660bf", + "8c7beb9cfd25422d9d15c59ea1d14e79", + "392d538dd0164add83d0c6b0dc9791e6", + "ce60151c1b8f41a9967f95536d4e71ea", + "1e7335db65ad4c79acb2ecb109edf068", + "8816435ea6d1419e903d3415994e5021", + "b68e1ba8f55949f6a51c518d8ca45d54", + "aa46ce0d2fa64e34b916acfd47488b40", + "d0067f289cc04e96a596f46954cf8531", + "399e1a0f76254ef4b310f5a58c33db59", + "cb2bc151526a4636bb3ce1da5b75abe5", + "0e090a43ee1b4218a81dddad7838487f", + "6dce9841746f465c93b31777ee5bf38b", + "c31a4b209d0849d0ad7c259696cbb729", + "9ebe7c86b49d411dbb72f3861d22d286", + "494345c29c304edfa858d8e3656af395", + "a111d14f792b42cc929dd10a023fad13", + "62ef25e722d14ae99972efcb8de9000d", + "558920ddcdb94b18874f503264c9e5ef", + "c6f5f604cc3242dfb52045230f7336c4", + "ac76c319fe474a1fb3b69c990f96c1ad", + "9cf597657d9f4e5faa5e6062d2e377c9", + "ce4ab316725d4348b880b601e5c653a7", + "df94218d1a934399bfdee3c33aadb6c6", + "db8fd67009334f6383f6fed98bfabb62", + "067451f402c84b79b3ed53390e65eae2", + "082ed901c87f49dc9d5f58132323817a", + "4bfe41f7b6214ceeb1dd1bbb8c4f3eb9", + "9fbf71d47eaa4504a89007431622c2c4", + "5ba6c172278146d2a9c57e7eb66bff2f", + "faee6f2f10b64852bfe5ee43f9184aa4", + "d81ec9f4465f486eae2d93dc8fe5ebe0", + "bec3733c2b534a90b948641ae9ac1908", + "45843f79900c4157bfe339f2a5694e7f", + "2ff717e43088416f9f19d6def9131072", + "ae729979388549029b3dc146ae55d8a3", + "861b7e7b342548609bed3b7a84f22ebe", + "60fb5c80a77f4c5c955bbd5ed98a5aed", + "a2b7a8e9df74429aacbd7895306dd938", + "7214527baf244cb08f2d9233bd41b320", + "71560bba250d46919e08812f75e1dbd9", + "1749ac41f57d4a6cbd1a6fd49d136ce9", + "2dc77b9e54884ba5b16a75ca66e2913b", + "72789d30ca504042b893de271856461b", + "06d1030a9f7f48708bc55f9400413056", + "1e1d403f42a44fc98853fe2e4d15b934", + "54eeb7e4e8d74b3e9dbfc9f9f8f1e2e1", + "2ee336cb72e6431d945a53505c9cd6a8" ] }, - "outputId": "5f6d89be-89ac-488d-9296-86c575432a03" + "outputId": "0bba590c-ed97-4a0d-e224-5ff2acb06d53" }, "outputs": [ { @@ -381,7 +381,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "677c2b6d8f5749be81a95f14f342ca49" + "model_id": "8255ebf6b151499f993a725882fce5df" } }, "metadata": {} @@ -395,7 +395,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "64026504cbb049448b0b2a05fcaca892" + "model_id": "b095707d4d094583b716fbcfc4d36113" } }, "metadata": {} @@ -409,7 +409,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "1dbec7c042b442d09714661bd8e96ef5" + "model_id": "8cd4f21c01914bca9528e82106cae7bf" } }, "metadata": {} @@ -423,7 +423,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "3b13c93fba8e497fa0b04a8c904c6b00" + "model_id": "37464a0386874c2389ce13a88f108259" } }, "metadata": {} @@ -437,7 +437,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "81d0a99396424adf855de9e5fe7f9bba" + "model_id": "d67eda371d934db08478691960401a94" } }, "metadata": {} @@ -451,7 +451,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "fad92fe0900e4d4aae8792fecc59f46a" + "model_id": "ed2ed6c22f6c49718d50ff82f84a7114" } }, "metadata": {} @@ -465,7 +465,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "fc1334361eaa4cbcb6c3efe40e61d5de" + "model_id": "b704137e631c43df8472ed54cee4ee05" } }, "metadata": {} @@ -487,7 +487,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "5d3379bba266422896beb467ec7f051c" + "model_id": "8bf0290c546f4a5088e2a7ac523f0f94" } }, "metadata": {} @@ -501,7 +501,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "35e927ac803e4c33ab00d6b4ade75adb" + "model_id": "95638b66f2664b118aa6583a86fe4e9b" } }, "metadata": {} @@ -515,7 +515,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "3fa765215f6e46eb9fb195a0dfbc3e48" + "model_id": "3560d5a1f61c4d04a3a4cbe5b23e89b3" } }, "metadata": {} @@ -529,7 +529,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "e61ffe6b73014ba8bafc55c8099ccde9" + "model_id": "5013300b2f304dcebfa61c4fd232ce2d" } }, "metadata": {} @@ -550,7 +550,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "3265a993a10140008f146c685729172e" + "model_id": "ce799369d07243b48b79714e2f181dd6" } }, "metadata": {} @@ -564,7 +564,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "ce74f31749bd4f67a2c964faded06879" + "model_id": "d4d7b1c7e7fc4cf2b9ec4697e1ae6eff" } }, "metadata": {} @@ -578,7 +578,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "cb9873923ef54607b13022a5243dd4e3" + "model_id": "991e64333a3949fba85a8b1a29e52723" } }, "metadata": {} @@ -592,7 +592,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "7733d285db5441eda70276551f19b29c" + "model_id": "82228cd3582a44eebe49ab2e8b6e19ae" } }, "metadata": {} @@ -606,7 +606,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "28f7121283834644930bcf5395f493d2" + "model_id": "1e7335db65ad4c79acb2ecb109edf068" } }, "metadata": {} @@ -620,7 +620,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "e313ff0cb7a34ca7b5d0643f534c01eb" + "model_id": "494345c29c304edfa858d8e3656af395" } }, "metadata": {} @@ -634,7 +634,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "e5ced005b2e447a7b84b372bbf7338e6" + "model_id": "082ed901c87f49dc9d5f58132323817a" } }, "metadata": {} @@ -648,7 +648,7 @@ "application/vnd.jupyter.widget-view+json": { "version_major": 2, "version_minor": 0, - "model_id": "260fbb7606e84499bab3486d636eb723" + "model_id": "60fb5c80a77f4c5c955bbd5ed98a5aed" } }, "metadata": {} @@ -800,72 +800,12 @@ " return caption.strip()" ] }, - { - "cell_type": "code", - "source": [ - "print(caption)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W8hpa2PXVIDE", - "outputId": "f67de89e-234a-4c67-c830-4c3dc7a0e301" - }, - "execution_count": 6, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "A young woman sits on a white-painted concrete wall, her legs hanging off the edge. She's holding a black assault rifle with a vertical foregrip, gripping it firmly with both hands. Her expression is serious, with a slight frown, and her lips are slightly parted, giving off a determined vibe. She wears a headset over her hair, which is dark brown and pulled back into a ponytail.\n", - "\n", - "Her outfit is a mix of military and civilian styles. She sports a white dress shirt with the sleeves rolled up to her elbows, and a black tactical vest with several pouches and pockets. The vest has a patch on the left shoulder with a blue and white butterfly design, and a green and black ribbon hangs from the bottom of the vest, adding a pop of color. Her skirt is a short, pleated black skirt with a slight shine, and she's wearing black gloves, adding to her tactical look.\n", - "\n", - "The background is a rough, white-painted brick wall with some wear and tear, giving it a gritty texture. The setting is outdoors, with natural light filtering through the scene, casting soft shadows. The overall atmosphere is a mix of preparedness and a bit of playfulness, as the girl's outfit and the ribbon hint at a playful side.\n" - ] - } - ] - }, - { - "cell_type": "code", - "source": [ - " input_image = Image.open(f\"/content/A (1).webp\").convert('RGB')\n", - " caption = stream_chat(input_image, \"descriptive\", \"formal\", \"any\")\n", - " print(f\"\\n\\ncaption for A (1).webp\")\n", - " print(caption)" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 315 - }, - "id": "v1xBCS9Dpq-J", - "outputId": "b64a6f2c-2dab-42d7-aeaf-39177ab77dec" - }, - "execution_count": 22, - "outputs": [ - { - "output_type": "error", - "ename": "FileNotFoundError", - "evalue": "[Errno 2] No such file or directory: '/content/A (1).webp'", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0minput_image\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"/content/A (1).webp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'RGB'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mcaption\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstream_chat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput_image\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"descriptive\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"formal\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"any\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf\"\\n\\ncaption for A (1).webp\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcaption\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/PIL/Image.py\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode, formats)\u001b[0m\n\u001b[1;32m 3467\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3468\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mfilename\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3469\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3470\u001b[0m \u001b[0mexclusive_fp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3471\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/content/A (1).webp'" - ] - } - ] - }, { "cell_type": "code", "source": [ "suffix = 'jpg'\n", "\n", - "for number in range(94):\n", - " if number>20:break\n", + "for number in range(45):\n", " try:\n", " input_image = Image.open(f\"/content/{number+1}.{suffix}\").convert('RGB')\n", " caption = stream_chat(input_image, \"descriptive\", \"formal\", \"any\")\n", @@ -880,9 +820,9 @@ "base_uri": "https://localhost:8080/" }, "id": "NbiUlfjD3iwB", - "outputId": "58220065-5037-4816-a3ce-f8e20938b3d7" + "outputId": "5b91288d-136a-4a82-fd4b-e5584d4f3d8f" }, - "execution_count": null, + "execution_count": 3, "outputs": [ { "output_type": "stream", @@ -908,89 +848,642 @@ "...caption for 1.jpg\n", "\n", "...\n", - "This digital artwork depicts a highly detailed, realistic anime-style character with a futuristic urban setting. The character is a young woman with a fair complexion, long blonde hair, and large, pointed cat ears. She has a slender, athletic physique with prominent breasts and a toned abdomen. Her facial features are sharp and expressive, with large, almond-shaped eyes and a full, glossy pink lip. She wears a black, strapless bandeau top that accentuates her breasts, leaving her midriff exposed. A thin silver chain necklace dangles from her collarbone, and she has a matching silver bracelet on her right wrist. Her left arm is adorned with a blue fishnet glove that extends to her elbow. She also wears black fishnet stockings and a short, black mini-skirt that reveals her thighs and part of her hips. The background is a neon-lit cityscape with colorful, glowing signs in vibrant pink, green, and blue, indicating a lively, futuristic urban environment. The lighting is bright and dynamic, casting shadows and highlights that enhance the three-dimensional appearance of the character and her surroundings. The overall style combines elements of anime and hyperrealism, creating a striking and visually stunning image.\n", + "This is a collage of four scenes from the movie \"Blade Runner 2049,\" directed by Denis Villeneuve. The top three scenes are captured through reflections in wet, rain-slicked glass, showing a bustling, futuristic cityscape at night. The city is filled with towering buildings, neon lights, and a dense crowd of people. The reflections are dark and blurry, with the silhouettes of people and vehicles visible, creating a mysterious and eerie atmosphere. The bottom scene is a close-up of a naked woman with fair skin and a slim, athletic build, lying on a table with her legs spread. She has short, dark brown hair and wears dark lipstick, and her expression is intense and slightly sad. She is surrounded by various objects, including a green bottle and a clear glass. The scene is lit with a cold, blue light, emphasizing the futuristic setting. The collage includes a text overlay at the bottom left, written in a futuristic font, which reads, \"The sky is full of stars, the ground is full of rain. The sky is full of stars, the ground is full of rain.\" The overall style of the collage is dark, moody, and highly detailed, capturing the dystopian and futuristic themes of the film.\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 2.jpg\n", "\n", "...\n", - "A young woman stands against a plain white background, facing slightly left and looking to the right. She's wearing a striking, sequined dress that catches the light and reflects a vibrant, multicolored pattern of green, blue, red, and purple. The dress is sleeveless and features a high, halter-style neckline that hugs her shoulders and neck. It's fitted, hugging her slender frame, with a short, flared skirt that ends above her knees. She's wearing black, sheer pantyhose that complement the dress and add to the sleek, polished look.\n", + "A digital comic-style artwork featuring four panels of a futuristic sci-fi setting. \n", "\n", - "Her long, straight black hair is parted down the middle and falls smoothly over her shoulders. She accessorizes with large, silver hoop earrings and a bracelet on her right wrist. Her makeup is minimal, highlighting her natural beauty, with a light foundation, subtle eye makeup, and nude lipstick.\n", + "1. Top left panel: A woman with fair skin, long blonde hair, and a curvy figure is running in a futuristic city. She wears a black leather jacket and pants, with a red shirt underneath. She holds a gun in her right hand, and a fireball is shooting from it, creating a dramatic explosion.\n", "\n", - "The background is a stark white, which makes the woman and her outfit the sole focus of the photograph. The lighting is bright and even, eliminating any shadows and emphasizing the sequins' glossy finish. The overall style is modern and glamorous, suitable for fashion or editorial photography. The photograph captures the elegance and sophistication of the outfit, with the woman's poised stance and confident expression adding to the overall allure.\n", + "2. Top right panel: A woman with medium brown skin, dark brown hair, and a fit physique is tied up and gagged with a gas mask. She is in a white tank top and black shorts, with her arms tied behind her back. She looks distressed and is lying on her back.\n", + "\n", + "3. Bottom left panel: A woman with light skin and long blonde hair is standing in a futuristic room with blue lighting. She wears a black leather jacket and pants, with a red shirt underneath, and has a confident expression. The background shows a futuristic interior with metallic walls and a counter. \n", + "\n", + "4. Bottom right panel: A woman with light skin, dark brown hair, and a fit physique is tied up and gagged with a gas mask. She is in a black leather jacket and pants, with a red shirt underneath, and is tied to a chair. She looks distressed and is in a room\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 3.jpg\n", "\n", "...\n", - "A woman stands confidently against a plain white background, her dark brown hair styled in two braids with a center part. She has a medium skin tone and a slim yet curvy physique. Her attire is a provocative black leather and chain harness ensemble that accentuates her assets and curves. The harness features a shiny black leather bra with metal rings and chains, which crisscrosses her chest and abdomen, highlighting her medium-sized breasts and toned midriff. The bra has a high neck design with a thin strap that wraps around her neck, adding a touch of edgy style.\n", + "This collage features a series of images capturing the gritty, neon-lit streets of a futuristic cityscape, reminiscent of the cyberpunk genre. The top left image shows a woman with short, dark hair and a muscular build, wearing a black sports bra and black shorts. She is holding a gun in her right hand, pointing it towards the camera, while her left hand is partially hidden behind her back. The background shows a dark, industrial alley with dim lighting and a brick wall.\n", + "\n", + "The top right image is a close-up of a neon-lit sign, featuring a bright pink and white text that reads \"NANA\" and a stylized illustration of a woman with long hair and a pink dress.\n", "\n", - "She pairs the bra with a matching high-waisted skirt made of sheer black fabric, featuring a high slit on one side that reveals her thigh and a metal chain that adds a touch of bondage. The skirt has a high waistband that fits snugly around her hips. Her wrists are adorned with spiked black leather cuffs, adding a punk aesthetic to the ensemble. She accessorizes with black leather fingerless gloves and large hoop earrings. Her makeup is bold, with dark eyeliner and mascara enhancing her eyes, and a dark lip color that complements her outfit.\n", + "The bottom left image shows a high-angle view of a bustling street filled with neon signs, cars, and pedestrians. The scene is dominated by bright, colorful signs and advertisements, including a prominent red \"X\" sign.\n", "\n", - "Overall, the image combines elements of punk and fetish fashion, emphasizing her confidence and daring style.\n", + "The bottom right image features a wide-angle view of the city from a high vantage point, showing a chaotic and densely packed urban landscape. The buildings are tall and covered in neon lights, with signs in Japanese characters and English text. The overall atmosphere is intense and vibrant, with a sense of urgency and movement.\n", + "\n", + "The images are highly detailed, with a rich texture and vibrant colors that evoke a sense\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 4.jpg\n", "\n", "...\n", - "A young woman stands against a plain white backdrop, exuding a gothic and punk vibe. Her long, straight, black hair is styled in two braids, cascading over her shoulders. She sports a pale lavender, sheer, form-fitting babydoll dress with black lace trim along the neckline and hem, featuring a small black bow in the center of her chest. The dress is paired with black, striped fingerless gloves extending to her mid-forearms. Her legs are adorned with black fishnet stockings, and she completes her outfit with knee-high black boots covered in faux fur, giving a cozy, yet edgy contrast to the rest of her ensemble.\n", + "This image is a collage of nine photographs taken in a futuristic cityscape, showcasing various urban scenes with vibrant colors and high-tech architecture. The collage is arranged in a 3x3 grid.\n", + "\n", + "The top left photo shows a bustling street at night with neon lights, including a prominent pink sign and several smaller ones in different colors. The buildings are modern and glassy, reflecting the lights.\n", + "\n", + "The top center photo features a close-up of a building with a large, illuminated pink sign that reads \"NEON\" in Japanese. The reflection of the sign on the building's glass windows creates a mirror-like effect.\n", "\n", - "She carries a black handbag with a white star design, fastened with a black ribbon, slung over her left shoulder. Around her neck is a black choker with a small pendant, adding to her edgy, rebellious look. Her makeup is bold, with dark eyeliner and mascara enhancing her eyes, and dark lipstick giving her lips a dramatic pop.\n", + "The top right photo captures a wide view of the city skyline at night, with towering buildings and a neon-lit street below. The buildings are a mix of glass and steel, and the street is filled with cars.\n", "\n", - "Her pose is relaxed, with her arms hanging naturally by her sides, and her expression is neutral, exuding a confident and cool demeanor. The photograph is well-lit, highlighting the textures and colors of her outfit and accessories.\n", + "The middle left photo showcases a street scene during the day, with a mix of modern and traditional architecture. The buildings are adorned with colorful signs and banners, and there are people walking on the sidewalk.\n", + "\n", + "The middle center photo focuses on a futuristic building with a sleek, metallic exterior and a large, glowing sign. The reflection on the glass windows adds depth to the image.\n", + "\n", + "The middle right photo displays a neon-lit sign in a dark alleyway, with a futuristic design and vibrant colors.\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 5.jpg\n", "\n", "...\n", - "A young woman with long, straight blonde hair and a fair complexion poses confidently in a dimly lit setting. She wears a shiny, metallic silver halter top with a plunging neckline that accentuates her medium-sized breasts. The top is adorned with a delicate chain pattern, adding a touch of glamour to her outfit. Her skin is smooth and flawless, highlighting her toned and slender physique.\n", - "\n", - "She is paired with a short, sequined skirt that sparkles with vibrant red, pink, and purple hues, creating a festive and eye-catching look. The skirt hugs her hips and flares slightly at the bottom, showcasing her slender legs and small waist. She has a confident and seductive expression, with her lips slightly parted and eyes gazing directly at the camera, exuding a sense of allure and boldness.\n", + "A collage of four images featuring young anime-style characters with a mix of realistic and cartoonish art styles.\n", "\n", - "The background is dark, possibly a nightclub or indoor event space, making her outfit and pose stand out even more. She is seated on a black leather chair, adding a touch of luxury to the scene. The overall style of the photo is glamorous and fashion-forward, capturing a moment of style and confidence. The image is sharp and high-quality, emphasizing the textures and colors of her outfit and the smoothness of her skin.\n", + "1. The top left image shows a young girl with short blonde hair in a nun outfit, complete with a black habit, white veil, and a gold cross necklace. Her expression is neutral, and she stands against a dark blue background.\n", + "2. The top right image depicts a young girl with blonde hair styled in a ponytail. She wears a white lace bra and matching panties, a black choker, and white gloves. She stands confidently with one hand on her hip in an alley with a street sign and a sign for a bar. The background is dimly lit, adding a gritty, urban feel.\n", + "3. The bottom left image features a young blonde woman with a stern expression, wearing a white nurse's uniform with a tight top that reveals her breasts. She is standing in front of a large machine with a man in a white lab coat.\n", + "4. The bottom right image showcases a young woman with dark hair and a slender, curvy figure. She wears a white bikini top with pasties and a matching thong, with white gloves and a choker. She stands in a dimly lit room with a red neon sign in the background. Her expression is confident and assertive.\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 6.jpg\n", "\n", "...\n", - "A young woman stands with her back to the camera, showcasing her medium brown skin and long, straight black hair pulled into a high ponytail. She's wearing a striking, off-the-shoulder, floor-length dress made of shiny, glossy purple fabric that catches the light. The dress features a deep V-neckline and a ruffled hem that adds a touch of whimsy to the otherwise edgy outfit. Around her neck, she has a small, delicate tattoo.\n", + "1. Top left: A fierce, muscular woman with short black hair and a fair complexion is clad in a blue leather jacket and matching pants, holding a gun with a determined expression. Her arms are toned, and she has a strong jawline. The background is dark, with a hint of a futuristic cityscape.\n", "\n", - "Her shoulders are bare, and her back is adorned with a pair of crisscrossed straps, adding an element of sophistication and restraint. The straps are made of the same shiny purple material as the dress, blending seamlessly with the outfit.\n", + "2. Top center: A busty woman with blonde hair and a fair complexion is dressed in a revealing gold and white bikini, with a white cape and thigh-high white stockings. She holds a gun with a confident stance, surrounded by smoke. The background is a dimly lit room with metallic surfaces.\n", "\n", - "On her arms, she wears long, elbow-length gloves that match the dress, adding to the cohesive look. The gloves are made of the same glossy purple fabric, and they have a slightly textured finish, giving them a slightly more structured appearance compared to the dress.\n", + "3. Top right: A short-haired woman with a fair complexion and an athletic build is dressed in a tight, red leather jacket and matching pants, with a black collar. She holds a gun with a determined expression, standing in a futuristic room with metallic surfaces and neon lighting.\n", "\n", - "The background is plain white, making the subject the focal point of the image. The overall style is modern and avant-garde, with a strong emphasis on texture and color. The photograph captures the intricate details and bold fashion choices of the outfit.\n", + "4. Bottom left: A group of women with various skin tones and body types, dressed in black and white BDSM-inspired lingerie with nipple pasties, standing in a dimly lit room with red lighting. They have a playful yet serious expression, with one woman holding a whip.\n", + "\n", + "5. Bottom center: A group of women with fair skin and athletic builds, dressed in black and white lingerie with nipple pasties, standing in\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 7.jpg\n", "\n", "...\n", - "A young Black woman stands against a plain white background, wearing a dazzling outfit that sparkles with metallic threads. Her outfit is a sleeveless, body-hugging dress that reaches mid-thigh, covered in small, reflective, multicolored sequins in shades of green, blue, purple, and gold. The dress is sleeveless and has a high, halter-neck top, leaving her arms bare. She pairs this with long, matching, metallic gloves that reach her elbows, adding a touch of glamour and drama to her ensemble.\n", + "A collage of five CGI stills from the video game \"Mass Effect\" featuring a female character named Liara T'Soni, a scientist and ally of Commander Shepard. The character is of Caucasian descent, with light skin and a slender, athletic build. She has short, platinum blonde hair and piercing blue eyes.\n", + "\n", + "In the top left image, Liara is wearing a futuristic, metallic spacesuit with a high-tech design and a silver helmet. She holds a gun in her right hand and is positioned in a combat stance, with a determined look on her face.\n", + "\n", + "The top right image shows Liara in a similar suit, this time in a dimly lit room with red and blue lights. She is seen from the back, with her hair tied back, and is aiming a gun at an unseen target.\n", "\n", - "On her head, she sports a black cowboy hat with a wide brim and a shiny silver star on the front. The hat is adorned with silver studs and rhinestones, giving it a Western vibe with a modern twist.\n", + "The bottom left image features Liara in a more casual outfit, a black fishnet bodysuit that leaves her breasts exposed. She has a confident expression and is looking directly at the camera. \n", "\n", - "Her skin is a deep, rich brown, and she has long, braided hair that cascades down her back. Her makeup is bold and striking, with dark eyeliner and a glossy, dark lipstick that complements her outfit. She accessorizes with large, dangling earrings that add to her overall look.\n", + "The bottom right image captures Liara in a more revealing black bodysuit, with her breasts fully exposed and covered only by black pasties. She is standing in a dimly lit room with a futuristic background.\n", "\n", - "The lighting is bright and even, highlighting the metallic texture of her outfit and the details of her accessories. The background is plain white, making the subject the focal point of the image. The style of the photograph is fashion-forward and avant\n", + "The overall style is highly detailed and realistic, showcasing the character's strength and beauty.\n", "Prompt: Describe the image in 400 words\n", "...\n", "\n", "...caption for 8.jpg\n", "\n", "...\n", - "A stylish woman stands against a plain white background, flaunting a bold and fashionable look. She sports a black faux fur coat with a bold, wide lapel that drapes over her shoulders. Beneath it, she's rocking a black leather crop top with a deep V-neckline, highlighting her cleavage. The crop top stops at midriff, revealing a toned midsection. She's wearing a short, tight skirt in a dazzling sequined pattern, mostly pink and purple, with a chunky, sparkly belt that adds a glamorous touch to her outfit.\n", + "A high-quality digital comic-style illustration featuring two women in a futuristic sci-fi setting. The top-left panel shows a blonde woman with a fit physique, fair skin, and blue eyes, dressed in a tight black latex bodysuit with a high-cut neckline, accentuating her ample breasts and toned abs. She has a fierce expression and is holding a futuristic gun. The background shows a dimly lit, industrial room with metallic walls and a glowing, blue-tinted window. The text bubble reads, \"We're all gonna die in here, huh?\"\n", "\n", - "Her legs are clad in sheer black tights, and she's strutting in black platform high heels with ankle straps, adding height and a touch of edginess to her ensemble. The shoes are platform with a chunky heel and a wide, flat platform sole. Her accessories include large, dark sunglasses with a retro vibe, a black choker necklace, and silver hoop earrings. Her hair is slicked back, giving her a sleek, modern look. She stands with her legs slightly apart, exuding confidence and style.\n", + "In the top-right panel, a brunette woman with fair skin and striking blue eyes is seen from the side, wearing a black fishnet top and matching high-waisted shorts, showing off her curvy figure. She has a serious expression and is holding a futuristic handgun, looking towards the camera. The background shows a dimly lit, metallic room with a control panel and a door leading to another room.\n", "\n", - "The background is plain white, ensuring that all eyes are on her outfit and accessories. The lighting is bright and even, highlighting the textures of her clothing and accessories. The overall vibe is modern and fashion-forward, perfect for a\n", - "Prompt: Describe the image in 400 words\n" + "The bottom-left panel features the blonde woman again, wearing the same black latex bodysuit, but now she has a more determined and focused expression, her eyes locked on something off-screen. She is holding a futuristic gun. The background shows a dark, metallic room with a glowing control panel and a large window.\n", + "\n", + "The bottom-right panel shows the brunette\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 9.jpg\n", + "\n", + "...\n", + "This collage of stills from a sci-fi action movie features a young woman with fair skin, long blonde hair, and blue eyes, dressed in a black, form-fitting, fishnet sleeveless top and matching leggings. She is a skilled assassin with a fierce, determined expression. The first image shows her holding a futuristic gun with a glowing scope, aiming at an unseen target. The background is a dimly lit, futuristic cityscape with neon lights and glowing signs. \n", + "\n", + "The second image shows her in a similar scene, aiming her gun with a focused expression, while a speech bubble with the words \"What now?\" hovers above her head. The background features more neon signs and city lights, adding to the high-tech, urban feel.\n", + "\n", + "The third image shows her in a more naturalistic setting, wearing a black tank top and shorts, holding a gun with a determined look. The background is a dimly lit room with wooden walls and a doorway leading to a dark hallway.\n", + "\n", + "The fourth image shows her in a dramatic, action-packed scene. She is wearing a black, form-fitting bodysuit and is seen running and leaping through a dark, industrial setting with a cityscape in the background. The fifth image shows her in a more serene moment, standing on a rooftop with a clear sky\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 10.jpg\n", + "\n", + "...\n", + "This image is a collage of CGI images featuring a variety of women in various states of undress, posed in different scenarios. The collage is divided into nine sections, each containing a different scene.\n", + "\n", + "In the top left section, a woman with short blonde hair is dressed in a black leather jacket and black lingerie, with her breasts exposed and her buttocks prominently displayed as she stands in a futuristic hallway with metallic walls and blue accents.\n", + "\n", + "The top right section shows a group of women in skimpy outfits, including leather harnesses and thigh-high boots, posing in a high-tech room with metallic walls and a blue light.\n", + "\n", + "The middle left section features a woman with short, dark hair and pale skin, wearing a revealing black leather bodysuit with a high collar and gloves, posing in a futuristic room with metallic walls and blue lighting.\n", + "\n", + "The middle right section shows a woman with long, blonde hair and fair skin, dressed in a red jacket and black lingerie, standing in a futuristic hallway with metallic walls and blue accents.\n", + "\n", + "The bottom left section depicts a woman with short, pink hair and fair skin, dressed in a black leather bodysuit with gloves, standing in a futuristic room with metallic walls and blue lighting.\n", + "\n", + "The bottom right section shows a group of women in police uniforms, standing in a military-like setting with a\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 11.jpg\n", + "\n", + "...\n", + "The image is a composite of multiple photographs in a comic book style, featuring highly detailed and realistic CGI rendering of a futuristic sci-fi setting. The scene is set in a high-tech, industrial environment with metallic structures and bright, artificial lighting. The main characters are a group of women wearing provocative, futuristic outfits that accentuate their bodies, including tight, black bodysuits with mesh and straps, revealing their large breasts and buttocks. Some of the women are also wearing high heels and gloves, adding to their sexy appearance.\n", + "\n", + "In the top left, a woman with platinum blonde hair and a pale complexion is standing in a dimly lit hallway, with a speech bubble saying, \"I'm not sure if we should be doing this.\" She is wearing a black bodysuit and has her back turned to the camera. The top right shows another woman with long, dark hair and a dark complexion, wearing a similar outfit, in a room with glowing panels and futuristic equipment.\n", + "\n", + "In the bottom left, a woman with long, dark hair and a fair complexion is walking down a corridor with metallic walls and glowing panels. She is wearing a black bodysuit with mesh and has a speech bubble saying, \"What's your name?\"\n", + "\n", + "In the bottom right, another woman with long, dark hair and a fair complexion is\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 12.jpg\n", + "\n", + "...\n", + "1. A futuristic sci-fi scene with a woman in a black fishnet top, revealing her ample breasts and nipples. She has long, straight black hair and a pale complexion. She is holding a gun and standing in a high-tech, brightly-lit room with a red background.\n", + "\n", + "2. A close-up of a woman with short, brown hair, wearing a red bikini that barely covers her breasts and crotch. She has a curvy physique and is standing in a neon-lit alleyway with glowing signs in Japanese.\n", + "\n", + "3. A woman with long, straight black hair and a pale complexion, wearing a red bikini and holding a gun. She is standing in a dark alleyway with glowing signs and neon lights.\n", + "\n", + "4. A woman with long, straight black hair and a pale complexion, wearing a black fishnet top and a red bikini bottom. She is standing in a futuristic cityscape with tall buildings and neon lights.\n", + "\n", + "5. A woman with short, brown hair and a pale complexion, wearing a red bikini. She is standing in a futuristic cityscape with tall buildings and neon lights.\n", + "\n", + "6. A woman with long, straight black hair and a pale complexion, wearing a black fishnet top and a red bikini bottom. She is standing in a futuristic cityscape with tall buildings and neon lights.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 13.jpg\n", + "\n", + "...\n", + "This image is a collage of seven different scenes from various sources, all featuring a young woman with long, straight, black hair and fair skin. She appears to be in her early 20s with an athletic physique, slender build, and medium-sized breasts. The woman is seen in several outfits, including a red bikini, a black swimsuit, a black thong bikini, and a black bra and panties. She is also seen in a wedding dress, holding a bouquet of flowers, and wearing a black choker necklace.\n", + "\n", + "The background scenes include a luxurious indoor pool area with a grand staircase and ornate woodwork, a modern hotel room with a large bed and windows overlooking a city, and an outdoor scene with a bustling street at night, filled with neon lights and busy pedestrians. There are also two close-up shots of the woman's face, one in profile and the other in a contemplative pose.\n", + "\n", + "The collage includes a variety of textures, from the sleek, polished surfaces of the modern hotel room to the intricate woodwork and plush carpeting of the pool area. The lighting varies from the bright, artificial lights of the city street to the warm, soft lighting in the hotel room and pool area. The overall style is a mix of hyper-realistic CGI and photorealistic rendering.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 14.jpg\n", + "\n", + "...\n", + "A collage of six different images showcasing various video game scenes.\n", + "\n", + "1. **Top Left**: A futuristic, neon-lit cityscape with a woman in a revealing blue outfit. She has blonde hair and a slender build, with her large breasts prominently displayed. The background is vibrant with colorful signs and buildings, suggesting a high-tech, cyberpunk environment.\n", + "\n", + "2. **Top Right**: A lush, overgrown jungle with a green and brown color palette. The scene features a woman with long, dark hair, wearing a revealing black outfit. She is holding a weapon and appears to be engaged in combat or exploration.\n", + "\n", + "3. **Middle Left**: A futuristic city with a vertical layout, featuring towering buildings and a variety of neon signs. The woman in the foreground has a fair complexion, long blonde hair, and a slender figure, wearing a revealing blue outfit. She is standing on a platform, surrounded by a group of people, some of whom are also dressed in futuristic attire.\n", + "\n", + "4. **Middle Right**: A dark and moody scene with a woman in a black outfit, holding a weapon. She has dark hair and a muscular build, suggesting a strong and capable character. The background is dimly lit, with stone structures and a mysterious atmosphere.\n", + "\n", + "5. **Bottom Left**: A cityscape with a more traditional\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 15.jpg\n", + "\n", + "...\n", + "A collage of six digitally enhanced photographs of women with different styles and poses, showcasing their physical features and fashion choices.\n", + "\n", + "1. Top left: A young woman with fair skin, platinum blonde hair, and blue eyes, wearing a red strapless dress. She has a slim physique and medium-sized breasts, sitting on a white couch with a neutral background.\n", + "2. Top center: A woman with fair skin, platinum blonde hair, and blue eyes, wearing a black strapless corset and matching panties. She has a slim physique and medium-sized breasts, sitting on a plush dark purple chair with a tropical beach background.\n", + "3. Top right: A woman with fair skin, platinum blonde hair, and blue eyes, wearing a blue bikini with a gold chain belt. She has a slim physique and medium-sized breasts, posing in a beach setting with palm trees and a blue ocean in the background.\n", + "4. Bottom left: A woman with fair skin, blonde hair, and blue eyes, wearing a blue strapless dress with sequins. She has a slim physique and medium-sized breasts, standing in a dimly lit nightclub with neon lights and a dance floor.\n", + "5. Bottom center: A woman with fair skin, long brown hair, and blue eyes, wearing a red halter dress with a low neckline. She has a slim\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 16.jpg\n", + "\n", + "...\n", + "A vibrant collage of urban scenes from a futuristic cityscape, featuring a mix of people and buildings with a sci-fi vibe.\n", + "\n", + "Top left: A man in a dark suit and hat stands on a blue and yellow metal bridge, looking down at the city below. The bridge is surrounded by tall buildings with modern, reflective glass exteriors.\n", + "\n", + "Top right: A neon-lit sign in Chinese characters glows on a building, with a young woman in a white dress and black hat standing on a balcony, looking down. The cityscape is filled with high-rise buildings and a bustling street below.\n", + "\n", + "Bottom left: A dimly lit bar with purple and blue lighting, filled with people in dark clothes, including a woman in a black dress. The bar features a stage with a band playing, and a sign advertising a \"Girls Night Out\" event.\n", + "\n", + "Bottom right: A neon-lit street with a glowing sign in Japanese characters, featuring a woman in a black jacket and hat walking towards a red and white taxi. The street is lined with modern buildings and signs in various languages.\n", + "\n", + "Overall, the collage captures the vibrant and eclectic atmosphere of a futuristic city, with a mix of traditional and modern elements, and a focus on the diverse and dynamic urban environment.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 17.jpg\n", + "\n", + "...\n", + "A vibrant, highly detailed CGI collage of a futuristic, neon-lit cityscape at night. Dominating the center is a tall, curvy woman with light brown skin, short blue hair, and an athletic build. She's wearing a black, fishnet bodysuit that leaves her breasts exposed, with tape covering her nipples, and matching fishnet gloves. Her outfit includes a black choker and a matching hat with a feather. She stands confidently on a wet street, holding a black umbrella and a small, red purse.\n", + "\n", + "In the background, a neon-lit building with a massive sign reads \"WAWFIE\" in white letters on a red background. The building features a sleek, modern design with large windows and a shiny, reflective surface. The street is bustling with people walking and talking, some carrying umbrellas and wearing raincoats. The street is illuminated by various neon signs and lights, casting a warm glow over the scene.\n", + "\n", + "To the left, a wooden staircase with a polished railing leads up to an elevated platform. The staircase is also lit up with neon lights, adding to the futuristic feel. The overall style is a blend of cyberpunk and fantasy, with a focus on high-tech, glossy textures and vibrant colors. The collage is a mix of realistic and stylized elements, creating a\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 18.jpg\n", + "\n", + "...\n", + "A collage of six digital artworks featuring women in various scenarios and outfits.\n", + "\n", + "1. Top-left: A woman with a slender physique, fair skin, and long dark hair, is wearing a blue bikini. She is leaning against a wooden railing, looking out into a futuristic city with neon signs and glowing buildings.\n", + "2. Top-middle: A woman with a medium build, light skin, and long dark hair, is wearing a blue and black fishnet bodysuit with a matching bikini top. She is posed in a sultry, provocative manner, with one leg up on a wooden beam, showing off her toned legs.\n", + "3. Top-right: A woman with a curvy figure, fair skin, and long dark hair, is wearing a blue bikini with a matching blue headscarf. She is standing in a lush tropical setting with palm trees and a blue sky.\n", + "4. Bottom-left: A woman with a slender build, fair skin, and long dark hair, is wearing a black leather outfit with fishnet stockings and a matching black bra. She is kneeling on a rocky surface, with her back turned to the camera, highlighting her curves and toned physique.\n", + "5. Bottom-middle: A woman with a slender build, fair skin, and long dark hair, is wearing a black leather corset with fishnet stockings\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 19.jpg\n", + "\n", + "...\n", + "This collage of digitally created images features a variety of sci-fi and fantasy scenes. \n", + "\n", + "Top left: A futuristic nightclub with a neon-lit bar and purple lights, with silhouettes of people dancing and drinking. The background is a mix of metallic and glass textures, giving it a sleek, industrial feel. The music and atmosphere suggest a lively party.\n", + "\n", + "Top center: A woman with fair skin and platinum blonde hair, wearing a white lab coat and black lingerie, struts confidently down a futuristic corridor. The corridor is lined with metallic panels and glowing blue lights, giving off a sterile and high-tech vibe.\n", + "\n", + "Top right: A group of women with fair skin and blonde hair, dressed in skimpy black lingerie with intricate straps, walking in formation. The setting is a high-tech hallway with blue lighting and metallic walls.\n", + "\n", + "Bottom left: A close-up of a woman with fair skin and light brown hair, wearing a black mesh top with a white collar and black thigh-high stockings. She has a serious expression, with her hands on her hips.\n", + "\n", + "Bottom center: A woman with dark skin and short dark hair, wearing a black bodysuit with a white collar and black stockings, standing in a dark, green-lit cave. Her expression is one of determination.\n", + "\n", + "Bottom right: A group of women with fair skin and\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 20.jpg\n", + "\n", + "...\n", + "This image is a collage of six CGI-rendered scenes from the 2019 film \"Birds of Prey (and the Fantabulous Emancipation of One Harley Quinn).\" Each scene features a different character in a stylized and hyper-realistic digital art style.\n", + "\n", + "1. In the top-left corner, Harley Quinn (Margot Robbie) is shown in a dark, gritty alleyway with neon lights. She is wearing a red leather corset and black pants, and her hair is styled in a short, blonde bob. She holds a smoking gun and looks determined.\n", + "2. In the top-center, Harley Quinn is in a futuristic cityscape at night, wearing a dark jacket and black pants. She is in mid-action, wielding a gun, and her expression is intense.\n", + "3. In the top-right, Harley Quinn is in a high-tech room, wearing a black leather jacket and pants. She holds a gun and is in a fighting stance, with a determined look.\n", + "4. In the bottom-left, Black Canary (Jurnee Smollett) is in a dimly lit room with a table. She is wearing a black leather jacket and pants, and her hair is styled in a short, dark bob. She looks focused and ready for action.\n", + "5. In the bottom-center, Harley Quinn is\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 21.jpg\n", + "\n", + "...\n", + "A collage of CGI images featuring a woman with light skin and brown hair styled in different ways. She is depicted in various sexy and provocative poses, often scantily clad, with her large breasts on full display.\n", + "\n", + "In the top left image, she wears a blue bikini top that barely covers her breasts, highlighting their size and shape. Her nipples are covered by black pasties. She stands in a tropical setting with a palm tree and a blue ocean in the background.\n", + "\n", + "The top right image shows her wearing a white military-style uniform with gold buttons, standing in a line with other soldiers in the same uniform. They are all looking straight ahead, suggesting a sense of discipline and order.\n", + "\n", + "The middle left image features her wearing a black fishnet top that barely covers her breasts, with her nipples again covered by black pasties. She holds a futuristic device with a glowing screen in her right hand.\n", + "\n", + "The middle right image shows her in an elegant, high-class setting, wearing an elaborate black and silver gown with intricate lace details. She has a sultry expression and her breasts are partially exposed.\n", + "\n", + "The bottom left image captures her in a dark, futuristic setting, surrounded by other women, all wearing revealing black outfits. She stands out with her larger breasts and a confident stance.\n", + "\n", + "The bottom right image shows her in a modern\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 22.jpg\n", + "\n", + "...\n", + "A collage of digital art featuring six different scenes from the video game \"Mass Effect 3.\"\n", + "\n", + "1. In the top left, a blonde woman with a fierce expression, her hair tied back, is seen in a dark, industrial setting, holding a gun. She has a speech bubble saying, \"Get off me!\"\n", + "\n", + "2. In the top center, a young blonde woman in a nun's outfit, complete with a black habit and white veil, is standing in a dimly lit room with a glowing red cross on the wall. She has a serene expression and is holding a cross necklace.\n", + "\n", + "3. In the top right, a dark-haired woman with a slender physique, wearing a revealing outfit with a bra and a thong, is standing in a red-lit room, looking tense and focused.\n", + "\n", + "4. In the bottom left, a female character with pale skin and long blonde hair, dressed in a futuristic, armored suit, is walking down a dark corridor with a glowing red light. She is armed with a rifle and has a determined look on her face.\n", + "\n", + "5. In the bottom center, a close-up of a woman's face, looking serious, with a slight smile.\n", + "\n", + "6. In the bottom right, a woman with short blonde hair and a stern expression, wearing a futuristic armor, is holding a\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 23.jpg\n", + "\n", + "...\n", + "A collage of digital comic book-style images featuring a curvy, light-skinned woman with long brown hair, dressed in revealing black latex lingerie. She has large breasts and a voluptuous figure. The first panel shows her from behind, standing in a dimly lit room with a futuristic, sci-fi vibe. She holds a futuristic gun in her right hand, and her left arm is raised, pointing at the camera. Her back is to the viewer, emphasizing her buttocks and the high-cut design of her panties.\n", + "\n", + "The second panel shows her from the front, sitting at a table in a dimly lit room, wearing a mask and a red bandana over her mouth. She looks serious and determined, holding a futuristic gun with both hands. The background shows a neon-lit cityscape with a dark, ominous atmosphere.\n", + "\n", + "The third panel shows her in a similar outfit, but this time she is in a modern office setting with a desk and computer monitor in the background. She looks tense and focused, with a determined expression on her face.\n", + "\n", + "The fourth panel shows her from the front, wearing the same outfit, with her hair down and a serious expression on her face. The background shows a futuristic cityscape with glowing lights.\n", + "\n", + "Overall, the images combine elements of sci-fi and crime, with a focus on the woman's\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 24.jpg\n", + "\n", + "...\n", + "A collage of six digital artworks depicting futuristic cityscapes with a focus on high-tech architecture and vibrant nightlife.\n", + "\n", + "1. Top left: A massive, towering skyscraper with sleek, angular lines and numerous windows, lit up in various colors. The building is surrounded by smaller structures and neon-lit signs, casting a bright glow over the city. The sky is clear, indicating daytime or early evening.\n", + "\n", + "2. Top right: A close-up of a futuristic building with a spiraling, metal staircase leading up to a red platform. The building is adorned with neon lights in vibrant colors, including pink, purple, and blue. The platform is surrounded by a glass railing, offering a view of the city below.\n", + "\n", + "3. Bottom left: A view of a city street at night, bustling with activity. The street is lined with neon signs and brightly lit buildings, including a large, glowing clock tower. People can be seen walking and riding on hoverboards, adding to the energetic atmosphere. The buildings are a mix of modern and retro styles.\n", + "\n", + "4. Bottom right: A detailed view of a futuristic building with a mix of organic and mechanical elements. The structure is adorned with various signs and lights, including a large, glowing red sign on the top floor. The building is surrounded by a network of elevated walkways and\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 25.jpg\n", + "\n", + "...\n", + "This is a collage of five separate, high-resolution CGI images showcasing a woman with long, straight black hair, fair skin, and a voluptuous, athletic physique with large breasts and wide hips. She is depicted in three different scenes, each with a distinct urban setting.\n", + "\n", + "1. The top-left image shows the woman standing confidently in front of a neon-lit sign that reads \"MILF\" in bold, pink letters. She wears a revealing, red bikini that accentuates her curvy figure. The background is a bustling city street at night, with glowing signs and neon lights creating a vibrant, electric atmosphere. The cityscape features tall buildings with windows illuminated by colorful lights, giving a lively, urban vibe.\n", + "\n", + "2. The top-right image features the woman in a futuristic, cyberpunk setting. She is dressed in a skimpy, silver bikini with fishnet stockings, and her long hair is styled in a high ponytail. She is positioned in front of a neon-lit sign that reads \"MILF\" in glowing pink letters. The background is a dark, gritty alleyway with a mix of cyberpunk and steampunk elements, including metal scaffolding, pipes, and a dimly lit, industrial feel.\n", + "\n", + "3. The bottom-left image shows the woman in a more natural, outdoor setting\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 26.jpg\n", + "\n", + "...\n", + "A collage of five CGI images showcasing futuristic urban scenes and a jungle setting, all in vibrant colors and detailed textures. \n", + "\n", + "Top left: A lush, green jungle setting with a large, muscular man in a black suit and white shirt, carrying a woman in a black swimsuit. They stand on a wooden bridge with a rope railing, surrounded by thick, tall trees and dense foliage. A misty waterfall cascades down in the background, adding a mystical vibe.\n", + "\n", + "Top right: A futuristic cityscape with a towering skyscraper covered in neon signs and billboards, lit up in a variety of colors including pink, purple, and blue. The building is shaped like a curved, twisted mass, giving it a dynamic and futuristic look.\n", + "\n", + "Bottom left: A wide-angle view of a bustling city street, filled with neon lights and colorful signs advertising various products and services. The street is packed with people, and the buildings are tall and ornate, with intricate details and bright lights.\n", + "\n", + "Bottom right: A close-up of a vibrant city street at night, featuring a young woman in a blue dress and high heels, walking towards a neon-lit building with a pink and purple sign. The street is full of people, with a sense of energy and excitement.\n", + "\n", + "The overall collage showcases a blend of natural and urban settings,\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 27.jpg\n", + "\n", + "...\n", + "This is a collage of six digital artworks in a sci-fi/fantasy style, featuring highly detailed and realistic human figures. The top left image shows a close-up of a woman with curly blonde hair wearing a red bikini top and black shorts, standing in a dimly lit room. She has a slender physique and medium-sized breasts.\n", + "\n", + "The top right image shows a woman walking down a neon-lit, futuristic city street at night, with glowing signs and billboards in the background. She has long dark hair and is wearing a black leather outfit with thigh-high boots and a matching jacket, accentuating her curvy figure and medium-sized breasts.\n", + "\n", + "The bottom left image depicts a woman in a futuristic cockpit, wearing a black bodysuit and a helmet, with a large breastplate and thigh-high boots, giving her a sleek and powerful look. She is engaged in a heated conversation with a man in a similar outfit.\n", + "\n", + "The bottom right image shows a woman with pink hair in a futuristic setting, wearing a black leather bodysuit with a high collar and gloves, holding a blue energy weapon. She is surrounded by glowing, neon signs and futuristic machinery.\n", + "\n", + "The overall style of the collage is highly detailed and polished, with a focus on the characters' physiques and the dynamic, futuristic setting.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 28.jpg\n", + "\n", + "...\n", + "A collage of 11 digital CGI images featuring voluptuous, nude or scantily-clad women in various fantasy and futuristic settings. The top-left image shows a busty, fair-skinned woman with short brown hair, wearing only a pair of black panties and high heels, standing on a platform in a futuristic city with skyscrapers and neon lights. The top-right image features a blonde woman with a curvy figure and large breasts, wearing a metallic bodysuit with high heels, posed in a futuristic setting with a cityscape in the background. The bottom-left image depicts a fiery scene with a woman in a red leather outfit and high heels, wielding a gun, surrounded by flames and explosions.\n", + "\n", + "The bottom-right image showcases a woman in a white, form-fitting, futuristic outfit, with large breasts and a curvy figure, standing in an urban setting with skyscrapers and neon lights. Other images in the collage include a woman in a black corset and high heels, a woman in a red latex outfit, a woman in a black choker and fishnet stockings, and a woman in a white bodysuit with a plunging neckline. The backgrounds range from gritty urban settings to futuristic cityscapes with neon lights and skyscrapers. The images are highly detailed, with a focus on the women's\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 29.jpg\n", + "\n", + "...\n", + "1. Top left: A futuristic cityscape with a neon-lit, multi-level building, featuring a woman with long blonde hair and a blue, shiny, plunging neckline dress that accentuates her ample cleavage and slim waist. The background is a vibrant mix of neon signs and lights, giving off a Blade Runner vibe.\n", + "\n", + "2. Top right: A close-up of a woman with straight blonde hair, wearing a similar blue, shiny dress. She is looking down, exuding a confident, sultry expression. The background is a neon-lit street with glowing signs and billboards, adding to the futuristic, Blade Runner aesthetic.\n", + "\n", + "3. Bottom left: A wide-angle shot of a bustling city street at night, filled with neon signs and glowing lights, showcasing the vibrant, electric atmosphere. The city is packed with people and vehicles, and the architecture is modern and towering.\n", + "\n", + "4. Bottom right: A close-up of a woman with straight blonde hair, wearing a tight, neon green and blue fishnet dress that accentuates her curvy figure. She is standing on a stage, with a microphone in front of her, indicating she is performing at a club or concert venue. The background is dimly lit, with a mix of neon and blue lights, adding to the nightclub ambiance.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 30.jpg\n", + "\n", + "...\n", + "A collage of six hyper-realistic CGI images featuring busty women with exaggerated physical features in provocative, sci-fi themed outfits.\n", + "\n", + "1. Top left: A curvy woman with large breasts and a toned body, wearing fishnet stockings, a neon blue thong, and a neon green top. She is posed provocatively, with her right leg raised and her left arm flexed, standing in a neon-lit futuristic city.\n", + "2. Top right: A blonde woman with a slim waist and large breasts, wearing a revealing black and gold bikini top and matching bottoms, with a red jacket. She stands in front of a neon-lit casino sign that reads \"Casino Lux.\"\n", + "3. Bottom left: A woman with large breasts and a curvy figure, wearing a white thong and matching thigh-high stockings, and a white top. She is posed confidently, holding a gun, standing in a dimly lit room with a futuristic, industrial feel.\n", + "4. Bottom middle: A woman with large breasts, wearing a white thong and thigh-high stockings, and a white top. She is kneeling on a stage, with a spotlight on her, in a dimly lit room.\n", + "5. Bottom right: A woman with large breasts, wearing a white thong and thigh-high stockings, and a white top. She is\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 31.jpg\n", + "\n", + "...\n", + "A collage of various photos and videos, arranged in a grid format, showcases a diverse array of scenes and subjects. The top left corner features a young woman with long brown hair in a pink dress, standing in a field. To the right, a man in a white shirt and black tie is seen from the back, surrounded by a crowd of people in a lively setting. The middle section displays a young woman in a green dress, possibly at a party or social gathering, surrounded by other people. The bottom left corner shows a group of people in a dark, dimly lit room, possibly a nightclub or bar, with various neon signs and colorful lighting.\n", + "\n", + "The bottom right corner showcases a woman in a green and white dress, holding a drink, in a vibrant setting with a mix of natural and artificial light. The middle right section features a woman in a red dress, standing in front of a large crowd, possibly at a concert or event. The bottom center section displays a man in a white shirt and black pants, possibly in a studio setting, surrounded by equipment and a small crowd.\n", + "\n", + "Overall, the collage captures a variety of moments and environments, showcasing different people and activities in various settings. The images are vibrant and colorful, with a mix of natural and artificial lighting, creating a lively and dynamic scene.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 32.jpg\n", + "\n", + "...\n", + "A collage of eight separate digital images, each showing a different scene or moment featuring a female character in a sci-fi setting. The top left image shows a woman in a futuristic outfit with a dark skin tone, wearing a black bodysuit with high-heeled boots and a black mask, holding a gun and aiming it. The background has glowing panels and futuristic architecture. In the top center image, a blonde woman with a light skin tone is dressed in a black leather outfit, holding a gun and wearing a black mask. The background has red and blue lighting and a futuristic control panel.\n", + "\n", + "The bottom left image shows a woman with long, dark hair in a black, glittery outfit, holding a gun. The background has a dimly lit, ornate room with a chandelier.\n", + "\n", + "In the middle left, a woman with a light skin tone and long, dark hair is wearing a black bodysuit with a thigh strap, holding a gun and looking tense. The background is a futuristic, industrial setting with metal panels and glowing lights.\n", + "\n", + "The bottom right image features a blonde woman with a light skin tone, wearing a black, fishnet outfit, holding a gun and looking serious. The background has a dimly lit, metallic, industrial setting.\n", + "\n", + "The top right image shows a woman with a light skin tone and\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 33.jpg\n", + "\n", + "...\n", + "This image is a composite of three CGI-rendered scenes from the video game \"The Matrix,\" featuring a young, Caucasian girl with light blonde hair and blue eyes. She is depicted in three different scenes with varying outfits and poses.\n", + "\n", + "In the top left scene, the girl is standing in a dark, industrial setting with metal walls and a dimly lit room. She wears a black leather jacket, a white lace bra, and white panties, with a black choker around her neck. She holds a handgun in her right hand and a large machine gun in her left, both pointed at the viewer.\n", + "\n", + "In the top right scene, the girl is wearing a black leather jacket and black leather pants, along with a black leather choker. She stands in a futuristic, high-tech room with glowing blue and green lights, holding a handgun in her right hand and aiming it at the camera.\n", + "\n", + "In the bottom left scene, the girl is wearing a white lace bra and panties, with a black choker around her neck. She is kneeling on the floor of a dimly lit room, holding a handgun in her right hand and aiming it at the viewer.\n", + "\n", + "The bottom right scene shows the girl wearing a red leather jacket and pants, with a black choker. She is kneeling on the floor of a dark, industrial room,\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 34.jpg\n", + "\n", + "...\n", + "1. Top left: A woman in a green and yellow bikini runs away from a fiery explosion. She has a slim build and light skin. The background is a dark, urban environment with tall buildings.\n", + "2. Top middle: A woman with short black hair, wearing a black mesh top and black shorts, holds a gun in a futuristic cityscape. She has a curvy figure and light skin. The city has a high-tech feel with neon signs and glowing buildings.\n", + "3. Top right: A woman with long brown hair and a slim build, wearing a black bodysuit, climbs a building while holding a gun. The background shows a city with glowing buildings and a dark sky.\n", + "4. Bottom left: A woman with long brown hair and a slender build, wearing a black bodysuit, stands in a futuristic room with glowing screens and high-tech gadgets. She has a determined expression.\n", + "5. Bottom middle: A woman with long brown hair and a slim figure, wearing a black bodysuit, stands in a futuristic room with glowing screens and high-tech gadgets. She has a confident expression.\n", + "6. Bottom right: A woman with long brown hair and a slim build, wearing a black bodysuit, stands in a futuristic room with glowing screens and high-tech gadgets. She has a determined expression\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 35.jpg\n", + "\n", + "...\n", + "1. Top left: A futuristic cityscape with neon lights and a woman in a black bodysuit with a red jacket and white gloves, holding a futuristic gun.\n", + "2. Top right: A woman with a short blonde bob, wearing a red jacket and black lingerie with gold accents, standing confidently.\n", + "3. Middle left: A woman in a black bodysuit with a red jacket and white gloves, standing in a futuristic room with glowing panels and a holographic display.\n", + "4. Middle right: A woman with long blonde hair, wearing a black bodysuit with gold accents, holding a futuristic gun.\n", + "5. Bottom left: A woman in a black bodysuit with a red jacket and white gloves, walking down a futuristic hallway with glowing panels.\n", + "6. Bottom right: A woman with short black hair, wearing a black bodysuit with gold accents, walking down a dark hallway with red lighting and futuristic technology.\n", + "\n", + "The overall style is a mix of cyberpunk and sci-fi, with a focus on high-tech weapons and sleek, modern clothing. The women are all depicted with athletic builds and varying degrees of breast size. The scenes are set in futuristic, high-tech environments with glowing panels, holographic displays, and sleek metallic textures.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 36.jpg\n", + "\n", + "...\n", + "1. Top left: A futuristic bar with a blonde woman in a black leather bodysuit, black gloves, and a mask. She has a curvy figure and wears high heels. The background features a dark, industrial-style bar with metallic elements, neon lights, and a brick wall.\n", + "2. Top right: A blonde woman in a black leather bodysuit and black gloves, wearing a black mask. She stands in front of a pink wall with a window displaying a cityscape at night. Her pose is provocative, with one hand behind her head and the other on her hip.\n", + "3. Bottom left: A close-up of a woman with dark hair, wearing a black leather bodysuit with cutouts and black gloves. She has a serious expression, looking directly at the camera.\n", + "4. Bottom middle: A dark, futuristic scene with a woman in a black bodysuit and black gloves, standing next to a table with a white tablecloth. The background features metallic elements and a cityscape visible through a window.\n", + "5. Bottom right: A woman in a black bodysuit, black gloves, and a mask, standing in front of a futuristic, industrial-style building with a large window. She has a muscular build and wears a cape.\n", + "\n", + "The overall style is a blend of cyberpunk and fetish themes\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 37.jpg\n", + "\n", + "...\n", + "A CGI comic strip with a sci-fi vibe, featuring a woman with a curvy figure and fair skin, wearing a blue bikini top and bottom that highlight her ample breasts and hips. Her long blonde hair is tied back, and she has a confident, sexy expression.\n", + "\n", + "In the top left panel, she's standing in front of a futuristic computer screen with a holographic interface, wearing a black fishnet bodysuit and black thigh-high stockings. Her breasts are barely contained by the fishnet, and her legs are toned and muscular. The background shows a sleek, metallic room with glowing neon lights and high-tech gadgets, adding to the futuristic feel.\n", + "\n", + "The top right panel shows her from behind, wearing a black latex catsuit that hugs her curves tightly, emphasizing her round buttocks. She's standing next to a tall, muscular man with light skin, wearing a black suit and a helmet. He's holding a long gun and appears to be in charge.\n", + "\n", + "The bottom left panel is a close-up of her torso, highlighting her toned abs and the blue bikini top. The background shows a lush tropical setting with palm trees and a clear blue sky.\n", + "\n", + "The bottom right panel features the woman and a group of other women, all dressed in similar latex outfits, standing in a room with futuristic decor, looking confident and\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 38.jpg\n", + "\n", + "...\n", + "1. **Left panel:** A blonde woman with fair skin and large breasts stands confidently on a tropical beach. She wears a blue bikini that accentuates her curves and is accessorized with a blue headband and matching wristbands. Her blue bikini top and bottom are tied with string. She has a toned physique with defined abs and muscular legs. The background shows a palm tree and a clear blue ocean. The scene is vibrant and tropical, with the woman posing for a photo shoot.\n", + "\n", + "2. **Center panel:** A blonde woman with fair skin and a slender yet curvy figure poses provocatively on a wooden bridge. She wears a blue bikini and thigh-high fishnet stockings, with her breasts barely contained by the top. She has a confident and seductive expression, and her makeup is heavy, with bold red lipstick and dark eyeliner. The bridge is rustic, with wooden planks and a tropical forest backdrop. Neon signs and colorful lights add a lively, urban atmosphere to the scene.\n", + "\n", + "3. **Right panel:** A blonde woman with fair skin and a voluptuous figure stands on a neon-lit street in a futuristic city. She wears a revealing outfit consisting of a fishnet top and short shorts, revealing her ample breasts and toned legs. Her makeup is dramatic, with heavy eyeliner and red lipstick. The\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 39.jpg\n", + "\n", + "...\n", + "This digital artwork features a mix of CGI and 3D-rendered elements in a futuristic, high-tech setting. The main subjects are several women with different ethnicities and body types, all of whom are wearing revealing, fetishistic attire. The dominant style is a blend of hyperrealism and stylized fantasy, with exaggerated proportions and textures.\n", + "\n", + "In the top-left corner, a woman with dark skin and long black hair is bent over a table, wearing a black leather harness and fishnet stockings. She has a muscular build and large breasts, with nipples covered by black tape. Another woman with light skin, medium-length blonde hair, and an athletic build is in the background, also wearing a leather harness and fishnets.\n", + "\n", + "The top-right corner shows a group of women with various skin tones and body types, including one woman with dark skin and a curvy figure, wearing a black mesh bodysuit and fishnets. Another woman with light skin and a fit physique is in the background, wearing a black leather harness and fishnets.\n", + "\n", + "The bottom section features a group of women in military uniforms, including one woman with light skin and a curvy figure, wearing a black leather harness and fishnets. The setting is a futuristic military base with metallic walls and industrial lighting. The overall tone is a blend of eroticism and\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 40.jpg\n", + "\n", + "...\n", + "A series of photos and illustrations featuring a woman in a futuristic, cyberpunk setting. She has a light skin tone, and her hair is styled in a bob cut with bangs. She is wearing a revealing, black fishnet top that covers her arms and chest but leaves her ample breasts exposed, with small black crosses over her nipples. She has a slender, toned physique and is seen in various poses, often with a confident and fierce expression.\n", + "\n", + "In the first image, she stands in a futuristic room with metallic walls and industrial lighting. She is holding a gun, pointing it at the camera, with a speech bubble saying, \"I'm going to kill you.\" The background features a large, neon-lit sign with a stylized character.\n", + "\n", + "The second image shows her in a similar room, this time with her back turned to the camera, emphasizing her curves. She is wearing a black leather harness that accentuates her waist and hips, and her fishnet top is partially undone to reveal more of her breasts.\n", + "\n", + "The third image is an illustration showing her from the side, highlighting her muscular arms and legs. She is wearing a black leather choker and a matching harness. The background is a neon-lit cityscape with tall buildings and glowing signs.\n", + "\n", + "The fourth image shows her standing in a futuristic bar, surrounded by\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 41.jpg\n", + "\n", + "...\n", + "A detailed CGI scene set in a futuristic spaceship features a female character with a curvy body, light skin, and long blonde hair styled in a ponytail. She's dressed in a skimpy black thong and fishnet stockings, exposing her ample breasts and round, firm buttocks. Her face is partially covered by a black mask, giving her a mysterious look. She is wielding a large, futuristic gun with a red laser sight, aiming it at a group of men.\n", + "\n", + "In the background, three men with light skin and short hair are dressed in white lab coats and gloves. They look nervous and are trying to hide behind a desk with a computer screen. The spaceship's interior is sleek and modern, with metallic textures and large windows, giving a sense of space and grandeur. The floor is made of a shiny, reflective material, and the lighting is dim, creating a tense and dramatic atmosphere.\n", + "\n", + "Another scene shows the woman from the back, with her buttocks prominently displayed, wearing only a thong and stockings, walking away from the viewer. A speech bubble next to her says, \"I'll take care of this, guys.\"\n", + "\n", + "The overall style is hyper-realistic with a focus on detailed textures and lighting, creating a visually stunning and immersive scene.\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 42.jpg\n", + "\n", + "...\n", + "This collage features four different scenes of a busty, light-skinned woman with short blonde hair styled in a sleek, modern cut. She has a fit and toned physique, with her breasts prominently displayed. In the top left image, she is wearing a tight, dark blue bodysuit with a high collar and long sleeves, wielding a gun with a determined expression. The background is dark and gritty, with a futuristic, urban environment visible through the window.\n", + "\n", + "In the top right image, she is wearing a strapless, deep red, satin dress that accentuates her cleavage, with a red heart-shaped pendant necklace. She is seated on a plush, dark blue couch, looking contemplative and pensive. The background is a dimly lit, modern living room with a large, abstract painting on the wall.\n", + "\n", + "The bottom left image shows her in a tight, black leather outfit with a red jacket, wearing thigh-high black boots. She is in a futuristic, metallic hallway with other people in similar outfits, suggesting a military or high-tech environment. The background is dimly lit with a neon blue glow.\n", + "\n", + "The bottom right image is a close-up of her face, showing her lips slightly parted and her eyes looking upward, giving a sense of depth and emotion. The background is out of focus, highlighting her as the\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 43.jpg\n", + "\n", + "...\n", + "A collage of five digital artworks featuring stylized women in futuristic, sci-fi settings.\n", + "\n", + "1. Top-left: A woman in a futuristic space setting, wearing a white, skin-tight, revealing outfit with a high collar, midriff, and thigh-high boots, giving a confident pose. Her long, flowing hair is blonde, and she has a slim, toned physique with large breasts. The background is a metallic, industrial space with futuristic machinery and a metallic floor.\n", + "\n", + "2. Top-center: A woman in a similar futuristic setting, wearing a white, skin-tight outfit with a high collar, midriff, and thigh-high boots, giving a confident pose. She has long, flowing blonde hair and a slim, toned physique with large breasts. The background is a dimly lit, industrial space with metallic textures and futuristic machinery.\n", + "\n", + "3. Top-right: A woman in a futuristic nightclub setting, wearing a red bikini with a high waist and high-cut bottom, revealing her toned midriff and thighs. She has long, flowing dark hair and a slim, toned physique with large breasts. The background is a vibrant, neon-lit nightclub with a dance floor, neon lights, and silhouettes of people dancing.\n", + "\n", + "4. Bottom-left: A woman in a futuristic, neon-lit setting,\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 44.jpg\n", + "\n", + "...\n", + "A collage of CGI images featuring a curvy, light-skinned woman with platinum blonde hair and blue eyes, showcasing her voluptuous body, large breasts, and wide hips. She's posing provocatively in various scenarios, including a futuristic, neon-lit nightclub with a red and blue glow, and a high-tech, ornate building with a grand staircase and intricate wooden details. She is dressed in tight, revealing lingerie, including fishnet stockings and high heels, accentuating her curves and showcasing her ample cleavage.\n", + "\n", + "The first image shows her standing in a nightclub, surrounded by a bustling crowd, with neon lights and a futuristic vibe. She is wearing a black thong and fishnet stockings, with a red and gold necklace. Her expression is confident and seductive.\n", + "\n", + "The second image depicts her in a more intimate setting, lounging on a chair in a dimly lit room, with a hint of a sci-fi atmosphere. She's dressed in a sheer black top and fishnet stockings, revealing her ample cleavage and toned body.\n", + "\n", + "The third image shows her in a more casual setting, with her hair tied up, wearing a black top and fishnet stockings. She is standing in a dimly lit room with a retro aesthetic, holding a large camera.\n", + "\n", + "The overall style is a mix of modern CGI and erotic\n", + "Prompt: Describe the image in 400 words\n", + "...\n", + "\n", + "...caption for 45.jpg\n", + "\n", + "...\n", + "This digital artwork is a collage of five different scenes featuring a young woman with long, straight, black hair and fair skin, standing prominently in the middle. She has a slender physique with small breasts and a flat stomach. The woman is dressed in a revealing, red bikini top and matching high-waisted bottoms, paired with black thigh-high stockings. Her expression is confident and composed.\n", + "\n", + "In the top left section, she is seen in a nightclub setting, wearing a black, strapless top and matching shorts, with her hair in a short, pink bob. She has a more youthful look and is surrounded by a group of men in suits, creating a lively and energetic atmosphere.\n", + "\n", + "The top right section shows her in a dimly lit room, wearing a revealing, black, latex outfit that accentuates her figure. She has a seductive expression, with her hands resting on her hips, and her long hair cascading down her back.\n", + "\n", + "The bottom left section features a close-up of the woman, wearing a black, fishnet top and matching shorts. Her expression is serious and intense, with her eyes focused on the camera.\n", + "\n", + "The bottom right section displays her in a futuristic, urban setting with neon lights, skyscrapers, and a busy cityscape. She is wearing a revealing, red, latex outfit with\n" ] } ] @@ -3137,7 +3630,7 @@ }, "widgets": { "application/vnd.jupyter.widget-state+json": { - "677c2b6d8f5749be81a95f14f342ca49": { + "8255ebf6b151499f993a725882fce5df": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3152,14 +3645,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_1e7891872d2e4f98a8d9c16c8caeb8f3", - "IPY_MODEL_5a87e2ab3d2f4b2d89ed2f69d0134886", - "IPY_MODEL_e0c0b7c47c0d4941a96115dd705f54e6" + "IPY_MODEL_83807b91d0784bd98dcc20e9c377e5f9", + "IPY_MODEL_647add4bf4534277a0dac3793b73c042", + "IPY_MODEL_e320167d3270472596b30629e1b1ff0e" ], - "layout": "IPY_MODEL_618531d42a7d4c948ef26c593a6bc72d" + "layout": "IPY_MODEL_0af61f4285d84544a150e64d0cf25366" } }, - "1e7891872d2e4f98a8d9c16c8caeb8f3": { + "83807b91d0784bd98dcc20e9c377e5f9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3174,13 +3667,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_27d281cbe10f4dbdac5964b3d6bc7105", + "layout": "IPY_MODEL_34f0ea02dd0f4f938405624eeb96041b", "placeholder": "​", - "style": "IPY_MODEL_a2d976f072734aedb34481c991e079a6", + "style": "IPY_MODEL_b7b2b08acb104f2eb479abcaf931a420", "value": "preprocessor_config.json: 100%" } }, - "5a87e2ab3d2f4b2d89ed2f69d0134886": { + "647add4bf4534277a0dac3793b73c042": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3196,15 +3689,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d815da4760c347aabe4628f431603c5e", + "layout": "IPY_MODEL_e62dcb0f6ee64cbd833dba4b6cc2c838", "max": 368, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_7b9ee9ba6fea4819b993ada4d603f944", + "style": "IPY_MODEL_de50b74569494f0ebcb908c946760389", "value": 368 } }, - "e0c0b7c47c0d4941a96115dd705f54e6": { + "e320167d3270472596b30629e1b1ff0e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3219,13 +3712,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_90f053e9520b4c939db6359450dc8387", + "layout": "IPY_MODEL_8d6f65d610db41e79c355d90248ff9e8", "placeholder": "​", - "style": "IPY_MODEL_67b620900c3e4bb2949b5c3b8bddd745", - "value": " 368/368 [00:00<00:00, 8.45kB/s]" + "style": "IPY_MODEL_f115234364404f7db692dfcf85cc9958", + "value": " 368/368 [00:00<00:00, 12.1kB/s]" } }, - "618531d42a7d4c948ef26c593a6bc72d": { + "0af61f4285d84544a150e64d0cf25366": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3277,7 +3770,7 @@ "width": null } }, - "27d281cbe10f4dbdac5964b3d6bc7105": { + "34f0ea02dd0f4f938405624eeb96041b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3329,7 +3822,7 @@ "width": null } }, - "a2d976f072734aedb34481c991e079a6": { + "b7b2b08acb104f2eb479abcaf931a420": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3344,7 +3837,7 @@ "description_width": "" } }, - "d815da4760c347aabe4628f431603c5e": { + "e62dcb0f6ee64cbd833dba4b6cc2c838": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3396,7 +3889,7 @@ "width": null } }, - "7b9ee9ba6fea4819b993ada4d603f944": { + "de50b74569494f0ebcb908c946760389": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3412,7 +3905,7 @@ "description_width": "" } }, - "90f053e9520b4c939db6359450dc8387": { + "8d6f65d610db41e79c355d90248ff9e8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3464,7 +3957,7 @@ "width": null } }, - "67b620900c3e4bb2949b5c3b8bddd745": { + "f115234364404f7db692dfcf85cc9958": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3479,7 +3972,7 @@ "description_width": "" } }, - "64026504cbb049448b0b2a05fcaca892": { + "b095707d4d094583b716fbcfc4d36113": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3494,14 +3987,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_97a78b94561e40ffb4866a3121add9f7", - "IPY_MODEL_c30428c60be54cb9bb82669133935c77", - "IPY_MODEL_16b040dea75f488f8284175bbf127d06" + "IPY_MODEL_191f91cb56384d128ef90024de2dd75f", + "IPY_MODEL_def978d4302d4936b55b6dc176a5c34a", + "IPY_MODEL_c519fee13714432fbca969408454fc2a" ], - "layout": "IPY_MODEL_3c53bdf344944a5b873ca13d03131514" + "layout": "IPY_MODEL_5abf23f8382349cfb4f9c7e5d324b9c4" } }, - "97a78b94561e40ffb4866a3121add9f7": { + "191f91cb56384d128ef90024de2dd75f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3516,13 +4009,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_1fbf34927f9f41a7864446f76590dc32", + "layout": "IPY_MODEL_8e5e78775f094ee282b071c7a4cb492e", "placeholder": "​", - "style": "IPY_MODEL_e7941102753c488abe7e618fb2b7bd4a", + "style": "IPY_MODEL_f1364afa4eff4fda88916ea0472e9979", "value": "tokenizer_config.json: 100%" } }, - "c30428c60be54cb9bb82669133935c77": { + "def978d4302d4936b55b6dc176a5c34a": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3538,15 +4031,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3e3e439b47b04efa9668c6f0caffc92a", + "layout": "IPY_MODEL_feb539d4a85241d69e1444206ec04ce6", "max": 711, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_6be2842f686e4a94b26a3dbcb487d5d1", + "style": "IPY_MODEL_e03d9e03df7e4efcaae67d3e23c6c40a", "value": 711 } }, - "16b040dea75f488f8284175bbf127d06": { + "c519fee13714432fbca969408454fc2a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3561,13 +4054,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3ea606cb750d4a6ab953a1e496662314", + "layout": "IPY_MODEL_cf4a3c7ad17246ca9a2d52876062e7e1", "placeholder": "​", - "style": "IPY_MODEL_705144529f06402ab334cf8276d753c3", - "value": " 711/711 [00:00<00:00, 23.5kB/s]" + "style": "IPY_MODEL_1d80f6de29d84183ab58063e36671e61", + "value": " 711/711 [00:00<00:00, 7.80kB/s]" } }, - "3c53bdf344944a5b873ca13d03131514": { + "5abf23f8382349cfb4f9c7e5d324b9c4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3619,7 +4112,7 @@ "width": null } }, - "1fbf34927f9f41a7864446f76590dc32": { + "8e5e78775f094ee282b071c7a4cb492e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3671,7 +4164,7 @@ "width": null } }, - "e7941102753c488abe7e618fb2b7bd4a": { + "f1364afa4eff4fda88916ea0472e9979": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3686,7 +4179,7 @@ "description_width": "" } }, - "3e3e439b47b04efa9668c6f0caffc92a": { + "feb539d4a85241d69e1444206ec04ce6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3738,7 +4231,7 @@ "width": null } }, - "6be2842f686e4a94b26a3dbcb487d5d1": { + "e03d9e03df7e4efcaae67d3e23c6c40a": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -3754,7 +4247,7 @@ "description_width": "" } }, - "3ea606cb750d4a6ab953a1e496662314": { + "cf4a3c7ad17246ca9a2d52876062e7e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3806,7 +4299,7 @@ "width": null } }, - "705144529f06402ab334cf8276d753c3": { + "1d80f6de29d84183ab58063e36671e61": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -3821,7 +4314,7 @@ "description_width": "" } }, - "1dbec7c042b442d09714661bd8e96ef5": { + "8cd4f21c01914bca9528e82106cae7bf": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -3836,14 +4329,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_fe314238b4e14fbabb9b61c6b0fcffd7", - "IPY_MODEL_f21c44f260634a3a979dd268f22a23cf", - "IPY_MODEL_3475bf774dc3470f939259c29cb4a1ab" + "IPY_MODEL_c68896193db049a5b9c50b0a37c8a028", + "IPY_MODEL_31f9f3bcda174eeb9750df5ca30b39d7", + "IPY_MODEL_57388cc1664544cb8485f9a68f596f0a" ], - "layout": "IPY_MODEL_26c533c214cb4840b0dd75160ccfb668" + "layout": "IPY_MODEL_f2ce2d7a0dd744f1a4676179edd9647a" } }, - "fe314238b4e14fbabb9b61c6b0fcffd7": { + "c68896193db049a5b9c50b0a37c8a028": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3858,13 +4351,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9525b258f109481ca5ec4d024795f4c3", + "layout": "IPY_MODEL_bf4906e1ba6146019f62f7a1bc005983", "placeholder": "​", - "style": "IPY_MODEL_b7a8bd4839124b4796cc4d06e5af1ec0", + "style": "IPY_MODEL_e55fcbff61ad435fbb894aba30a0e572", "value": "spiece.model: 100%" } }, - "f21c44f260634a3a979dd268f22a23cf": { + "31f9f3bcda174eeb9750df5ca30b39d7": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -3880,15 +4373,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_23de349995e84f4d97caad6e9c946e06", + "layout": "IPY_MODEL_a7b7b14f5781447ca3501de2e7bb2b7d", "max": 798330, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_a6af95bd46784bd29dffc579342f6939", + "style": "IPY_MODEL_d4baa5a9a5524a4b9d8bba1a77157f27", "value": 798330 } }, - "3475bf774dc3470f939259c29cb4a1ab": { + "57388cc1664544cb8485f9a68f596f0a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -3903,13 +4396,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e7408ddb5d7242f19da322ed4411bdd7", + "layout": "IPY_MODEL_06a87c3d534141d48fea95b3cd722455", "placeholder": "​", - "style": "IPY_MODEL_3d5a7404655348a599fd89947ef63fee", - "value": " 798k/798k [00:00<00:00, 6.92MB/s]" + "style": "IPY_MODEL_a2df401886124597858dc81088cf87e4", + "value": " 798k/798k [00:00<00:00, 8.80MB/s]" } }, - "26c533c214cb4840b0dd75160ccfb668": { + "f2ce2d7a0dd744f1a4676179edd9647a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -3961,7 +4454,7 @@ "width": null } }, - "9525b258f109481ca5ec4d024795f4c3": { + "bf4906e1ba6146019f62f7a1bc005983": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4013,7 +4506,7 @@ "width": null } }, - "b7a8bd4839124b4796cc4d06e5af1ec0": { + "e55fcbff61ad435fbb894aba30a0e572": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4028,7 +4521,7 @@ "description_width": "" } }, - "23de349995e84f4d97caad6e9c946e06": { + "a7b7b14f5781447ca3501de2e7bb2b7d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4080,7 +4573,7 @@ "width": null } }, - "a6af95bd46784bd29dffc579342f6939": { + "d4baa5a9a5524a4b9d8bba1a77157f27": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4096,7 +4589,7 @@ "description_width": "" } }, - "e7408ddb5d7242f19da322ed4411bdd7": { + "06a87c3d534141d48fea95b3cd722455": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4148,7 +4641,7 @@ "width": null } }, - "3d5a7404655348a599fd89947ef63fee": { + "a2df401886124597858dc81088cf87e4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4163,7 +4656,7 @@ "description_width": "" } }, - "3b13c93fba8e497fa0b04a8c904c6b00": { + "37464a0386874c2389ce13a88f108259": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4178,14 +4671,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_862aac54f21f43219a712bd014d4a881", - "IPY_MODEL_166f396c91b3415796593026e22d6ca4", - "IPY_MODEL_1c03d0251549463dbc1d1a0338e6d543" + "IPY_MODEL_16ec9d335da6459c9c8668c5d2a9bcf3", + "IPY_MODEL_be2ed2735f504bb0bc308cbc4d05df12", + "IPY_MODEL_74bfda226284428bb6a990ca6263a784" ], - "layout": "IPY_MODEL_41688dfe48cb486bbb741803a7bca2fb" + "layout": "IPY_MODEL_4216f02c062f4086b66ff5ad098b237a" } }, - "862aac54f21f43219a712bd014d4a881": { + "16ec9d335da6459c9c8668c5d2a9bcf3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4200,13 +4693,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_407d899122664b149225d02a0782042c", + "layout": "IPY_MODEL_6aa0fdc198bf47d6a3433a6132cc5eb9", "placeholder": "​", - "style": "IPY_MODEL_a7491f6dff884919a8f30a6291b44785", + "style": "IPY_MODEL_d5977d20ff044a94a4b185fdfdc4ec24", "value": "special_tokens_map.json: 100%" } }, - "166f396c91b3415796593026e22d6ca4": { + "be2ed2735f504bb0bc308cbc4d05df12": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4222,15 +4715,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8f05cb78d33544178e5f176315ea9b15", + "layout": "IPY_MODEL_a0ac66c636954e0182ddad749fdd594f", "max": 409, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_86dc8f7ee4f54adfbc4c54e0d2304b76", + "style": "IPY_MODEL_3e370599e2ff4168afeb87036d69b0df", "value": 409 } }, - "1c03d0251549463dbc1d1a0338e6d543": { + "74bfda226284428bb6a990ca6263a784": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4245,13 +4738,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_53f1265f3b164e5e8c326bc961d26856", + "layout": "IPY_MODEL_0d8dec7ba8594a57be87db8d4ffb0fdf", "placeholder": "​", - "style": "IPY_MODEL_564b3e02a69049d6bd93f0db7657bf97", - "value": " 409/409 [00:00<00:00, 7.46kB/s]" + "style": "IPY_MODEL_b371c960b53a478091e293a78d6f27bc", + "value": " 409/409 [00:00<00:00, 7.44kB/s]" } }, - "41688dfe48cb486bbb741803a7bca2fb": { + "4216f02c062f4086b66ff5ad098b237a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4303,7 +4796,7 @@ "width": null } }, - "407d899122664b149225d02a0782042c": { + "6aa0fdc198bf47d6a3433a6132cc5eb9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4355,7 +4848,7 @@ "width": null } }, - "a7491f6dff884919a8f30a6291b44785": { + "d5977d20ff044a94a4b185fdfdc4ec24": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4370,7 +4863,7 @@ "description_width": "" } }, - "8f05cb78d33544178e5f176315ea9b15": { + "a0ac66c636954e0182ddad749fdd594f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4422,7 +4915,7 @@ "width": null } }, - "86dc8f7ee4f54adfbc4c54e0d2304b76": { + "3e370599e2ff4168afeb87036d69b0df": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4438,7 +4931,7 @@ "description_width": "" } }, - "53f1265f3b164e5e8c326bc961d26856": { + "0d8dec7ba8594a57be87db8d4ffb0fdf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4490,7 +4983,7 @@ "width": null } }, - "564b3e02a69049d6bd93f0db7657bf97": { + "b371c960b53a478091e293a78d6f27bc": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4505,7 +4998,7 @@ "description_width": "" } }, - "81d0a99396424adf855de9e5fe7f9bba": { + "d67eda371d934db08478691960401a94": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4520,14 +5013,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_cf0e19a3911d40d7ad76bc6f9a4b60af", - "IPY_MODEL_f84f644da2c9458880d137b5d85bf57a", - "IPY_MODEL_1f3ef07e5d574d3b892327b22b3b7ebf" + "IPY_MODEL_ed1835f40bab4e3ca80dc781e1ccb575", + "IPY_MODEL_5ce3d9e0da6244b2ab1f125215f26799", + "IPY_MODEL_eed02e566a5747afad36d96ac950eb5f" ], - "layout": "IPY_MODEL_0464ec1a282a40cc9547a44b246fd291" + "layout": "IPY_MODEL_d77d7348be934362aa46908a1e54be5f" } }, - "cf0e19a3911d40d7ad76bc6f9a4b60af": { + "ed1835f40bab4e3ca80dc781e1ccb575": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4542,13 +5035,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e6df26a4a7044b739c9bc6731c06bba5", + "layout": "IPY_MODEL_02d63d1fe55d47a39fa16d09576c92b2", "placeholder": "​", - "style": "IPY_MODEL_6741ef6090214064a3bd45b1b9e8462b", + "style": "IPY_MODEL_f218d061a0124b3d9969de8def6edaa5", "value": "tokenizer.json: 100%" } }, - "f84f644da2c9458880d137b5d85bf57a": { + "5ce3d9e0da6244b2ab1f125215f26799": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4564,15 +5057,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_a2e8f1bbcb6b4709a6536233bc9efd98", + "layout": "IPY_MODEL_3a97a72b93a24a6f917d04eaba88227a", "max": 2399357, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_4c20a901654d478483b9dda4c6192da0", + "style": "IPY_MODEL_dd4d939581124d32a4a34cb3706584e5", "value": 2399357 } }, - "1f3ef07e5d574d3b892327b22b3b7ebf": { + "eed02e566a5747afad36d96ac950eb5f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4587,13 +5080,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d794421e2881449fb0beacba6af6d671", + "layout": "IPY_MODEL_054d8a164876488c87e3146064f3f46c", "placeholder": "​", - "style": "IPY_MODEL_87a4dd97dea34e9f8e6b632657bd7938", - "value": " 2.40M/2.40M [00:00<00:00, 12.2MB/s]" + "style": "IPY_MODEL_e32db1f8547f45099cf1e49f6c7bc75a", + "value": " 2.40M/2.40M [00:00<00:00, 2.83MB/s]" } }, - "0464ec1a282a40cc9547a44b246fd291": { + "d77d7348be934362aa46908a1e54be5f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4645,7 +5138,7 @@ "width": null } }, - "e6df26a4a7044b739c9bc6731c06bba5": { + "02d63d1fe55d47a39fa16d09576c92b2": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4697,7 +5190,7 @@ "width": null } }, - "6741ef6090214064a3bd45b1b9e8462b": { + "f218d061a0124b3d9969de8def6edaa5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4712,7 +5205,7 @@ "description_width": "" } }, - "a2e8f1bbcb6b4709a6536233bc9efd98": { + "3a97a72b93a24a6f917d04eaba88227a": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4764,7 +5257,7 @@ "width": null } }, - "4c20a901654d478483b9dda4c6192da0": { + "dd4d939581124d32a4a34cb3706584e5": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -4780,7 +5273,7 @@ "description_width": "" } }, - "d794421e2881449fb0beacba6af6d671": { + "054d8a164876488c87e3146064f3f46c": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4832,7 +5325,7 @@ "width": null } }, - "87a4dd97dea34e9f8e6b632657bd7938": { + "e32db1f8547f45099cf1e49f6c7bc75a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -4847,7 +5340,7 @@ "description_width": "" } }, - "fad92fe0900e4d4aae8792fecc59f46a": { + "ed2ed6c22f6c49718d50ff82f84a7114": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -4862,14 +5355,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_09518c89b25648bf9709fd7c0a126245", - "IPY_MODEL_15095757de26426588f84a5fcd789d83", - "IPY_MODEL_36c0cffe9ba54f58a681f4718ef019b7" + "IPY_MODEL_9c4cde116e4443088de9aff696ae35c0", + "IPY_MODEL_c54b3c28c4f84a18ab7adc291c391626", + "IPY_MODEL_b7eecd9958464ac593d67a49062aa3cb" ], - "layout": "IPY_MODEL_daabb79cbc2a458182f3464fb58c828a" + "layout": "IPY_MODEL_c751d093b81c48458839557e3f8213cc" } }, - "09518c89b25648bf9709fd7c0a126245": { + "9c4cde116e4443088de9aff696ae35c0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4884,13 +5377,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_64c721c66a3b47e38c4748ac637f5dc0", + "layout": "IPY_MODEL_9b4c9d33dd574442b15052c323cc8cc4", "placeholder": "​", - "style": "IPY_MODEL_7fc93bcaab6a4a2aaa575f1128c08f90", + "style": "IPY_MODEL_e4d0b3ad01444f218ad21acfc425c850", "value": "config.json: 100%" } }, - "15095757de26426588f84a5fcd789d83": { + "c54b3c28c4f84a18ab7adc291c391626": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -4906,15 +5399,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0a87b0777dd04cfcaa546d4eee76d596", + "layout": "IPY_MODEL_cceaf5726e7c45088b1ba2fb26514f67", "max": 576, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_472334c352dc4ed68e3c9b86a51e161b", + "style": "IPY_MODEL_a69a7982052948609b0a94e0dc906c74", "value": 576 } }, - "36c0cffe9ba54f58a681f4718ef019b7": { + "b7eecd9958464ac593d67a49062aa3cb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -4929,13 +5422,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_231cb0c30308495e9fa126afc9e5b638", + "layout": "IPY_MODEL_66e95bdb5c904f18b647030018590b39", "placeholder": "​", - "style": "IPY_MODEL_c0a8f0b672de45c6bc6d7160ff0c8b3d", - "value": " 576/576 [00:00<00:00, 9.46kB/s]" + "style": "IPY_MODEL_092f96337f524f91a492878e73b34403", + "value": " 576/576 [00:00<00:00, 44.3kB/s]" } }, - "daabb79cbc2a458182f3464fb58c828a": { + "c751d093b81c48458839557e3f8213cc": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -4987,7 +5480,7 @@ "width": null } }, - "64c721c66a3b47e38c4748ac637f5dc0": { + "9b4c9d33dd574442b15052c323cc8cc4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5039,7 +5532,7 @@ "width": null } }, - "7fc93bcaab6a4a2aaa575f1128c08f90": { + "e4d0b3ad01444f218ad21acfc425c850": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5054,7 +5547,7 @@ "description_width": "" } }, - "0a87b0777dd04cfcaa546d4eee76d596": { + "cceaf5726e7c45088b1ba2fb26514f67": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5106,7 +5599,7 @@ "width": null } }, - "472334c352dc4ed68e3c9b86a51e161b": { + "a69a7982052948609b0a94e0dc906c74": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5122,7 +5615,7 @@ "description_width": "" } }, - "231cb0c30308495e9fa126afc9e5b638": { + "66e95bdb5c904f18b647030018590b39": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5174,7 +5667,7 @@ "width": null } }, - "c0a8f0b672de45c6bc6d7160ff0c8b3d": { + "092f96337f524f91a492878e73b34403": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5189,7 +5682,7 @@ "description_width": "" } }, - "fc1334361eaa4cbcb6c3efe40e61d5de": { + "b704137e631c43df8472ed54cee4ee05": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5204,14 +5697,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_3282677bc4324e80abe96141a3d21e78", - "IPY_MODEL_1987961704034478990d878e48100d58", - "IPY_MODEL_a4a2ffb6bfea41db98bbe52da6ac8e1b" + "IPY_MODEL_11956a098fbb46c88a427b9cb4ab7ba3", + "IPY_MODEL_7c7d57bc58d94691aad01042c58e9b44", + "IPY_MODEL_9a920f616fbf45eca1faff7c1f5ec44a" ], - "layout": "IPY_MODEL_276698a2d57b4669944aebedb44523a8" + "layout": "IPY_MODEL_fabdc604549f427ab02ffac01d157a42" } }, - "3282677bc4324e80abe96141a3d21e78": { + "11956a098fbb46c88a427b9cb4ab7ba3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5226,13 +5719,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_fd00c7f05c4448898e4187d7b30979f2", + "layout": "IPY_MODEL_b467440980f04944ab0ab8ba04e2f450", "placeholder": "​", - "style": "IPY_MODEL_74cd6b85751242ae93656ecfe85f8433", + "style": "IPY_MODEL_8b3c4bc89edd47f68653ccc38c595bc1", "value": "model.safetensors: 100%" } }, - "1987961704034478990d878e48100d58": { + "7c7d57bc58d94691aad01042c58e9b44": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5248,15 +5741,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_37935552ce804e3d85fedef512d2309a", + "layout": "IPY_MODEL_91f7047bb4684defa933056b67668335", "max": 3511950624, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_06adc7fc306c4534ae56ed7735951a7d", + "style": "IPY_MODEL_44f0ee492efb44f28fea1cef1e7749f9", "value": 3511950624 } }, - "a4a2ffb6bfea41db98bbe52da6ac8e1b": { + "9a920f616fbf45eca1faff7c1f5ec44a": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5271,13 +5764,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_309f98c4c1644ef7afe1f27602ad26c0", + "layout": "IPY_MODEL_9ada51fab87f4f4d82b8a9836354feb6", "placeholder": "​", - "style": "IPY_MODEL_aa8e1d833c214e069ab4a87261541022", - "value": " 3.51G/3.51G [01:23<00:00, 42.1MB/s]" + "style": "IPY_MODEL_2efe4a5bcb2d4c7d95d9ba6147590eb0", + "value": " 3.51G/3.51G [01:23<00:00, 42.5MB/s]" } }, - "276698a2d57b4669944aebedb44523a8": { + "fabdc604549f427ab02ffac01d157a42": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5329,7 +5822,7 @@ "width": null } }, - "fd00c7f05c4448898e4187d7b30979f2": { + "b467440980f04944ab0ab8ba04e2f450": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5381,7 +5874,7 @@ "width": null } }, - "74cd6b85751242ae93656ecfe85f8433": { + "8b3c4bc89edd47f68653ccc38c595bc1": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5396,7 +5889,7 @@ "description_width": "" } }, - "37935552ce804e3d85fedef512d2309a": { + "91f7047bb4684defa933056b67668335": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5448,7 +5941,7 @@ "width": null } }, - "06adc7fc306c4534ae56ed7735951a7d": { + "44f0ee492efb44f28fea1cef1e7749f9": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5464,7 +5957,7 @@ "description_width": "" } }, - "309f98c4c1644ef7afe1f27602ad26c0": { + "9ada51fab87f4f4d82b8a9836354feb6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5516,7 +6009,7 @@ "width": null } }, - "aa8e1d833c214e069ab4a87261541022": { + "2efe4a5bcb2d4c7d95d9ba6147590eb0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5531,7 +6024,7 @@ "description_width": "" } }, - "5d3379bba266422896beb467ec7f051c": { + "8bf0290c546f4a5088e2a7ac523f0f94": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5546,14 +6039,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_001794d784c14ba8920c7e2e24681706", - "IPY_MODEL_a4129eff37a64361a5382ef974c3eb18", - "IPY_MODEL_a0609ba7d1274ab28ba397ccb6b1569b" + "IPY_MODEL_a9b862b26f3b4dd39ec5340b8eacc96e", + "IPY_MODEL_1c3e863bef574aac947d3576434684e2", + "IPY_MODEL_b30d04749039450c86441eb8c9e77e38" ], - "layout": "IPY_MODEL_1ecb7249834746e6a9b182985a12ab85" + "layout": "IPY_MODEL_7816eeae7d4e4f8eaea333f408607368" } }, - "001794d784c14ba8920c7e2e24681706": { + "a9b862b26f3b4dd39ec5340b8eacc96e": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5568,13 +6061,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_94ea05705f284c66bed72d841c9121b6", + "layout": "IPY_MODEL_6799f50e7b3748568b55ec5faf79a060", "placeholder": "​", - "style": "IPY_MODEL_0986fbb5ea854c3e976dfa1c178e42fb", + "style": "IPY_MODEL_7cbc1aca8e5842b29af7e2e5919b51d3", "value": "tokenizer_config.json: 100%" } }, - "a4129eff37a64361a5382ef974c3eb18": { + "1c3e863bef574aac947d3576434684e2": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5590,15 +6083,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_45180fd18a0d4526996907b3632fede5", + "layout": "IPY_MODEL_9575e96bfeb04d76841807d13d6e3905", "max": 50570, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_e252feae6aa747df8b8ae1c9f59f8048", + "style": "IPY_MODEL_942f53d2a9574203a93f88142a7fed1f", "value": 50570 } }, - "a0609ba7d1274ab28ba397ccb6b1569b": { + "b30d04749039450c86441eb8c9e77e38": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5613,13 +6106,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_83ca64f4c63d43bd8fd6716418cb4e73", + "layout": "IPY_MODEL_8c637c325b2e440ca2a3c2abfcfc0f87", "placeholder": "​", - "style": "IPY_MODEL_b59713eabee6429f85bc453805d607c9", - "value": " 50.6k/50.6k [00:00<00:00, 2.22MB/s]" + "style": "IPY_MODEL_889f8f7464b3476eb45ea04875dbca3d", + "value": " 50.6k/50.6k [00:00<00:00, 2.19MB/s]" } }, - "1ecb7249834746e6a9b182985a12ab85": { + "7816eeae7d4e4f8eaea333f408607368": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5671,7 +6164,7 @@ "width": null } }, - "94ea05705f284c66bed72d841c9121b6": { + "6799f50e7b3748568b55ec5faf79a060": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5723,7 +6216,7 @@ "width": null } }, - "0986fbb5ea854c3e976dfa1c178e42fb": { + "7cbc1aca8e5842b29af7e2e5919b51d3": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5738,7 +6231,7 @@ "description_width": "" } }, - "45180fd18a0d4526996907b3632fede5": { + "9575e96bfeb04d76841807d13d6e3905": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5790,7 +6283,7 @@ "width": null } }, - "e252feae6aa747df8b8ae1c9f59f8048": { + "942f53d2a9574203a93f88142a7fed1f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -5806,7 +6299,7 @@ "description_width": "" } }, - "83ca64f4c63d43bd8fd6716418cb4e73": { + "8c637c325b2e440ca2a3c2abfcfc0f87": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -5858,7 +6351,7 @@ "width": null } }, - "b59713eabee6429f85bc453805d607c9": { + "889f8f7464b3476eb45ea04875dbca3d": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -5873,7 +6366,7 @@ "description_width": "" } }, - "35e927ac803e4c33ab00d6b4ade75adb": { + "95638b66f2664b118aa6583a86fe4e9b": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -5888,14 +6381,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9c395c3e5fc441c589fa644350f7a348", - "IPY_MODEL_ad5bf23ea6db4cc088406a63595773e8", - "IPY_MODEL_349b8db1e25d4d2e91858f1820b10649" + "IPY_MODEL_981240ce09a64573b609b50d83a8d22c", + "IPY_MODEL_87b7b3f3a1454cd3959eab9f99a24184", + "IPY_MODEL_6c658ff1dd524cc7919b52ac7a06c4cb" ], - "layout": "IPY_MODEL_4757ea8db0da40e5b566e95b746cc934" + "layout": "IPY_MODEL_5ba0e62fa367433681cacc76011c777b" } }, - "9c395c3e5fc441c589fa644350f7a348": { + "981240ce09a64573b609b50d83a8d22c": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5910,13 +6403,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_22dd9ef416a84ce2a6e687ce2558fb8e", + "layout": "IPY_MODEL_4c0318245a37497eb103091f33ff1611", "placeholder": "​", - "style": "IPY_MODEL_e748ed88784e4c7292b1edb3c80d843d", + "style": "IPY_MODEL_9a25be7e3b14486fb2f4cb3035d53177", "value": "tokenizer.json: 100%" } }, - "ad5bf23ea6db4cc088406a63595773e8": { + "87b7b3f3a1454cd3959eab9f99a24184": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -5932,15 +6425,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_3721f2888741475a97638f8e1743a9ea", + "layout": "IPY_MODEL_82d5f2ac63964fa4a828c4e5ddf3ac41", "max": 9085657, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_27be0e5eb0934caa8d5d8b1551f4104c", + "style": "IPY_MODEL_c5f90a373e3e46ddbb97925594772c86", "value": 9085657 } }, - "349b8db1e25d4d2e91858f1820b10649": { + "6c658ff1dd524cc7919b52ac7a06c4cb": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -5955,13 +6448,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_2d5c480182074eeeb7e3f407e5f56447", + "layout": "IPY_MODEL_36c6c8fe9e844583bbff5afbc05e6f5b", "placeholder": "​", - "style": "IPY_MODEL_e26d2ac679d84fa1bb5c8f5d03e6e097", - "value": " 9.09M/9.09M [00:00<00:00, 26.6MB/s]" + "style": "IPY_MODEL_64aa5ec0b6a84afe8484cb22c6ec0f61", + "value": " 9.09M/9.09M [00:01<00:00, 5.71MB/s]" } }, - "4757ea8db0da40e5b566e95b746cc934": { + "5ba0e62fa367433681cacc76011c777b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6013,7 +6506,7 @@ "width": null } }, - "22dd9ef416a84ce2a6e687ce2558fb8e": { + "4c0318245a37497eb103091f33ff1611": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6065,7 +6558,7 @@ "width": null } }, - "e748ed88784e4c7292b1edb3c80d843d": { + "9a25be7e3b14486fb2f4cb3035d53177": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6080,7 +6573,7 @@ "description_width": "" } }, - "3721f2888741475a97638f8e1743a9ea": { + "82d5f2ac63964fa4a828c4e5ddf3ac41": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6132,7 +6625,7 @@ "width": null } }, - "27be0e5eb0934caa8d5d8b1551f4104c": { + "c5f90a373e3e46ddbb97925594772c86": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6148,7 +6641,7 @@ "description_width": "" } }, - "2d5c480182074eeeb7e3f407e5f56447": { + "36c6c8fe9e844583bbff5afbc05e6f5b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6200,7 +6693,7 @@ "width": null } }, - "e26d2ac679d84fa1bb5c8f5d03e6e097": { + "64aa5ec0b6a84afe8484cb22c6ec0f61": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6215,7 +6708,7 @@ "description_width": "" } }, - "3fa765215f6e46eb9fb195a0dfbc3e48": { + "3560d5a1f61c4d04a3a4cbe5b23e89b3": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6230,14 +6723,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4a3fdba2d8fb4759989b7bd611d1473a", - "IPY_MODEL_487f15611a254aff91f0e5dbd625a99d", - "IPY_MODEL_ddcae7afbcc74ee8b240fe191f33173e" + "IPY_MODEL_700877c0571d434da1e5f30372260620", + "IPY_MODEL_c6a9aab3436d4c02bd3b673e4f94a871", + "IPY_MODEL_b0399ab2c01e4a74a920a7e7ea230738" ], - "layout": "IPY_MODEL_260b83096f6b4baa8e22a1ab1b44a95e" + "layout": "IPY_MODEL_157ce70735304412bbb704ac25787f4e" } }, - "4a3fdba2d8fb4759989b7bd611d1473a": { + "700877c0571d434da1e5f30372260620": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6252,13 +6745,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_31f9b8f0d9f44bf9a6365da964ac503a", + "layout": "IPY_MODEL_f9291807dd2e47bcb5b2f4ba28788faa", "placeholder": "​", - "style": "IPY_MODEL_20ca6a4c85a04cd7badaef65c238c9a3", + "style": "IPY_MODEL_2de375e266694229a2a345a75b747ef0", "value": "special_tokens_map.json: 100%" } }, - "487f15611a254aff91f0e5dbd625a99d": { + "c6a9aab3436d4c02bd3b673e4f94a871": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6274,15 +6767,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_97c87ec475834c42aba8605e4203c230", + "layout": "IPY_MODEL_2ff8fbdc35fa43a89beb46ca8a23ac5d", "max": 345, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_dd928d3c5f2a4847bbe7162e7f9fc8e1", + "style": "IPY_MODEL_dbf80e719a994668b6b8cf8635b64346", "value": 345 } }, - "ddcae7afbcc74ee8b240fe191f33173e": { + "b0399ab2c01e4a74a920a7e7ea230738": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6297,13 +6790,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_132c0925b99844379fa392aa4dd9139d", + "layout": "IPY_MODEL_e78ef84c6f22477cb728415c0ef44fbb", "placeholder": "​", - "style": "IPY_MODEL_0872e6666f834421958a9ff4ff23e512", - "value": " 345/345 [00:00<00:00, 7.47kB/s]" + "style": "IPY_MODEL_0c118d513a824a37ad8b77f0f7b66041", + "value": " 345/345 [00:00<00:00, 26.9kB/s]" } }, - "260b83096f6b4baa8e22a1ab1b44a95e": { + "157ce70735304412bbb704ac25787f4e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6355,7 +6848,7 @@ "width": null } }, - "31f9b8f0d9f44bf9a6365da964ac503a": { + "f9291807dd2e47bcb5b2f4ba28788faa": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6407,7 +6900,7 @@ "width": null } }, - "20ca6a4c85a04cd7badaef65c238c9a3": { + "2de375e266694229a2a345a75b747ef0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6422,7 +6915,7 @@ "description_width": "" } }, - "97c87ec475834c42aba8605e4203c230": { + "2ff8fbdc35fa43a89beb46ca8a23ac5d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6474,7 +6967,7 @@ "width": null } }, - "dd928d3c5f2a4847bbe7162e7f9fc8e1": { + "dbf80e719a994668b6b8cf8635b64346": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6490,7 +6983,7 @@ "description_width": "" } }, - "132c0925b99844379fa392aa4dd9139d": { + "e78ef84c6f22477cb728415c0ef44fbb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6542,7 +7035,7 @@ "width": null } }, - "0872e6666f834421958a9ff4ff23e512": { + "0c118d513a824a37ad8b77f0f7b66041": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6557,7 +7050,7 @@ "description_width": "" } }, - "e61ffe6b73014ba8bafc55c8099ccde9": { + "5013300b2f304dcebfa61c4fd232ce2d": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6572,14 +7065,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_d4a0da8440dc4279bb811b4c058e6cc2", - "IPY_MODEL_50b9fbe05b30431ba0d32821fc403dad", - "IPY_MODEL_175c644c9e664daab122ff5dce1493a2" + "IPY_MODEL_d2bcaada181e4ff9b728c10d9510b203", + "IPY_MODEL_0c076a010b0e429ca650f523e9e47fff", + "IPY_MODEL_94ebbd4416ec45efb5056f324903f6e0" ], - "layout": "IPY_MODEL_756eb9fefc4f4a62ba4fc194bcc87246" + "layout": "IPY_MODEL_6b11712e030b48c0abbdabbf2c2d7fc1" } }, - "d4a0da8440dc4279bb811b4c058e6cc2": { + "d2bcaada181e4ff9b728c10d9510b203": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6594,13 +7087,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_32fc02a790454ab1b4cc391640de727e", + "layout": "IPY_MODEL_210117a4248c48f7af1ae7c4373b574d", "placeholder": "​", - "style": "IPY_MODEL_f39f43339e554ad18f7de6301a79b009", + "style": "IPY_MODEL_379beb702870498f8980e1364d165751", "value": "config.json: 100%" } }, - "50b9fbe05b30431ba0d32821fc403dad": { + "0c076a010b0e429ca650f523e9e47fff": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6616,15 +7109,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_87dcabe5c1fb48b2a899d30c1b879b6f", + "layout": "IPY_MODEL_fcc87bc4ef704951b6cbe8d74a19e959", "max": 926, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_02ddd3b6ab084675998b3fd0df438853", + "style": "IPY_MODEL_e2df3dc8f06c4a17b0c922f55714362f", "value": 926 } }, - "175c644c9e664daab122ff5dce1493a2": { + "94ebbd4416ec45efb5056f324903f6e0": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6639,13 +7132,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_9b384125da2944689452e8d1db5ba0b9", + "layout": "IPY_MODEL_2b6ccc8c46624727ae8298a4b0a81394", "placeholder": "​", - "style": "IPY_MODEL_ec24a0526cb541539c7d5422c80c2e49", - "value": " 926/926 [00:00<00:00, 27.0kB/s]" + "style": "IPY_MODEL_dc3b1afc5dfb44bf8bf37accc74519c9", + "value": " 926/926 [00:00<00:00, 63.6kB/s]" } }, - "756eb9fefc4f4a62ba4fc194bcc87246": { + "6b11712e030b48c0abbdabbf2c2d7fc1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6697,7 +7190,7 @@ "width": null } }, - "32fc02a790454ab1b4cc391640de727e": { + "210117a4248c48f7af1ae7c4373b574d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6749,7 +7242,7 @@ "width": null } }, - "f39f43339e554ad18f7de6301a79b009": { + "379beb702870498f8980e1364d165751": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6764,7 +7257,7 @@ "description_width": "" } }, - "87dcabe5c1fb48b2a899d30c1b879b6f": { + "fcc87bc4ef704951b6cbe8d74a19e959": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6816,7 +7309,7 @@ "width": null } }, - "02ddd3b6ab084675998b3fd0df438853": { + "e2df3dc8f06c4a17b0c922f55714362f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -6832,7 +7325,7 @@ "description_width": "" } }, - "9b384125da2944689452e8d1db5ba0b9": { + "2b6ccc8c46624727ae8298a4b0a81394": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -6884,7 +7377,7 @@ "width": null } }, - "ec24a0526cb541539c7d5422c80c2e49": { + "dc3b1afc5dfb44bf8bf37accc74519c9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -6899,7 +7392,7 @@ "description_width": "" } }, - "3265a993a10140008f146c685729172e": { + "ce799369d07243b48b79714e2f181dd6": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -6914,14 +7407,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_4f8ea5f375df4c50ad8d34e0e203b617", - "IPY_MODEL_f95502f9af8e4db5b7272960eb78b245", - "IPY_MODEL_34829c21eaa740ffa829060378f9ff06" + "IPY_MODEL_5ee6bdfcea674417a09761318fdef447", + "IPY_MODEL_9847548617e94549a75e02f301bde234", + "IPY_MODEL_12b08314558047eaa03b8a95253e3f16" ], - "layout": "IPY_MODEL_53e4ff141fb641a28bb40e60d6376574" + "layout": "IPY_MODEL_2d3f29e2c0f149f396090f8b64383742" } }, - "4f8ea5f375df4c50ad8d34e0e203b617": { + "5ee6bdfcea674417a09761318fdef447": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6936,13 +7429,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_dcc5cb576b5e4f14aee556c097936b95", + "layout": "IPY_MODEL_4153b957fc174ab2bc4012c0b0f202b8", "placeholder": "​", - "style": "IPY_MODEL_f9c0e1f70f794011a9ccfdc9c623b886", + "style": "IPY_MODEL_bd722fe463cc4a5bb5e1500316d375a6", "value": "model.safetensors.index.json: 100%" } }, - "f95502f9af8e4db5b7272960eb78b245": { + "9847548617e94549a75e02f301bde234": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -6958,15 +7451,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_c8732eac8dfd471b8b10e03e942a3c62", + "layout": "IPY_MODEL_2905084c2b4d4f8bbdc2d0077d7b5530", "max": 23950, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_8af93fe9d22245e190ee68d744715966", + "style": "IPY_MODEL_105c67d60f8d4dcabeb54787975df016", "value": 23950 } }, - "34829c21eaa740ffa829060378f9ff06": { + "12b08314558047eaa03b8a95253e3f16": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -6981,13 +7474,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_8229cecc640a4d66b475b1e40279d9f5", + "layout": "IPY_MODEL_f0f68c9c28714354897f9eb7c08871ec", "placeholder": "​", - "style": "IPY_MODEL_a8649d2d24634b69b97236cacb05fd3d", - "value": " 23.9k/23.9k [00:00<00:00, 580kB/s]" + "style": "IPY_MODEL_d662245d17d946d8939009c3706ac98a", + "value": " 23.9k/23.9k [00:00<00:00, 1.72MB/s]" } }, - "53e4ff141fb641a28bb40e60d6376574": { + "2d3f29e2c0f149f396090f8b64383742": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7039,7 +7532,7 @@ "width": null } }, - "dcc5cb576b5e4f14aee556c097936b95": { + "4153b957fc174ab2bc4012c0b0f202b8": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7091,7 +7584,7 @@ "width": null } }, - "f9c0e1f70f794011a9ccfdc9c623b886": { + "bd722fe463cc4a5bb5e1500316d375a6": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7106,7 +7599,7 @@ "description_width": "" } }, - "c8732eac8dfd471b8b10e03e942a3c62": { + "2905084c2b4d4f8bbdc2d0077d7b5530": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7158,7 +7651,7 @@ "width": null } }, - "8af93fe9d22245e190ee68d744715966": { + "105c67d60f8d4dcabeb54787975df016": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7174,7 +7667,7 @@ "description_width": "" } }, - "8229cecc640a4d66b475b1e40279d9f5": { + "f0f68c9c28714354897f9eb7c08871ec": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7226,7 +7719,7 @@ "width": null } }, - "a8649d2d24634b69b97236cacb05fd3d": { + "d662245d17d946d8939009c3706ac98a": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7241,7 +7734,7 @@ "description_width": "" } }, - "ce74f31749bd4f67a2c964faded06879": { + "d4d7b1c7e7fc4cf2b9ec4697e1ae6eff": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7256,14 +7749,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_8ae1df2cd67e4bfab3fd8b1ae68aadf2", - "IPY_MODEL_86214cfc132d4e06b1134484a74aff77", - "IPY_MODEL_bec73156c2d545408c701c274fae8c22" + "IPY_MODEL_3965fed39b674eadbc7e985c3d6c29dd", + "IPY_MODEL_0746dc2deca04fe4bb629154b9b4053e", + "IPY_MODEL_84a4ebb81c43427b8a6cd5ea66cf7a17" ], - "layout": "IPY_MODEL_cbfeef33ee254f8b9deec2fb8d5abd64" + "layout": "IPY_MODEL_85e1bc1bab37469a87755bf87eb103c1" } }, - "8ae1df2cd67e4bfab3fd8b1ae68aadf2": { + "3965fed39b674eadbc7e985c3d6c29dd": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7278,13 +7771,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_df3a7d112ab24e4694a60250f597dce8", + "layout": "IPY_MODEL_02f7b18bdebe4558b371c82328ee49d7", "placeholder": "​", - "style": "IPY_MODEL_2d1a407d745b4767aca9250683c810f4", + "style": "IPY_MODEL_86f7ef93ecf8493c83bbdadec34e0c3f", "value": "Downloading shards: 100%" } }, - "86214cfc132d4e06b1134484a74aff77": { + "0746dc2deca04fe4bb629154b9b4053e": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7300,15 +7793,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_ef5ba9b297e14c91b302232ce250a688", + "layout": "IPY_MODEL_0e0b074b808b4c4486b3103463127ccb", "max": 4, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_704acef6d8b1456f9c5bfc44a74ded12", + "style": "IPY_MODEL_c851eac36f0146ca9c3dd60fc447550b", "value": 4 } }, - "bec73156c2d545408c701c274fae8c22": { + "84a4ebb81c43427b8a6cd5ea66cf7a17": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7323,13 +7816,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_d640bd66dd234bc7bfcb6eab975e459c", + "layout": "IPY_MODEL_6a17cd95fc5a4fe0aa108372f1c062b9", "placeholder": "​", - "style": "IPY_MODEL_328389fe153c48d9898149ba07b7b184", - "value": " 4/4 [06:21<00:00, 82.27s/it]" + "style": "IPY_MODEL_b74a356f65a34907bc16b78a997a73db", + "value": " 4/4 [08:26<00:00, 104.52s/it]" } }, - "cbfeef33ee254f8b9deec2fb8d5abd64": { + "85e1bc1bab37469a87755bf87eb103c1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7381,7 +7874,7 @@ "width": null } }, - "df3a7d112ab24e4694a60250f597dce8": { + "02f7b18bdebe4558b371c82328ee49d7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7433,7 +7926,7 @@ "width": null } }, - "2d1a407d745b4767aca9250683c810f4": { + "86f7ef93ecf8493c83bbdadec34e0c3f": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7448,7 +7941,7 @@ "description_width": "" } }, - "ef5ba9b297e14c91b302232ce250a688": { + "0e0b074b808b4c4486b3103463127ccb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7500,7 +7993,7 @@ "width": null } }, - "704acef6d8b1456f9c5bfc44a74ded12": { + "c851eac36f0146ca9c3dd60fc447550b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7516,7 +8009,7 @@ "description_width": "" } }, - "d640bd66dd234bc7bfcb6eab975e459c": { + "6a17cd95fc5a4fe0aa108372f1c062b9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7568,7 +8061,7 @@ "width": null } }, - "328389fe153c48d9898149ba07b7b184": { + "b74a356f65a34907bc16b78a997a73db": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7583,7 +8076,7 @@ "description_width": "" } }, - "cb9873923ef54607b13022a5243dd4e3": { + "991e64333a3949fba85a8b1a29e52723": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7598,14 +8091,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_e35851eeb4e44d198489b974db978927", - "IPY_MODEL_912a6ca93b3141e498e4df2d5f8b7f8f", - "IPY_MODEL_af3fb5d2331843478af2440c8a1b2f32" + "IPY_MODEL_988869986765448484877e5b78af7136", + "IPY_MODEL_d3be945444d74270ab105c8cb559b258", + "IPY_MODEL_4b09e5e9c46b4e368bd6387125bdd251" ], - "layout": "IPY_MODEL_e2f91daf8cfb45bea38bf3e9c83314ec" + "layout": "IPY_MODEL_e9b6ef491291440382c349b780dd0026" } }, - "e35851eeb4e44d198489b974db978927": { + "988869986765448484877e5b78af7136": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7620,13 +8113,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_eca2cde90b074aaf87d5a1128fc9cd92", + "layout": "IPY_MODEL_dea4d80a44a14941a67ccfc64fe29c72", "placeholder": "​", - "style": "IPY_MODEL_bf5a523ae0a84693a4c579c5d22b14e6", + "style": "IPY_MODEL_39781a6391c8450782667a27ee613bec", "value": "model-00001-of-00004.safetensors: 100%" } }, - "912a6ca93b3141e498e4df2d5f8b7f8f": { + "d3be945444d74270ab105c8cb559b258": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7642,15 +8135,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_54c92622fe0e46e39fc261e695d6b007", + "layout": "IPY_MODEL_285742113ccb4091bb401cef71011f49", "max": 4976698672, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_88f50bcf5d844d228714025e68f85225", + "style": "IPY_MODEL_bbc5e835427f4f879576527541c71247", "value": 4976698672 } }, - "af3fb5d2331843478af2440c8a1b2f32": { + "4b09e5e9c46b4e368bd6387125bdd251": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7665,13 +8158,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_5f3c702a916c4d4b900a62beb69cc31c", + "layout": "IPY_MODEL_a4adbba42ef940519aa47387d0e3c7da", "placeholder": "​", - "style": "IPY_MODEL_ebff2db954ac4435aa7bff59fc0debcb", - "value": " 4.98G/4.98G [01:57<00:00, 41.8MB/s]" + "style": "IPY_MODEL_61ffe191c8954f10a4715a87116c8715", + "value": " 4.98G/4.98G [03:41<00:00, 23.5MB/s]" } }, - "e2f91daf8cfb45bea38bf3e9c83314ec": { + "e9b6ef491291440382c349b780dd0026": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7723,7 +8216,7 @@ "width": null } }, - "eca2cde90b074aaf87d5a1128fc9cd92": { + "dea4d80a44a14941a67ccfc64fe29c72": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7775,7 +8268,7 @@ "width": null } }, - "bf5a523ae0a84693a4c579c5d22b14e6": { + "39781a6391c8450782667a27ee613bec": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7790,7 +8283,7 @@ "description_width": "" } }, - "54c92622fe0e46e39fc261e695d6b007": { + "285742113ccb4091bb401cef71011f49": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7842,7 +8335,7 @@ "width": null } }, - "88f50bcf5d844d228714025e68f85225": { + "bbc5e835427f4f879576527541c71247": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -7858,7 +8351,7 @@ "description_width": "" } }, - "5f3c702a916c4d4b900a62beb69cc31c": { + "a4adbba42ef940519aa47387d0e3c7da": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -7910,7 +8403,7 @@ "width": null } }, - "ebff2db954ac4435aa7bff59fc0debcb": { + "61ffe191c8954f10a4715a87116c8715": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -7925,7 +8418,7 @@ "description_width": "" } }, - "7733d285db5441eda70276551f19b29c": { + "82228cd3582a44eebe49ab2e8b6e19ae": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -7940,14 +8433,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_2d7bb000c92746afa64e00022dc8f634", - "IPY_MODEL_6d3cb047a6ff423389903bec7e5a296f", - "IPY_MODEL_3ed48973cf0e439fa293448ae5f66287" + "IPY_MODEL_7914557d250c4998872a92df0c3274c1", + "IPY_MODEL_c1df0a65098845e5b509c47f780c53e1", + "IPY_MODEL_c6384e50c54545cba9a141d28230b9ee" ], - "layout": "IPY_MODEL_1cee5d4fa2954aac803180eeabb1a20c" + "layout": "IPY_MODEL_450c0926e66847ac90f1edd4a78a3315" } }, - "2d7bb000c92746afa64e00022dc8f634": { + "7914557d250c4998872a92df0c3274c1": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -7962,13 +8455,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_0802d7ddc4cb4bd5933973a2d60aa2e2", + "layout": "IPY_MODEL_75b5e7ad1a0149c18007d71b0efcf3b9", "placeholder": "​", - "style": "IPY_MODEL_f98bcd0adaa145ee8172630808ff9dad", + "style": "IPY_MODEL_2caae56a75c141ddb12513d3f8f1612c", "value": "model-00002-of-00004.safetensors: 100%" } }, - "6d3cb047a6ff423389903bec7e5a296f": { + "c1df0a65098845e5b509c47f780c53e1": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -7984,15 +8477,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7e206a07aeab4851a54e697b50599885", + "layout": "IPY_MODEL_24dbe3c0bffd4c80b5ad6434046660bf", "max": 4999802720, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_f072ecb6163c4323bf58f0ceb2a53200", + "style": "IPY_MODEL_8c7beb9cfd25422d9d15c59ea1d14e79", "value": 4999802720 } }, - "3ed48973cf0e439fa293448ae5f66287": { + "c6384e50c54545cba9a141d28230b9ee": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8007,13 +8500,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b5395dc0fcb9498b8d6b2f7818d94432", + "layout": "IPY_MODEL_392d538dd0164add83d0c6b0dc9791e6", "placeholder": "​", - "style": "IPY_MODEL_b145078ebe884967a80839786dff51f1", - "value": " 5.00G/5.00G [01:58<00:00, 42.2MB/s]" + "style": "IPY_MODEL_ce60151c1b8f41a9967f95536d4e71ea", + "value": " 5.00G/5.00G [01:58<00:00, 42.0MB/s]" } }, - "1cee5d4fa2954aac803180eeabb1a20c": { + "450c0926e66847ac90f1edd4a78a3315": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8065,7 +8558,7 @@ "width": null } }, - "0802d7ddc4cb4bd5933973a2d60aa2e2": { + "75b5e7ad1a0149c18007d71b0efcf3b9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8117,7 +8610,7 @@ "width": null } }, - "f98bcd0adaa145ee8172630808ff9dad": { + "2caae56a75c141ddb12513d3f8f1612c": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8132,7 +8625,7 @@ "description_width": "" } }, - "7e206a07aeab4851a54e697b50599885": { + "24dbe3c0bffd4c80b5ad6434046660bf": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8184,7 +8677,7 @@ "width": null } }, - "f072ecb6163c4323bf58f0ceb2a53200": { + "8c7beb9cfd25422d9d15c59ea1d14e79": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8200,7 +8693,7 @@ "description_width": "" } }, - "b5395dc0fcb9498b8d6b2f7818d94432": { + "392d538dd0164add83d0c6b0dc9791e6": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8252,7 +8745,7 @@ "width": null } }, - "b145078ebe884967a80839786dff51f1": { + "ce60151c1b8f41a9967f95536d4e71ea": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8267,7 +8760,7 @@ "description_width": "" } }, - "28f7121283834644930bcf5395f493d2": { + "1e7335db65ad4c79acb2ecb109edf068": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8282,14 +8775,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_9e15b4264e8d4e59975be77cb8eefb87", - "IPY_MODEL_a912f0d2adb44313bbccd2101a943aa0", - "IPY_MODEL_d906bc44b24b4177a010bc8b6588787b" + "IPY_MODEL_8816435ea6d1419e903d3415994e5021", + "IPY_MODEL_b68e1ba8f55949f6a51c518d8ca45d54", + "IPY_MODEL_aa46ce0d2fa64e34b916acfd47488b40" ], - "layout": "IPY_MODEL_2540496dbeff4d79a4bb662fd48dbde6" + "layout": "IPY_MODEL_d0067f289cc04e96a596f46954cf8531" } }, - "9e15b4264e8d4e59975be77cb8eefb87": { + "8816435ea6d1419e903d3415994e5021": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8304,13 +8797,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_bf8043c6211c46ec9d0b6a93b756d4c4", + "layout": "IPY_MODEL_399e1a0f76254ef4b310f5a58c33db59", "placeholder": "​", - "style": "IPY_MODEL_ebb9240b5db940e2b6adb942e6057030", + "style": "IPY_MODEL_cb2bc151526a4636bb3ce1da5b75abe5", "value": "model-00003-of-00004.safetensors: 100%" } }, - "a912f0d2adb44313bbccd2101a943aa0": { + "b68e1ba8f55949f6a51c518d8ca45d54": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -8326,15 +8819,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_89de3bd140704294910fb93165e2f42d", + "layout": "IPY_MODEL_0e090a43ee1b4218a81dddad7838487f", "max": 4915916176, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_81c8b49b06654a7393e9d31822d7f83e", + "style": "IPY_MODEL_6dce9841746f465c93b31777ee5bf38b", "value": 4915916176 } }, - "d906bc44b24b4177a010bc8b6588787b": { + "aa46ce0d2fa64e34b916acfd47488b40": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8349,13 +8842,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_7af4070530d140b7aff2983024b9496f", + "layout": "IPY_MODEL_c31a4b209d0849d0ad7c259696cbb729", "placeholder": "​", - "style": "IPY_MODEL_b2c5be13056f41daab0ed521b17fde0f", - "value": " 4.92G/4.92G [01:56<00:00, 42.3MB/s]" + "style": "IPY_MODEL_9ebe7c86b49d411dbb72f3861d22d286", + "value": " 4.92G/4.92G [01:56<00:00, 43.5MB/s]" } }, - "2540496dbeff4d79a4bb662fd48dbde6": { + "d0067f289cc04e96a596f46954cf8531": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8407,7 +8900,7 @@ "width": null } }, - "bf8043c6211c46ec9d0b6a93b756d4c4": { + "399e1a0f76254ef4b310f5a58c33db59": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8459,7 +8952,7 @@ "width": null } }, - "ebb9240b5db940e2b6adb942e6057030": { + "cb2bc151526a4636bb3ce1da5b75abe5": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8474,7 +8967,7 @@ "description_width": "" } }, - "89de3bd140704294910fb93165e2f42d": { + "0e090a43ee1b4218a81dddad7838487f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8526,7 +9019,7 @@ "width": null } }, - "81c8b49b06654a7393e9d31822d7f83e": { + "6dce9841746f465c93b31777ee5bf38b": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8542,7 +9035,7 @@ "description_width": "" } }, - "7af4070530d140b7aff2983024b9496f": { + "c31a4b209d0849d0ad7c259696cbb729": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8594,7 +9087,7 @@ "width": null } }, - "b2c5be13056f41daab0ed521b17fde0f": { + "9ebe7c86b49d411dbb72f3861d22d286": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8609,7 +9102,7 @@ "description_width": "" } }, - "e313ff0cb7a34ca7b5d0643f534c01eb": { + "494345c29c304edfa858d8e3656af395": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8624,14 +9117,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_b2d26bec2d4d4d0bac3337156cce9b6b", - "IPY_MODEL_08e8f53b13ca4ba297ce5436e1eb8d45", - "IPY_MODEL_eb3445d2c3204e0ca976d27af7fa4d9b" + "IPY_MODEL_a111d14f792b42cc929dd10a023fad13", + "IPY_MODEL_62ef25e722d14ae99972efcb8de9000d", + "IPY_MODEL_558920ddcdb94b18874f503264c9e5ef" ], - "layout": "IPY_MODEL_a2545a6fd3a3466597932cbb22981f01" + "layout": "IPY_MODEL_c6f5f604cc3242dfb52045230f7336c4" } }, - "b2d26bec2d4d4d0bac3337156cce9b6b": { + "a111d14f792b42cc929dd10a023fad13": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8646,13 +9139,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_946fbe35a6f7439893e3818f4341a564", + "layout": "IPY_MODEL_ac76c319fe474a1fb3b69c990f96c1ad", "placeholder": "​", - "style": "IPY_MODEL_fa97b3f88e3341aca88ab962f972ce34", + "style": "IPY_MODEL_9cf597657d9f4e5faa5e6062d2e377c9", "value": "model-00004-of-00004.safetensors: 100%" } }, - "08e8f53b13ca4ba297ce5436e1eb8d45": { + "62ef25e722d14ae99972efcb8de9000d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -8668,15 +9161,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_59241196d3594f5d8912f5c40e262c32", + "layout": "IPY_MODEL_ce4ab316725d4348b880b601e5c653a7", "max": 1168138808, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_fc5298af344d43bd9d06d528a34b6b53", + "style": "IPY_MODEL_df94218d1a934399bfdee3c33aadb6c6", "value": 1168138808 } }, - "eb3445d2c3204e0ca976d27af7fa4d9b": { + "558920ddcdb94b18874f503264c9e5ef": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8691,13 +9184,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_e48a3e88b04a470cb506f609747e682c", + "layout": "IPY_MODEL_db8fd67009334f6383f6fed98bfabb62", "placeholder": "​", - "style": "IPY_MODEL_d610f5268b124feb8c81da57603615a4", - "value": " 1.17G/1.17G [00:27<00:00, 42.6MB/s]" + "style": "IPY_MODEL_067451f402c84b79b3ed53390e65eae2", + "value": " 1.17G/1.17G [00:47<00:00, 24.8MB/s]" } }, - "a2545a6fd3a3466597932cbb22981f01": { + "c6f5f604cc3242dfb52045230f7336c4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8749,7 +9242,7 @@ "width": null } }, - "946fbe35a6f7439893e3818f4341a564": { + "ac76c319fe474a1fb3b69c990f96c1ad": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8801,7 +9294,7 @@ "width": null } }, - "fa97b3f88e3341aca88ab962f972ce34": { + "9cf597657d9f4e5faa5e6062d2e377c9": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8816,7 +9309,7 @@ "description_width": "" } }, - "59241196d3594f5d8912f5c40e262c32": { + "ce4ab316725d4348b880b601e5c653a7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8868,7 +9361,7 @@ "width": null } }, - "fc5298af344d43bd9d06d528a34b6b53": { + "df94218d1a934399bfdee3c33aadb6c6": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -8884,7 +9377,7 @@ "description_width": "" } }, - "e48a3e88b04a470cb506f609747e682c": { + "db8fd67009334f6383f6fed98bfabb62": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -8936,7 +9429,7 @@ "width": null } }, - "d610f5268b124feb8c81da57603615a4": { + "067451f402c84b79b3ed53390e65eae2": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -8951,7 +9444,7 @@ "description_width": "" } }, - "e5ced005b2e447a7b84b372bbf7338e6": { + "082ed901c87f49dc9d5f58132323817a": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -8966,14 +9459,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_6d69900718ec42038626ea01cd75b284", - "IPY_MODEL_71f0b2274792494aa41bac631a2567fc", - "IPY_MODEL_29f1abdd340e450b87e71c51a090728e" + "IPY_MODEL_4bfe41f7b6214ceeb1dd1bbb8c4f3eb9", + "IPY_MODEL_9fbf71d47eaa4504a89007431622c2c4", + "IPY_MODEL_5ba6c172278146d2a9c57e7eb66bff2f" ], - "layout": "IPY_MODEL_f9cb7a22952c46e7839a5c9ef85ed837" + "layout": "IPY_MODEL_faee6f2f10b64852bfe5ee43f9184aa4" } }, - "6d69900718ec42038626ea01cd75b284": { + "4bfe41f7b6214ceeb1dd1bbb8c4f3eb9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -8988,13 +9481,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_4155e2eeb1944f8f86b4c1f71917723b", + "layout": "IPY_MODEL_d81ec9f4465f486eae2d93dc8fe5ebe0", "placeholder": "​", - "style": "IPY_MODEL_af3837eb52774ea5ba6486f0a66417bc", + "style": "IPY_MODEL_bec3733c2b534a90b948641ae9ac1908", "value": "Loading checkpoint shards: 100%" } }, - "71f0b2274792494aa41bac631a2567fc": { + "9fbf71d47eaa4504a89007431622c2c4": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -9010,15 +9503,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_590b0c6918d541dc8c3e99edfd9656bb", + "layout": "IPY_MODEL_45843f79900c4157bfe339f2a5694e7f", "max": 4, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_c8f83d354c994f40a9185206adcc8ed7", + "style": "IPY_MODEL_2ff717e43088416f9f19d6def9131072", "value": 4 } }, - "29f1abdd340e450b87e71c51a090728e": { + "5ba6c172278146d2a9c57e7eb66bff2f": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9033,13 +9526,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_07ff6b0dcd6b454eb749620fc0b49561", + "layout": "IPY_MODEL_ae729979388549029b3dc146ae55d8a3", "placeholder": "​", - "style": "IPY_MODEL_45e0bc30e12748acb24d2c02f66c486b", - "value": " 4/4 [01:10<00:00, 15.14s/it]" + "style": "IPY_MODEL_861b7e7b342548609bed3b7a84f22ebe", + "value": " 4/4 [01:06<00:00, 14.41s/it]" } }, - "f9cb7a22952c46e7839a5c9ef85ed837": { + "faee6f2f10b64852bfe5ee43f9184aa4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9091,7 +9584,7 @@ "width": null } }, - "4155e2eeb1944f8f86b4c1f71917723b": { + "d81ec9f4465f486eae2d93dc8fe5ebe0": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9143,7 +9636,7 @@ "width": null } }, - "af3837eb52774ea5ba6486f0a66417bc": { + "bec3733c2b534a90b948641ae9ac1908": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9158,7 +9651,7 @@ "description_width": "" } }, - "590b0c6918d541dc8c3e99edfd9656bb": { + "45843f79900c4157bfe339f2a5694e7f": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9210,7 +9703,7 @@ "width": null } }, - "c8f83d354c994f40a9185206adcc8ed7": { + "2ff717e43088416f9f19d6def9131072": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -9226,7 +9719,7 @@ "description_width": "" } }, - "07ff6b0dcd6b454eb749620fc0b49561": { + "ae729979388549029b3dc146ae55d8a3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9278,7 +9771,7 @@ "width": null } }, - "45e0bc30e12748acb24d2c02f66c486b": { + "861b7e7b342548609bed3b7a84f22ebe": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9293,7 +9786,7 @@ "description_width": "" } }, - "260fbb7606e84499bab3486d636eb723": { + "60fb5c80a77f4c5c955bbd5ed98a5aed": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", @@ -9308,14 +9801,14 @@ "_view_name": "HBoxView", "box_style": "", "children": [ - "IPY_MODEL_0951bd9ae0c048719d4440be8933fc2c", - "IPY_MODEL_e5e65085de7848209457373e8fa552bf", - "IPY_MODEL_aadef9fcf72546c2ad668ed3c41f6164" + "IPY_MODEL_a2b7a8e9df74429aacbd7895306dd938", + "IPY_MODEL_7214527baf244cb08f2d9233bd41b320", + "IPY_MODEL_71560bba250d46919e08812f75e1dbd9" ], - "layout": "IPY_MODEL_d00bac6add6e45799db75bd2c0dfd1b8" + "layout": "IPY_MODEL_1749ac41f57d4a6cbd1a6fd49d136ce9" } }, - "0951bd9ae0c048719d4440be8933fc2c": { + "a2b7a8e9df74429aacbd7895306dd938": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9330,13 +9823,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b682cc7a47fc4b639c1b5ccec076dc7f", + "layout": "IPY_MODEL_2dc77b9e54884ba5b16a75ca66e2913b", "placeholder": "​", - "style": "IPY_MODEL_2377cd27c01c4737a2511ad01ea45fe5", + "style": "IPY_MODEL_72789d30ca504042b893de271856461b", "value": "generation_config.json: 100%" } }, - "e5e65085de7848209457373e8fa552bf": { + "7214527baf244cb08f2d9233bd41b320": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", @@ -9352,15 +9845,15 @@ "bar_style": "success", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_b63fe081fc5f41c99be2eeabb443201e", + "layout": "IPY_MODEL_06d1030a9f7f48708bc55f9400413056", "max": 230, "min": 0, "orientation": "horizontal", - "style": "IPY_MODEL_5dfb1e9dd1c54ebf8a8e6431d73c9cdb", + "style": "IPY_MODEL_1e1d403f42a44fc98853fe2e4d15b934", "value": 230 } }, - "aadef9fcf72546c2ad668ed3c41f6164": { + "71560bba250d46919e08812f75e1dbd9": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", @@ -9375,13 +9868,13 @@ "_view_name": "HTMLView", "description": "", "description_tooltip": null, - "layout": "IPY_MODEL_609a646ef3e646a1a53fc2c4bb95b566", + "layout": "IPY_MODEL_54eeb7e4e8d74b3e9dbfc9f9f8f1e2e1", "placeholder": "​", - "style": "IPY_MODEL_1f909fc410ec416db88dbc7de35950f1", - "value": " 230/230 [00:00<00:00, 8.34kB/s]" + "style": "IPY_MODEL_2ee336cb72e6431d945a53505c9cd6a8", + "value": " 230/230 [00:00<00:00, 16.9kB/s]" } }, - "d00bac6add6e45799db75bd2c0dfd1b8": { + "1749ac41f57d4a6cbd1a6fd49d136ce9": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9433,7 +9926,7 @@ "width": null } }, - "b682cc7a47fc4b639c1b5ccec076dc7f": { + "2dc77b9e54884ba5b16a75ca66e2913b": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9485,7 +9978,7 @@ "width": null } }, - "2377cd27c01c4737a2511ad01ea45fe5": { + "72789d30ca504042b893de271856461b": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", @@ -9500,7 +9993,7 @@ "description_width": "" } }, - "b63fe081fc5f41c99be2eeabb443201e": { + "06d1030a9f7f48708bc55f9400413056": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9552,7 +10045,7 @@ "width": null } }, - "5dfb1e9dd1c54ebf8a8e6431d73c9cdb": { + "1e1d403f42a44fc98853fe2e4d15b934": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", @@ -9568,7 +10061,7 @@ "description_width": "" } }, - "609a646ef3e646a1a53fc2c4bb95b566": { + "54eeb7e4e8d74b3e9dbfc9f9f8f1e2e1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", @@ -9620,7 +10113,7 @@ "width": null } }, - "1f909fc410ec416db88dbc7de35950f1": { + "2ee336cb72e6431d945a53505c9cd6a8": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0",